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Voltage dependence of synaptic 
plasticity is essential for rate based 
learning with short stimuli
Felix Weissenberger, Marcelo Matheus Gauy, Johannes Lengler, Florian Meier & Angelika Steger

In computational neuroscience, synaptic plasticity rules are often formulated in terms of firing rates. 
The predominant description of in vivo neuronal activity, however, is the instantaneous rate (or spiking 
probability). In this article we resolve this discrepancy by showing that fluctuations of the membrane 
potential carry enough information to permit a precise estimate of the instantaneous rate in balanced 
networks. As a consequence, we find that rate based plasticity rules are not restricted to neuronal 
activity that is stable for hundreds of milliseconds to seconds, but can be carried over to situations 
in which it changes every few milliseconds. We illustrate this, by showing that a voltage-dependent 
realization of the classical BCM rule achieves input selectivity, even if stimulus duration is reduced to a 
few milliseconds each.

The ultimate goal of computational neuroscience is to understand the capabilities of the nervous system to rep-
resent and process information1. It is generally agreed that plastic synapses play a key role in the biophysical 
foundation of complex information processing. How plastic synapses change their efficacy as a function of the 
activity and state of presynaptic and postsynaptic neurons has been studied in numerous experiments. Based on 
these results, computational neuroscience aims to derive models of synaptic plasticity that admit to study what 
kind of computations may emerge in neuronal networks with plastic synapses.

Over the last decades there has been tremendous success in this endeavor, largely unburdened by using a firing 
rate abstraction of neuronal activity2. The accessibility of such rate models can be largely contributed to the fact 
that they permit an analysis for which one can resort to a large body of established mathematical tools2,3. A classic 
example is the Bienenstock Cooper Munro (BCM) theory, which reproduces the development of receptive fields 
in visual cortex4. More recent work focused on spiking models and demonstrated that plasticity rules formulated 
in terms of spike timing (STDP rules, e.g.5–7) and additionally in terms of the postsynaptic voltage (VDP rules, 
e.g.8–11) can be reduced to plasticity rules formulated in terms of firing rates (rate based plasticity rules, e.g.4,12) 
under the assumption that firing rates are a meaningful abstraction of neuronal activity6,7,13. As a consequence, 
current spiking network models, which are capable of remarkable computation, are often implementations of rate 
models with spiking neurons14,15. Whether rate or spiking models are suitable to describe neural computation in 
general and synaptic plasticity in particular is still highly debated16–19, see20 for review.

A critical limitation of all these models is that they rely on the assumption that firing rates encode the infor-
mation that is relevant to perform the desired computation. However, a firing rate is a temporal average of spikes. 
For cortical neurons, which spike in a dynamic range of 0–200 Hz this average must be taken over milliseconds 
to seconds, as otherwise no spikes are observed and the concept of a firing rate is hollow21. This implies that rate 
based computation is restricted to computational tasks where information is encoded in slowly changing neu-
ronal activity3,17.

This is in sharp contrast to the activity of cortical neurons in response to natural stimuli, which is typically 
characterized by the instantaneous rate (or firing probability) of the neuron. The instantaneous rate is reported 
in a peri-stimulus-time histogram (PSTH), which averages neuronal spiking over several repetitions of the same 
stimulus3. In vivo recordings of the instantaneous rate of cortical neurons in response to natural stimuli reveal 
that the activity of such neurons changes quickly, in the order of few milliseconds17,22. This suggests that for many 
computational tasks the relevant information is encoded in rapidly changing neuronal activity and thus a firing 
rate abstraction neglects a large amount of information.

It is currently unknown if and how the information encoded in the instantaneous rate is available to local syn-
aptic plasticity mechanisms. The reason is that the instantaneous rate is an abstract concept whose computation 
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requires several repetitions of identical stimuli, which in a natural environment are sparse, irregular and distant 
in time. In contrast, information encoded in the firing rate is directly accessible to local synaptic plasticity mech-
anisms via spikes, and the dependence of plasticity on firing rate23–26 and spike timing26–30 is well established.

In this work we resolve this discrepancy: we show that the instantaneous rate can be precisely estimated from 
the fluctuations of the membrane potential in balanced networks. Hence, the instantaneous rate is directly acces-
sible to voltage-dependent synaptic plasticity mechanisms31–33. In balanced networks, excitatory inputs are can-
celed by inhibitory inputs on average34–36 and it is likely that cortical circuits operate in this balanced regime37–39.

