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Real-world healthcare data hold the potential to identify therapeutic solutions for
progressive diseases by efficiently pinpointing safe and efficacious repurposing drug
candidates. This approach circumvents key early clinical development challenges,
particularly relevant for neurological diseases, concordant with the vision of the 21st
Century Cures Act. However, to-date, these data have been utilized mainly for
confirmatory purposes rather than as drug discovery engines. Here, we
demonstrate the usefulness of real-world data in identifying drug repurposing
candidates for disease-modifying effects, specifically candidate marketed drugs
that exhibit beneficial effects on Parkinson’s disease (PD) progression. We
performed an observational study in cohorts of ascertained PD patients extracted
from two large medical databases, Explorys SuperMart (N � 88,867) and IBM
MarketScan Research Databases (N � 106,395); and applied two conceptually
different, well-established causal inference methods to estimate the effect of
hundreds of drugs on delaying dementia onset as a proxy for slowing PD
progression. Using this approach, we identified two drugs that manifested
significant beneficial effects on PD progression in both datasets: rasagiline,
narrowly indicated for PD motor symptoms; and zolpidem, a psycholeptic. Each
confers its effects through distinct mechanisms, which we explored via a comparison
of estimated effects within the drug classification ontology. We conclude that analysis
of observational healthcare data, emulating otherwise costly, large, and lengthy
clinical trials, can highlight promising repurposing candidates, to be validated in
prospective registration trials, beneficial against common, late-onset progressive
diseases for which disease-modifying therapeutic solutions are scarce.
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INTRODUCTION

Repurposing of marketed drugs, i.e., the identification of novel
indications for existing compounds, also known as drug
repositioning, is an increasingly attractive prospect for drug
developers and patients alike, given the ever-increasing costs
of de novo drug development (Ashburn and Thor, 2004). The
rationale underlying the practice of drug repurposing is
supported by the demonstration, in a multitude of disease
areas, of a drug’s mechanism of action and clinical utility for
multiple indications, ranging from migraine to autoimmune
diseases (Xiao et al., 2008; Yong and D’Cruz, 2008; Cha et al.,
2018). While the majority of repurposed drugs have been
identified through serendipity, recent years have witnessed
growth in systematic efforts to identify new indications for
existing drugs. These efforts include experimental screening
approaches (Buckley et al., 2010; Deshmukh et al., 2013; Najm
et al., 2015) and in silico approaches in which existing data are
used to discover repurposing candidates [see (Cha et al., 2018)
for in depth review of these methods]. Yet, key challenges in
translating repurposing ideas into clinical applications have
hampered progress along this otherwise promising avenue.

Assessing the efficacy of a drug for any indication requires a
series of independent analyses reporting data from humans
treated with said drug, traditionally acquired through clinical
trials. In the last decade, new opportunities have emerged for
acquiring clinical evidence in manners complementing clinical
trials, with the growing availability of real-world data (RWD),
specifically electronic health records (EHRs) and medical
insurance claims data, together with the advent of state-of-
the-art computational methodologies. EHRs record multiple
health-related data types over time, including drug
prescriptions, lab test results of varying nature, physician
visits, and symptomology, allowing the relationships
between these different features to be assessed. Medical
insurance claims data, another form of health related RWD,
capture complementary and partially overlapping
information, including medical billing claims, enabling
research of hospitalizations, doctor’s visits, drug
prescription and purchasing, and clinical utilization. In the
context of drug repurposing, there have been isolated attempts
to use RWD in a confirmatory capacity, to support clinical
incidental findings. For example, EHRs have been used to
demonstrate an association between metformin and decreased
cancer mortality (Xu et al., 2014), and combined EHRs and
claims data have been used to support the protective potential
of L-DOPA against age-related macular degeneration (AMD)
(Brilliant et al., 2016). Here, we propose a novel approach in
which, for the first time, retrospective RWD is used to
“industrialize serendipity”. We therefore systematically
emulate phase IIb studies for all concomitant medications
used in a disease (for other than disease modifying
purposes), in order to identify potential unexpected
beneficial effects. Further, investigating the effects of related
drugs, e.g., sharing target profile or mechanism of action

(MoA), allows the extraction of mechanistic explanations
for drug effect. These effects, once validated in multiple
independent sources of RWD, provide robust evidence on
drug effectiveness, tolerability, and safety, as well as
mechanistic insight on disease modification. It is therefore
envisaged that drug candidates identified in this manner will
leapfrog into the registration trial phase, confirming aims
stated in the United States 21st Century Cures Act (21st
Century Cures Act, Pub. L. No. 114-255, 2016), and
extending the European Medicines Agency (EMA) current
use of RWD as an external control arm in rare disease
clinical trials (Cave et al., 2019).