Our result immediately implies that rate based plasticity rules that are linear in the presynaptic rate can be 
understood in terms of the instantaneous rate. Therefore, known insights on rate based plasticity transfer natu-
rally to scenarios where relevant information is encoded in rapidly changing neuronal activity. So far, learning 
in such scenarios was only known to be feasible with STDP rules under the assumption of information being 
encoded in precise spike timing, in contrast to the rate based setup we study here.

Concretely, we analytically quantify how long neuronal activity, which encodes a certain stimulus in fir-
ing rate or instantaneous rate, must be stationary such that a plasticity rule can apply a desired weight change, 
which is given by an arbitrary function of the presynaptic and postsynaptic rates, with a given accuracy. Here we 
compare plasticity mechanisms that either solely depend on spiking of presynaptic and postsynaptic neurons 
(spike-dependent plasticity (SDP) rule, equivalent to STDP in a rate based setting) or additionally on the postsyn-
aptic membrane potential (voltage-dependent plasticity (VDP) rule). We find that for fixed accuracy the neuronal 
activity may change at least one order of magnitude faster in the case of VDP compared to SDP, since VDP can 
utilize the instantaneous rate. We illustrate this on the example of the BCM rule to perform input selectivity of 
stimuli presented for a very short period of time (10 ms).

Materials and Methods
Neuron model.  We use the classical model of Stein40 for cortical in vivo neuronal dynamics and its diffusion 
approximation41 (see3,42 for excellent introductions and43 for review). In Stein’s model a leaky integrate-and-fire 
(LIF) neuron is driven by stochastic spike arrival. The membrane potential u t( ) evolves according to

t
u t u t w t td

d
( ) ( ) ( ),

(1)k

N

t
k k

f

1 k
f

∑∑τ τ δ= − + −
=

where τ is the membrane time constant, k indexes the N  synapses, tk
f  are the spike arrival times, wk is the weight 

of the k-th synapse, and δ is the Dirac δ-function. If the membrane potential reaches the threshold ϑ, the neuron 
spikes and the membrane potential is set to the reset potential ur  immediately afterwards. Hence, the action 
potential is not explicitly modeled.

The spikes arriving at the k-th synapse are generated by a Poisson process with rate kν . The weights wk can be 
positive or negative corresponding to excitatory or inhibitory synapses respectively. We assume loosely balanced 
excitation and inhibition (see44 for review and Discussion): the mean wk

N
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For analytic tractability we consider the diffusion approximation of Stein’s model (where N  is large and wk 
small, also known as the synaptic bombardment assumption or high input regime22), which describes the mem-
brane potential u t( ) as an Ornstein-Uhlenbeck process (OUP)
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where Wd t are the increments of a Wiener process in time td 41. The spike generation at threshold ϑ followed by a 
reset to ur is analogous to Stein’s model. The diffusion approximation allows to determine the rate as the inverse 
of the expected first passage time of the OUP given by Siegert’s formula42 as

∫σ τ π=





⋅ +





σ

σ
ϑ −

r x x x( ) exp( ) (1 erf( )) d ,
(3)

u
2

1

r

where erf denotes the error function. Furthermore, as a consequence of balanced excitation and inhibition the 
neuron operates in the fluctuation-driven regime and its interspike interval (ISI) distribution is exponential (in 
the limit of large σϑ/ ). Hence, the neuron spikes according to a Poisson process with rate r( )σ 22,45. As a conse-
quence, in a time interval during which σ is constant, σr( ) describes both the firing rate and the instantaneous rate 
of the neuron. Therefore, in the sequel we will simply continue referring to it as rate, and the length of the consid-
ered time interval indicates whether it makes sense to think of it as the firing rate (time intervals in the order of 
seconds) or instantaneous rate (time intervals in the order of milliseconds).

Information about the stimulus.  Learning with local plasticity rules is limited by the amount of infor-
mation about the stimulus, encoded in the neuronal activity of presynaptic and postsynaptic neurons, available 
per time. This amount of information, termed Fisher information, is quantified as the inverse variance of an opti-
mal estimator (an estimator with minimal variance among all estimators) of the stimulus (see46 for an introduc-
tion). In this section we analytically compare two local neuronal observables, namely spike count and membrane 
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potential, with respect to how much information they convey about the stimulus, which is encoded in a rate. 
Concretely, we compute the variance of optimal rate estimators based on either spike times or voltage samples.