The complex nature and organ-inaccessibility of diseases
related to the central nervous system (CNS) render them
particularly attractive for an RWD-based approach of drug
repurposing. For most CNS disorders, our understanding of
pathology and underlying etiology is still limited, resulting in
poor availability of appropriate, mechanistically relevant, animal
models. Furthermore, clinical trials testing disease-modifying
agents require lengthy and large studies, burdening the patient
population and incurring high costs of development. Together,
these limitations constrain the ability of field experts to rationally
design drugs that target these devastating diseases. Thus, using
RWD to robustly explore the relationship between various drugs
and co-morbidities for which they are not prescribed can help
mitigate the risk of lack of predictive animal models, alongside the
lengthy clinical studies required to determine outcome in the
human setting. An example of such an approach is described in
Mittal et al. (2017). The authors used the Norwegian Prescription
database to demonstrate that individuals prescribed salbutamol
(Beta2-adrenoceptor agonist) had a lower incidence of Parkinson’s
disease (PD), while those prescribed propranolol (Beta2-
antagonist) exhibited higher PD incidence. However,
investigation of disease progression or severity was not pursued.

PD is one of the most common neurodegenerative disorders,
affecting one to two in 1,000 individuals worldwide and 1% of the
population above 60 years of age (Tysnes and Storstein, 2017).
To-date, no disease-modifying agents are approved for PD (Lang
and Espay, 2018), highlighting the need and potential for novel
approaches utilizing RWD to bring new therapies to late
development stages, and thus quickly and effectively to PD
patients. One of the hallmark clinical pathologies of PD
progression is PD dementia (PDD) (Hely et al., 2008). An
estimated 30–80% of PD patients experience dementia as
their disease progresses, typically within 10 years of disease
onset (Hely et al., 2008; Aarsland and Kurz, 2010; Hanagasi
et al., 2017). It is therefore imperative to identify effective
disease-modifying therapeutic agents (Aarsland and Kurz,
2010; Meireles and Massano, 2012). In this study, we used, for
the first time, RWD from both EHRs and claims data to
identify drugs associated with decrease in progression into
PDD, as candidates for disease modification of PD. We
applied a novel analytical framework of multiple,
hierarchical “emulated PhIIb clinical trials”, an approach
that inherently proposes mechanistic rationale for
these drugs.
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METHODS

Study Design
We used the drug repurposing framework (Ozery-Flato et al.,
2020), emulating a PhIIb randomized controlled trial (RCT) for
each candidate drug, combining subject matter expertise with
data-driven analysis, and applying a stringent correction for
multiple hypotheses. Specifically, each emulated RCT
compared PD patients who initiated treatment with either the
studied drug (treatment cohort) or an alternative drug (control
cohort). We follow the target trial emulation protocol described
by Hernán and Robins (2016), which includes the following steps:
define the study eligibility criteria; assign patients to treatment
and control cohorts; list and extract a comprehensive set of per-
patient baseline covariates; list and extract follow-up disease-
related outcome measures; and, finally, use causal inference
methodologies (Hernan and Robins, 2020) to retrospectively
estimate drug effects on disease outcomes, correcting for
confounding and selection biases. We next elaborate on each
of these protocol components.

Data Sources
We analyzed two individual-level, de-identified United States-based
medical databases. The IBM Explorys Therapeutic Dataset
(“Explorys”; freeze date: August 2017) includes medical data of
>60 million patients, pooled from multiple healthcare systems,
primarily clinical EHRs. The IBM MarketScan Research
Databases (“MarketScan”; freeze date: mid 2016) contain
healthcare claims information from employers, health plans,
hospitals, Medicare Supplemental insurance plans, and Medicaid
programs, for ∼120 million enrollees between 2011 and 2015.

Eligibility Criteria
Patients were included in the PD cohort based primarily on
diagnosis codes (Supplementary Table S1), using the
International Classification of Diseases (ICD) system (ICD-9
and ICD-10). We required a repeated PD diagnosis on two
distinct dates and excluded patients with secondary
parkinsonism or non-PD degenerative disorders. We further
excluded early onset (age <55 years) PD, as their disease
trajectory and clinical profiles are different than those of late-
onset patients (Laperle et al., 2020), and patients with metastatic
tumors or those ineligible for prescription drugs through their
medical insurance plans. PD initial datewas set to the earliest date
of first PD diagnosis or a levodopa (an approved symptomatic
therapy for PD, compensating for the depleted supply of
endogenous dopamine; as levodopa is indicated for PD only,
an earlier levodopa prescription suggests that PD diagnosis has
already been assigned and is supposedly missing in our dataset)
prescription within the year preceding the first diagnosis of the
disease. Since PD is likely present and could have been diagnosed
before the first diagnostic or prescription record, we retracted the
disease date by additional six months. We only included patients
whose PD initial date preceded the date of treatment assignment,
which we termed index date. To ensure accurate characterization
of a patient’s clinical state, we required data history of at least one

year prior to the index date. Finally, we excluded from the control
cohort patients who were prescribed the trial drug.

Treatment Assignment
For both treatment and control cohorts, we demanded the
assigned treatment to have at least two prescriptions at least
30+ days apart. To avoid confounding by indication, we
considered alternative drugs that shared the same (or similar)
therapeutic class. Specifically, we first compared each studied
drug to drugs taken from its second level Anatomical Therapeutic
Chemical (ATC) (World Health Organization, 2020) class. Then,
for each drug candidate showing a significant beneficial effect
across the two databases, we expanded the analysis to control
cohorts corresponding to ATC classes of all levels.

Outcomes and Confounders
The primary endpoint was newly diagnosed dementia during a
follow-up period of two years (starting at the index date), censoring
patients when their assigned treatment ended (e.g. follow-up time
in MarketScan data was, on average, 14.3 and 10.3 months for
rasagiline and zolpidem respectively). Patients with a dementia-
related diagnosis at baseline were excluded. Other supporting
endpoints considered were falls and psychosis prevalence (see
Supplementary Table S3 for defining ICD codes). We extracted
hundreds of pre-treatment patient characteristics (Ozery-Flato
et al., 2017) (throughout the one year preceding the index date),
covering those identified by a subject matter expert as potentially
associated with confounding or selection bias. These included
demographic attributes, comorbidities (Clinical Classifications
Software (CCS), 2015; Charlson et al., 1987) PD-related
diagnoses, PD-related drugs, non-PD drugs, healthcare services
utilization and socioeconomics parameters (Table 1). The
extracted covariates provide a multifaceted view of a patient’s
PD status at the index date, as manifested in the medical
records of the patient prior to RCT initiation.

Statistical Analysis
The effect of the trial drug on disease progression was evaluated as the
difference between the expected prevalence of the outcome event for
drug-treated patients and that in control patients during a complete
follow-up period. Briefly, we corrected for potential confounding and
selection biases, using two conceptually different causal inference
approaches: 1) balancing weights, via Inverse Probability Weighting
(IPW) (Austin, 2011), which reweighs patients to emulate random
treatment assignment and uninformative censoring; and 2) outcome
model, using standardization (Hernan and Robins, 2020) to predict
counterfactual outcomes. We considered a confounder as balanced if
the standardized mean difference between (weighted) treatment and
control cohorts was below 0.2. We analyzed Explorys andMarketScan
separately and focus here on the overlapping, statistically significant,
candidates. This stringent approach bypasses the need to arbitrarily set
aside one database as “confirmatory” and it extends more
straightforwardly to >2 data resources. Finally, we used Benjamini
and Hochberg’s (1995) method to correct for multiple hypothesis
testing and considered adjusted p-values ≤ 0.05 as statistically
significant. For a full description of the RWD-based drug
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repurposing framework see our methodological paper (Ozery-Flato
et al., 2020). Ground truth effects (that is, RCT-validated) are typically
unavailable for drug repurposing candidates; notably, however, the
estimated effects showed significant correlation across different
algorithms and data sources (adjusted p-value < 0.05 for all
comparisons across outcomes, databases, and causal inference
algorithms), attesting to the robustness of the framework.

RESULTS

We first extracted cohorts of late-onset PD patients comprising
approximately 106,000 and 89,000 patients in MarketScan and
Explorys, respectively, representing 0.09 and 0.15% of the total

databases and consistent with recent epidemiological surveys
(Tysnes and Storstein, 2017). Key characteristics of these
separate cohorts (Table 2) exhibit high similarity in the
average and range of age at PD initial date, the percentage of
women, the fraction of patients with public insurance, and the
baseline Charlson comorbidity index (Charlson et al., 1987).
Notable dissimilarities between the two cohorts include the
average total patient time in database, which was more than
double in Explorys compared to MarketScan (Table 2). This
dissimilarity stems from the different timespan covered in general
by the two databases (average total patient timeline of 4.7 ±
17.4 years in Explorys vs. 2.2 ± 1.6 years in MarketScan). We
note that for most patients, PD initial date does not correspond to
disease onset, which is often unknown and may precede the
observed time period. Nevertheless, ascertainment of PD status at

TABLE 1 | Pre-treatment patient characteristics (considered as potential confounders).