Information from spiking.  As a consequence of balanced excitation and inhibition, the neuron spikes according 
to a Poisson process with rate r. Let …t t, , n1  be the spike times observed in a time interval of length T . The max-
imum likelihood estimator of the rate of a Poisson process, which is an optimal estimator of the rate, is given by

ˆ =r n
T

, (4)
spike

and has variance

=
r
T

Var , (5)r
spike

see46. Hence, the Fisher information of the rate in a Poisson spike train is proportional to the length of the 
observed time interval. Further, as a consequence of the Poisson model, the actual spike times are irrelevant. 
Therefore, if the rate estimate is based solely on spiking, then one can only increase the amount of information 
about the rate by observing the neuron for a longer time interval.

Information from membrane potential.  The membrane potential evolves according to an OUP as in Equation (2) 
and the neuron spikes with rate σr( ), see Equation (3). Observing the membrane potential to extract information 
is modeled by taking samples = …u uu : , , n0  of the membrane potential in a time interval of length T . Possible 
postsynaptic action potentials are not contained in the membrane potential trajectory as they are not explicit in 
the LIF neuron model. We assume equidistant sampling times with distance T n: /ε =  and refer to 1/ε as the sam-
pling rate. The transition probability density of the OUP is
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see for example42. This is the probability that u t( ) is equal to u given that ′u t( ) was equal to ′u . Therefore, the like-
lihood of the samples is
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the log-likelihood (only terms depending on σ are shown) is
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and the first derivative of the log-likelihood with respect to σ is
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Thus, by the invariance principle46, an optimal estimator of the rate is then given by
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The expectation of the second derivative of the log-likelihood with respect to σ is

σ
σ

σ ε
= − .l Tud

d
( ; ) 22

2 2

Therefore, the variance of σ̂ is T/(2 )2σ ε . Using the invariance principle and the delta method46 we conclude that 
the variance of the rate estimator is
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Note that the amount of information about the rate extractable from the membrane potential is not only propor-
tional to the duration of observation but crucially also to the sampling rate. Therefore, if the rate estimate is based 
on the membrane potential, then the amount of information about the rate can be increased by a higher sampling 
rate. However, the sampling rate must be smaller than the spike arrival rate, which led to the approximation of the 
membrane potential by an OUP, as otherwise this approximation is not valid, see Discussion.

Time improvement.  Let T spike and T voltage be the duration of a stimulus that is required to extract a certain 
amount of information about the stimulus either from the spike train or the membrane potential evolution of a 
neuron encoding it. The factor of time improvement is given by
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combining Equations (5) and (8).

Rate based plasticity with spiking neurons.  A rate based plasticity rule describes the synaptic weight 
change ∆ = f r r: ( , )w pre post  as a function of the presynaptic and postsynaptic rates rpre and rpost. A general plasticity 
rule realizes a particular rate based rule f  if the expected weight change of the synaptic weight is equal to ∆w, after 
the presynaptic and postsynaptic neurons spiked with rates rpre and rpost for time T  (the expectation is over the 
randomness of the Poisson spike trains)6,7,13. Crucially for learning, the actual weight change should be close to its 
expectation. Hence, an optimal plasticity rule minimizes the variance of the weight change, among all rules apply-
ing the same expected weight change.

Optimal SDP rule.  We now derive a lower bound for the variance of the weight change Varw
spike, induced by the 

postsynaptic variability, of any SDP rule realizing f . Applying a SDP rule for time T  can be seen as a protocol to 
estimate the weight change ∆w. Hence, by the invariance principle we can obtain an optimal estimator for ∆w as
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where r̂pre and r̂post are optimal estimators for the presynaptic and postsynaptic rates, given in Equation (4). This 
immediately defines an optimal SDP realization of f : first, estimate the rates according to Equation (4) and there-
after apply f  to the estimates (the optimal voltage based rule is analogous, using Equation (6) respectively). By the 
delta method and Equation (5) we derive that the variance of the optimal estimator w
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Thus, we can conclude that each SDP rule applies a weight change with variance at least the variance computed 
above.