Characteristic Description

Characteristics related to PD severity
PD-related diagnoses (Supplementary
Table S3)

Dementia, measuring progression along the cognitive axis; falls, as a proxy to advanced motor impairment and
dyskinesia; and psychosis, measuring progression along the behavioral axis

PD-related drugs Indicators for prescriptions of PD indicated drugs (Supplementary Table S2) during the baseline period, excluding
the index date; indicators for anti-cholinergic (ATC N04A), dopaminergic (ATC N04B), anti-psychotics (ATC N05A) and
anti-dementia (ATC N06D) drugs

General characteristics
Age At index date
Gender Male, female, unknown
Socioeconomics Indicators for commercial, medicare-supplemental, and medicaid insurance (MarketScan only)
Co-morbidities Charlson comorbidity index (Charlson et al., 1987); an indicator per each of its underlying comorbidity category; and an

indicator per each diagnosis class, using the clinical classification software (Clinical Classifications Software (CCS)
2015)

Other drugs Indicators for level 2 ATC class of all prescribed drugs
Healthcare services utilization Counts of distinct visit dates per provider place and type (MarketScan only); total days of admission per encounter type

(explorys only); indicator for index date drug prescription during inpatient hospitalization (explorys only)

TABLE 2 | PD cohort characteristics.

MarketScan Explorys

Patient count 106,395 88,867
Patient timeline (years)
Totala 3.0 (1.6) [1.7; 3.0; 5.0] 7.6 (5.7) [2.9; 6.5; 11.6]
Before PD initial datea 0.7 (1.1) [0.0; 0.0; 1.0] 4.3 (5.0) [0.0; 2.4; 7.3]
After PD initial datea 2.3 (1.4) [1.1; 2.0; 3.2] 3.3 (2.7) [1.2; 2.7; 4.7]
No. of unique prescribed drugsa 14.5 (10.4) [7.0; 13.0; 20.0] 13.1 (18.7) [0.0; 5.0; 19.0]

Insurance
Medicare, medicaid, other public 90,280 (84.9%) 65,146 (73.3%)
Commercial, private only 16,115 (15.1%) 10,810 (12.2%)
Other or unknown 0% 12,911 (14.5%)

Baseline characteristics (during ≤1 year before PD initial date)
Age at PD initial datea 74.8 (10.0) [66.2; 75.6; 82.7] 74.3 (8.1) [68.6; 75.3; 80.7]
Women 49,693 (46.7%) 37,958 (42.7%)
Charlson’s comorbidity indexa 0.7 (1.6) [0.0; 0.0; 1.0] 0.6 (1.3) [0.0; 0.0; 1.0]

PD-related diagnoses (before PD initial date)
Falls 1746 (1.6%) 3,604 (4.1%)
Psychosis 2,368 (2.2%) 1,209 (1.4%)
Dementia 9,761 (9.2%) 6,716 (7.6%)

Follow-up characteristics (during ≤2 years following PD initial date)
Dementiab 43,806, 45% (41.2%) 25,446, 32% (28.6%)
Charlson’s comorbidity indexa 2.8 (2.8) [1.0; 2.0; 4.0] 1.8 (2.4) [0.0; 1.0; 3.0]

aMean, standard deviation (in parentheses), and the first, second (median), and third quartile (in brackets).
bPopulation-level follow-up prevalence of dementia corresponds to the Kaplan-Meier estimator, which adjust for censoring, with the non-adjusted prevalence given in parentheses.
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the index date can be reliably characterized by triangulation of the
patient’s history of PD-related diagnoses, PD medications, and
healthcare utilization. In our two PD cohorts, dementia was the
most prevalent PD-related diagnosis (7.6–9.2%) at PD initial date,
followed by fall and psychosis (1.4–4.1%).

Overall, we tested all (n � 218) drugs whose treatment and
control cohorts had each at least 100 PD patients in both
MarketScan and Explorys. We used this lower bound since
many phase IIb and III clinical trials, including those pursued
in neurological indications, find 100 or less patients per arm to be
satisfactory. Of these, we were able to balance all observed
confounding biases between the treatment and control cohorts
(using IPW, seeMethods) for 205 drugs (94%). Consequently, for
each such drug we emulated a two-year RCT, estimating its effect
on the population-level prevalence of newly diagnosed dementia,
in comparison to the level-2 Anatomical Therapeutic Chemical
(ATC) control cohort. Using two independent causal inference
methods, outcome model and balancing weights, our analysis

identified, in both data sources, two candidate drugs estimated to
significantly reduce dementia prevalence: rasagiline and zolpidem
(see cohort characteristics in Supplementary Tables S4–S7).

Details of the emulated RCTs, estimating the effect of these
drugs compared to their corresponding control ATC level-2 class,
are shown in Supplementary Tables S8, S9. Figure 1 shows the
prevalence of newly diagnosed dementia in the treatment and
control cohorts throughout the follow-up period. Consistently,
rasagiline is estimated to decrease the prevalence of newly
diagnosed dementia during a follow-up period of two years by
7–9%, compared to symptomatic PD drugs. Similarly, zolpidem,
compared to the class psycholeptics drugs, reduces dementia
prevalence by 8–12%. Moreover, for both rasagiline and
zolpidem, drug effect increases as a function of treatment
duration (Figure 1). We emphasize that in these emulated
RCTs, as well as the ones discussed below, the causal
methodology we applied successfully balanced the treatment
and control cohorts with respect to all hypothesized

FIGURE 1 | Rasagiline and zolpidem significantly delay the onset of dementia in PD patients in two independent datasets. Kaplan-Meier plots comparing the
prevalence of newly diagnosed dementia in the treatment and control cohorts, corrected with inverse probability weighting (IPW, dark color), or uncorrected (light color).
Red and blue lines show the expected percentage of patients not yet diagnosed with dementia at each time point among the patients who take the drug and among the
patients who take other ATC level 2 drugs (N04: symptomatic PD drugs; N05: Psycholeptics), respectively. The difference between each pair of red and blue lines
correspond to the expected effect of the drug.
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confounders (Table 1), suggesting that important characteristics
of these cohorts, including age and proxies of disease stage, are
now similar.

Next, we expanded the analysis to consider all four ATC levels
that include each drug, corresponding to anatomical main group
(level 1), therapeutic subgroup (level 2), pharmacological
subgroup (level 3), and chemical subgroup (level 4).
Specifically, we compared each drug against all its
encompassing ATC classes and additionally, each
encompassing ATC class against all upper-level classes in the
ATC hierarchy. The resulting set of RCTs estimates the effect of a
target drug against drugs sharing its MoA e.g., rasagiline vs. other
monoamine oxidase (MAO) B inhibitors, ATC class N04BD), as
well as drugs conferring different MoAs, (e.g. MAO B inhibitors,
N04BD, vs. other dopaminergic agents, N04B), thus testing a set
of related mechanistic hypotheses. This can also be viewed as

sensitivity analyses for the effect of a target drug. Supplementary
Table S11 shows the complete results of these emulated RCTs.

ATC level-4 class N04BD, MAO B inhibitors, included only
two drugs: rasagiline and selegiline. Therefore, the rasagiline vs.
N04BD emulated trial is essentially a head-to-head comparison
between these two drugs. The results of the emulated trials in both
MarketScan and Explorys suggest that the use of rasagiline
reduces the prevalence of dementia compared to selegiline
(Table 3; estimations using outcome model are significant).
When compared to higher level ATC classes – specifically,
dopaminergic agents, symptomatic PD drugs, and nervous
system medications – all dominated by levodopa (77–82% of
first prescriptions), rasagiline is estimated to significantly
decrease dementia prevalence by 5–9% in both databases, using
either causal inference approach (Table 3, and Supplementary
Table S8). We also estimated the effect of rasagiline on the

TABLE 3 | Rasagiline significantly attenuates PD progression.

Each row corresponds to an emulated RCT estimating the effect of rasagiline on population-level prevalence of newly diagnosed dementia, serving as proxy for PD progression, in PD
patients in the MarketScan (top panel) and Explorys (bottom panel) cohorts.
aControl cohorts comprise patients prescribed any drug sharing rasagiline’s (ATC) class at various levels.
bDistribution of index date drugs within the ATC class control cohort; shown are at most the six top drugs, prescribed to ≥5% of the cohort patients. For the complete distribution, see
Supplementary Table S10.
cPatient counts in each cohort, as well as their percentage out of the corresponding initial cohorts (prior to positivity enforcement; see Methods for details).
dEffects (and FDR-adjusted p-values), estimated using either weight balancing or an outcome model, are green-shaded if beneficial and significant (adjusted p-value 0.05). The reported
effect is the difference between the expected prevalence of dementia in the treatment and control cohorts; see Outcomes and Confounders for more details.
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prevalence of falls and psychosis: In MarketScan, rasagiline is
estimated, by both causal inference algorithms, to decrease the
population prevalence of falls compared to all its encompassing
ATC classes; in Explorys, rasagiline is estimated to have a beneficial
effect on the prevalence of psychosis (but only a subset of these
estimands were significant).

Zolpidem was estimated to have significant and beneficial
effects on the prevalence of dementia only in comparison to its
level-2 ATC class, psycholeptics (Table 4, and Supplementary
Table S9). The analysis in MarketScan suggests that zolpidem has
a beneficial effect compared to other hypnotics and sedatives
(N05C), but the different composition of the N05C control cohort
in Explorys (dominated by midazolam) hinders conclusive
results. Zolpidem was also estimated to have beneficial effects
on the prevalence of falls and psychosis, compared to
psycholeptics, but these effects were not significant.