Optimal VDP rule.  Let Varw
voltage be the variance of the weight change induced by the postsynaptic variability of 

an optimal VDP rule. Analogously to the derivation of Equation (10), the optimal VDP realization is given by
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according to the invariance principle, and using the delta method together with Equation (8) we conclude
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Time scale of stimuli.  Combining Equations (11) and (13) immediately shows that for fixed variance the relative 
improvement factor of required stimulus duration for learning is given by Equation (9). This factor determines 
how much longer a stimulus needs to be stationary in case of SDP compared to VDP to achieve the same accuracy 
in the desired weight change. In particular, this relative improvement factor is independent of the plasticity rule 
f , thus allows to conclude a general advantage of VDP over SDP regarding the time scale in which stimuli must 
be stationary.

Selectivity with the BCM rule.  The BCM theory4 is one of the most influential rate based learning theo-
ries (see47 for a review). The BCM rule maximizes selectivity and can reproduce formation of receptive fields in 
the visual cortex47. In this section we derive optimal SDP and VDP realizations of the BCM rule and define the 
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computational task of selectivity. This task will later serve as an example of how to transform a rate based compu-
tational task into a fast spiking model.

BCM rule.  The BCM rule defines the change in synaptic weight as φ= ⋅f r r r r r( , ) ( , )pre post pre post post , with non-
linear function φ and postsynaptic reference rate rpost. The function φ displays long-term depression (LTD) for low 
postsynaptic rate and long-term potentiation (LTP) for high postsynaptic rate, see Fig. 2(a). Further, rpost deter-
mines a sliding threshold between LTD and LTP, which depends nonlinearly on rpost on a slower time scale, and 
increases (decreases) if rpost has been large (small) for some time.

Optimal SDP and VDP realizations of the BCM rule.  Let us formally define the BCM rule, with a particular 
choice of φ and sliding threshold, following48, and its optimal SDP and VDP realizations. The weight change in a 
short time interval of length T  during which the rates are assumed to be constant is

r r r r( ), (14)w pre post
2

post postη∆ = ⋅ ⋅ − ⋅

where 0η >  is the step size. The change of the sliding threshold rpost is defined by

r
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−

with time constant τBCM.
We now introduce optimal realizations, which achieve minimum variance among SDP7,13 and VDP8–11 reali-

zations of the BCM rule. Since the BCM rule is linear in the presynaptic rate, both SDP and VDP realizations 
simply perform a weight update for each presynaptic spike. Assume that in a short time interval of length T , the 
presynaptic and postsynaptic cells spike with constant rate. According to Equation (10) and Equation (4), the 
optimal weight update of a SDP rule is then given by
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where npost is the number of postsynaptic spikes in the interval.
According to Equation (12) and Equation (6), the optimal weight update of a VDP rule is given by

ˆ ˆη σ σ⋅ − ⋅( )r r r( ) ( ) , (17)
2

post

with σ̂ as in Equation (7). The implementation of the sliding threshold in Equation (15) is analogous. The result-
ing VDP realization of the BCM rule relates fluctuations in the membrane potential to a synaptic weight change. 
This is in contrast to previous VDP rules, which have been shown to realize BCM under the assumption of 
Poisson spike trains, since they rely on low-pass filtered versions of the membrane potential and thus cannot 
exploit the information in the fluctuations8–11.

Selectivity.  The task of selectivity is that a neuron becomes selective to one particular stimulus out of a set of 
stimuli. Here we formulate this task (based on the simulation paradigm of49) in a spiking model.

We consider a feed forward network with N  excitatory input neurons and one output neuron, see Fig. 2(b) and 
(f). A stimulus is described by ν ν ν= … Τ( , , )N1 , where the k-th component corresponds to the rate of the k-th 
input neuron. Moreover, we denote the vector of synaptic weights by w ww ( , , )N1

T= … , hence the weight of the 
synapse connecting the k-th excitatory neuron with the output neuron is wk. To model balanced excitation and 
inhibition, each excitatory input neuron is accompanied by an inhibitory neuron and the respective weights are 
mirrored. It has been shown in36 how this mirroring is achieved by inhibitory plasticity in an experience depend-
ent manner. Thus, the expected input to the output neuron is zero and the variance of the input is w2 k

N
k k1

2ν∑ = . 
Consequently, the rate of the output neuron is r( )σ  with σ τ ν= ∑ = w: 2 k

N
k k1
2 . We stress that σ is a function of the 

stimulus and the weight, but do not indicate this in the notation for simplicity.
Let ν ={ }j

j
m( )

1 denote a set of m stimuli and let σ τ ν= ∑ = w: 2j
k
N

k k
j( )

1
2 ( ). Moreover, let pj be the probability of the 

j-th stimulus (the pj’s form a probability distribution P over stimuli). The selectivity of the output neuron for a 
given weight vector w is defined as

σ

σ
= − .

 r
r

wSel( ) 1 [ ( )]
max ( ) (18)

P

j
j( )

Further, we round down responses below 1 Hz to 0 Hz and apply the convention that =0/0 1 to avoid trivial 
selectivity. Note that if all stimuli result in the same postsynaptic response, then the selectivity is 0, however if the 
response is nonzero for exactly one stimulus and zero for all others, the selectivity is at its maximum − m1 1/ .