DISCUSSION

The present study used both EHRs and insurance claims data to
assess the effects of hundreds of concomitant drugs on the
emergence of PD-associated dementia as one of the more
common hallmarks of PD progression. Only those drugs for
which a statistically significant effect was found independently in
both EHR and claims data were further considered for their

repurposing potential. Given the different nature of the data
collected with each health data source and stringent statistical
approach, the resultant repurposing candidates have a high
likelihood of success in a phase III prospective study. Our
analysis unraveled therapeutic benefits of two drugs in
decreasing the population-level incidence of PDD, representing
slowing of PD disease progression. Thus, long-term treatment (24
months) with rasagiline, a MAO-B inhibitor narrowly indicated
for PD motor symptoms, or with zolpidem, a gamma-
aminobutyric acid (GABA)-A receptor modulator indicated for
insomnia, is strongly associated with decreased PDD incidence in
two separate large cohorts (N � 195,262 in total). Indeed, the
mechanistic, and at times clinical, support for the identified
associations, as described below, not only reinforces the
approach in identifying new drug repurposing candidates, but
also serves as a vehicle to bolster otherwise ambiguous results
from RCTs. We note that in a similar analysis we also found
azithromycin and valsartan to significantly decrease the prevlence
of falls and psychosis, respectively, in PD patients, but without
significantly reducing the rate of dementia onset; discussion of
these drug repurposing candidates is beyond the scope of the
current publication.

Cognitive impairment is highly prevalent in patients with
progressive stages of PD and is associated with adverse health
outcomes and increased mortality (Bäckström et al., 2018).
Slowness in memory and thinking, stress, medication, and

TABLE 4 | Zolpidem significantly attenuates PD progression.

aThe reported effect is the difference between the expected prevalence of dementia onset, used as proxy for PD progression, in the treatment and control cohorts. See Table 3 footnotes
for more details.
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depression can contribute to these changes. Cognitive deficits
vary in quality and severity in different stages of disease
progression in PD, ranging from subjective cognitive decline
to mild cognitive impairment and to subsequent PDD. The
latter is defined as acquired objective cognitive impairment in
multiple domains, including attention, memory, executive and
visuospatial ability (Emre et al., 2007), and results in adverse
alteration of activities of daily life (American Psychiatric
Association, 2013). In a study of 224 Norwegian PD patients
(Aarsland et al., 2003), for whom disease duration was 9 years on
average, the estimated 4-years and 8-years prevalence of dementia
was 51.6 and 78.2% respectively. In another study that followed
136 newly diagnosed PD patients for 20 years (Hely et al., 2008),
dementia was present in 83% of 20-years survivors. A single
choline esterase inhibitor, rivastigmine, is approved by the
United States Food and Drug Administration (FDA) for the
treatment of PDD, with modest efficacy (Meng et al., 2018)
resulting in a significant unmet medical need for additional
pro-cognitive therapies (Green et al., 2019).

Our finding that rasagiline slows PD progression is consistent
with mechanistic evidence and extends prior clinical data.
Clinical trials of rasagiline in PD patients implied possible
disease-modifying effects, albeit inconclusively. Indeed, none of
the studies reported to-date had the statistical power to support or
refute slowing the progression of the disease. The largest study to
assess disease-modifying effects of rasagiline was ADAGIO
(Olanow et al., 2009), which failed to demonstrate a
dose-dependent effect on the Unified Parkinson’s disease
Rating Scale (UPDRS) scores. This failure may be partly due
to insufficient statistical power: the total number of participants
in the ADAGIO study was N � 1,176, much smaller than in our
study (N � 13,562 in Explorys; N � 13,373 in MarketScan; See
Table 3). Additionally, the ADAGIO study did not directly assess
effects of rasagiline on cognition, and the follow up study (Rascol
et al., 2016), which compared early vs. delayed start of rasagiline,
evaluated cognitive decline through UDPRS and clinical
milestone proxies rather than confirmed dementia. A
secondary analysis of the NET-PD Long-term Study-1 (LS1)
(Hauser et al., 2017) identified significant association between
longer duration of MAO-B inhibitor exposure (rasagiline
monotherapy, N � 586) and less clinical decline, supporting
the possibility of slowing clinical disease progression. The
study did not observe any effect on the Symbol Digit
Modalities Test for cognitive function, and the authors speculated
this could be explained by the fact that incidence of cognitive
impairment and progression was generally limited. Several recent
studies addressed this hypothesis more directly, but were small (N �
34-151) and short (3–6 months), yielding mixed results (Hanagasi
et al., 2011; Frakey and Friedman, 2017). A larger study (N � 289
completers) assessed similar, but distinct effects of rasagiline as add-
on therapy (Hauser et al., 2014), reporting a statistically significant
improvement when added to dopamine agonist therapy over
18 months of therapy. Another study, MODERATO (N � 170)
(Weintraub et al., 2016), concluded that rasagiline treatment in PD
patients already diagnosed with mild cognitive impairment was not
associated with cognitive improvement. Importantly, many of the
prior reports sought to demonstrate disease prevention/protection in

as-yet-to-be-diagnosed patients, while we studied patients with
confirmed PD diagnosis, but no dementia. Due to this important
distinction, it can be expected that the class and specific agents
reported, e.g., by Mittal et al. (2017), to decrease (or increase) PD
incidence did not show, in our analysis, similar effects. Overall,
inadequate power and diverse study designs reported to-date
hampered conclusive therapeutic interpretation of the role of
rasagiline, and the monoamine B class, as PD disease modifiers.
Indeed, our approach directly resolved these shortcomings,
dramatically increasing sample size and follow-up duration by
virtue of the use of RWD, facilitating the discovery of rasagiline’s
robust and consistent disease-modifying effects. Importantly, our
analysis of proxy parameters supports the beneficial effects of
rasagiline on PD progression beyond PDD, as reflected by a
decrease in the population prevalence of falls and the trend
reduction of psychosis (data not shown).

Mechanistically, rasagiline has been suggested to have
neuroprotective effects mediated by its ability to prevent
mitochondrial permeability transition (Naoi and Maruyama,
2009). In addition, rasagiline induces anti-apoptotic pro-survival
proteins, Bcl-2 and glial cell-line derived neurotrophic factor
(GDNF) and increases expression of genes coding for
mitochondrial energy synthesis, inhibitors of apoptosis, and the
ubiquitin-proteasome system. Finally, systemic administration of
selegiline and rasagiline increases neurotrophic factors in
cerebrospinal fluid of PD patients and non-human primates
(Naoi et al., 2007). These rasagiline-induced effects may
constitute endogenous compensatory mechanisms that delay or
reverse disease progression, a previously suggested approach for
disease modification in PD in general, and specifically in the
context of rasagiline therapy (Brotchie and Fitzer-Attas, 2009).

The association between zolpidem, a non-benzodiazepine
hypnotic drug used for the treatment of sleeping disorders, and
decreased PDD incidence identified herein is a novel finding. In fact,
a single prior report published more than 2 decades ago speculated
that zolpidem would not be efficacious for PD, based on the limited
clinical experience with the drug at the time, without specific
consideration for cognition (Lavoisy and Marsac, 1997).
However, recent publications demonstrate zolpidem’s ability to
treat a large variety of neurologic disorders, most often related
to movement disorders and disorders of consciousness, and suggest
zolpidem induces transient effects on UPDRS (Bomalaski et al.,
2017). Of note, several cross-sectional reports have raised concerns
for increased risk of reversible dementia or Alzheimer’s diseases in
the general population when exposed to zolpidem (Shih et al., 2015;
Lee et al., 2018), and several others raised a concern for PD
emerging after long-term zolpidem treatment (Yang et al., 2014;
Huang et al., 2015). However, these reports considered only a
handful of potential confounding biases, observed seemingly
conflicting dose effects and applied regression-based methods,
which unlike IPW, do not allow one to determine whether
treatment and control biases were successfully eliminated
(Austin, 2011). Furthermore, neither report assessed impact on
specific patient subsets, such as those diagnosed with PD. Indeed, a
proof-of-concept clinical study is currently recruiting subjects in
order to assess the benefits of low-dose zolpidem in late-stage PD
(NCT03621046), supporting the findings reported herein. Yet
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again, the limited sample size (N � 28) in the recruiting study,
together with the inclusion of cognition as a secondary (rather than
primary) endpoint both pose a high risk for insufficient power and
thus inconclusive results. Finally, latest literature reports on
beneficial effects of zolpidem on renal damage and akinesia
(Bortoli et al., 2019) support a high benefit-risk profile of
repurposing zolpidem for slowing or reversal of PD.

Mechanistically, zolpidem is unique compared to other sedative-
hypnotics and has been found to be a selective agonist of the ω1
receptor subtype of the GABA A receptor complex. Areas rich in
these receptors include the output structures of the basal ganglia and
striatum to the thalamus and motor cortices, key areas implicated in
PD (Bomalaski et al., 2017). In addition, a structural relationship
between the antioxidant melatonin and zolpidem suggests possible
direct antioxidant and neuroprotective properties of zolpidem.
García-Santos et al. (2004) demonstrated that zolpidem prevented
induced lipid peroxidation in rat liver and brain homogenates,
showing antioxidant properties similar to melatonin. Bortoli et al.
(2019) investigated in silico the antioxidant potential of zolpidem and
identified it as an efficient radical scavenger similar to melatonin and
trolox. Although the mechanisms involved in the pathogenesis and
progression of PD are not fully understood, there is overwhelming
evidence that oxidative stress plays an important role in
dopaminergic neuronal degeneration. Since the maintenance of
reduction-oxidation reaction potential is an important determinant
of neuronal survival (Puspita et al., 2017), its disruption ultimately
leads to cell death. Accumulating evidence from patients and disease
models indicate that oxidative and nitrative damage to key cellular
components is important in the pathogenesis of PD progression
(Vera et al., 2013). Oxidative stress plays an important role in
dopaminergic neuronal degeneration, triggering a cascade of
events, including mitochondrial dysfunction, impairment of
nuclear and mitochondrial DNA, and neuroinflammation, which
in turn cause more reactive-oxygen species (ROS) production (Guo
et al., 2018), evident also by genetic forms of PD, caused bymutations
in PARK7, PINK1, PRKN, SNCA and LRRK2 (Vera et al., 2013).
Thus, the protective effects of zolpidem on the development of
dementia could be explained by the antioxidant and
neuroprotective capacities of the drug.

Rasagiline and zolpidem are supported here as promising
candidates for disease-modifying treatment in PD, likely through
neuroprotective effects constituting compensatory mechanisms in
the disease. It is anticipated that use of such drugs will require
subsequent supplemental symptomatic therapy for motor
symptoms, depending on the specific patient manifestation.

In a preliminary method development study (Ozery-Flato
et al., 2020), we validated the drug repurposing framework used
here. We had demonstrated that treatment effects estimated
across different data sources and causal methodologies showed a
high degree of agreement (p-value < 0.05 for all comparisons).
Yet, the retrospective design of the study, combined with the use
of RWD, introduces some limitations. Specifically, identifying
phenotype cohorts based on ICD codes is likely to be incomplete
(sensitivity <1) and noisy (positive predictive value, PPV <1).
None withstanding, it is considered a fairly accurate and
practical approach to “rule in” patients with PD (Noyes
et al., 2007). Corroborating these assignments by medical

history and drug prescriptions further substantiated patients’
eligibility. Additionally, proxies with reliable representation in
the data are required to emulate the endpoints otherwise used in
prospective clinical trials and need to be further assessed and
refined in a controlled clinical environment (Shivade et al.,
2014). Still, automatic mapping of EHR data to phenotypes
and medical concepts needed for clinical research has gained
much attention, yielding multiple studies that demonstrate the
increasing ability of machine learning and artificial intelligence
to provide accurate solutions for this challenge (Hripcsak and
Albers, 2013; Ho et al., 2014; Beaulieu-Jones and Greene, 2016;
Lipton et al., 2017). Conversely, the mechanistic nature of the
drug effects, and therefore potential utility in combination
therapy for synergistic effects, require further assessment in a
dedicated prospective study, consistent with the drug
development paradigm. In addition, while RWD used in a
retrospective manner enables the assessment of chronic
processes, without the need for lengthy studies, they are
bound by the length of follow-up data per individual. Finally,
local healthcare practice may at times confound the analysis and
requires in-depth understanding of such practices in data
interpretation (Hersh et al., 2013).

Notwithstanding these limitations, discoveries stemming from
RWD of large, well-characterized patient populations can provide
valuable clues to effective mechanisms and existing medications
that may be beneficial in slowing disease progression, or potentially
preventing it altogether. In the realm of CNS-related diseases, the
extensive follow-up integral to medical-record tracking presents a
well-suited setting for investigating the effects of concomitant
interventions. Our two-year follow-up period is longer
compared to most PD clinical trials, including the ones
discussed above, and can be further prolonged in Explorys (see
timeline statistics in Table 2). The EMA has already employed
RWD in lieu of control arms to support regulatory decisions either
at authorization or for indication extension, in the context of rare,
orphan diseases (Cave et al., 2019). Similarly, the 21st Century
Cures Act (21st Century Cures Act, Pub. L. No. 114-255, 2016)
requires that the FDA establish a framework to evaluate the
potential use of RWD in support of approval of new indications
for approved drugs. In fact, successful examples are already being
implemented (Baumfeld Andre et al., 2019). Accordingly, the FDA
allotted $100million to build an EHR database of 10million people
as a foundation formore robust postmarketing studies. The current
study provides evidence in support of such uses for RWD,
accelerating the availability of solutions for patients in need.

In conclusion, we demonstrate that emulating clinical trials
based on observational healthcare data identifies promising
repurposing drug candidates, efficiently relieving the societal
burden of costly, large, and lengthy clinical trials. This
approach is particularly relevant as a therapeutic discovery
engine for common, late-onset progressive CNS diseases for
which disease-modifying therapeutic solutions are scarce. As
the PD population is heterogenous, refining the inclusion/
exclusion criteria of the targeted sub-populations to focus on
responder populations, compared to matched controls, will
further increase the power of future analyses (Ozery-Flato
et al., 2018). The two drugs identified herein, rasagiline and
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zolpidem, both hold great promise as disease-modifying agents
for PD, in general, and specifically in addressing aspects of
cognitive impairment in PD. Further, these cognitive benefits
may extend to other neurodegenerative diseases. The ability to
systematically compare effects between various drug classes, as
well as within classes, in patients in real-world settings is a
significant step in accelerating patients’ access to safe and
efficacious therapies.
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