Simulation protocol.  The BCM rule makes the weights converge to a maximally selective fixed point. The simu-
lation protocol is as follows: first, fix the duration of stimulus presentation T . Thereafter, in each round pick a 
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stimulus ν j( ) according to the probability distribution P and simulate the output neuron for time T  with the cor-
responding input. From this derive npost, the number of spikes of the neuron and …u u, , n1 , the samples of the 
membrane potential. Then update the weight of the k-th synapse according to Equation (16), for the SDP rule, and 
Equation (17), for the VDP rule, multiplied by νk

j( ). After each round, the sliding threshold is updated according 
to Equation (15), using the respective estimators of the postsynaptic rate.

Data availability.  The data shown in Figs 1 and 2 is obtained from simulations that can be reproduced given 
the simulation code, see code availability below.

Code availability.  All simulations are performed using the python programming language and the 
source-code is available on request.

Results
Our first result shows that the information about the stimulus extractable per time from the membrane potential 
is much higher than the information content of the spike train, see Fig. 1(a) and Materials and methods. This is a 
consequence of excitation and inhibition being balanced, because in the balanced setting, the membrane poten-
tial changes due to a large number of input spikes, while the neuron produces only few output spikes22, see also 
Discussion. The Fisher information about the rate, which encodes stimuli, obtained from neuronal spiking is pro-
portional to the duration of observation, see Equation (5). Thus, if the stimulus is present only for short time, then 
only a limited amount of information about it is available to a synaptic plasticity mechanism depending solely on 
spiking. The Fisher information obtained from the membrane potential is not only proportional to the duration 
of observation, but also to the sampling rate, see Equation (8). Hence, if the stimulus is present only for short time, 
the amount of information extractable from the membrane potential can exceed the limit of the spike based case. 
We illustrate this with a concrete example: consider the neuron firing with 10 Hz. How long does it take to obtain 
an estimate of the rate that is within 5 Hz accuracy with 70% confidence? Based on neuronal spiking this takes 
at least 500 ms, however, sampling the membrane potential with a sampling rate of 1 kHz requires only 10 ms, 
see Fig. 1(b) grey line. Therefore, in the latter it is fine if the stimulus changes every 10 ms. This is in the order in 
which the instantaneous rate changes in vivo22. Thus, it is possible to extract information about the instantaneous 
rate from voltage traces in contrast to spike trains of the same duration. The relative time improvement of voltage 
based estimation over spike based, given in Equation (9), is at least one order of magnitude for typical neuronal 
parameters, see Fig. 1(c).

Our second result directly relates the previous observation to synaptic plasticity. A rate based plasticity rule 
defines the synaptic weight change as a function of the presynaptic and postsynaptic firing rates. We derive opti-
mal SDP and VDP realizations of any rate based rule in Materials and methods. For optimal SDP rules, the var-
iance of the applied weight change scales as the inverse of the Fisher information about the rate obtained from 
neuronal spiking, see Equation (11), whereas for optimal VDP rules the variance scales as the inverse of the Fisher 
information obtained from the membrane potential, see Equation (13). In particular, if a stimulus is stationary 
only on a short time scale, the SDP rule applies a weight change that can be far from the desired weight change. 
In contrast, a VDP rule can still be highly accurate, see Fig. 1(d). This “speed” improvement of VDP rules over 
SDP rules is determined in Materials and methods and is equal to the improvement of information retrieval, see 
Equation (9). Hence, the improvement factor is independent of the specific learning rule at hand. Thus, this con-
stitutes a general improvement in learning speed for VDP over SDP and highlights that VDP can operate on the 
timescale in which the instantaneous rate changes in vivo.

Finally, we illustrate the previous considerations on the classic learning task of selectivity, see Materials and 
methods. Given a collection of stimuli in the form of rate profiles of input neurons (e.g., representing the activity 
of the lateral geniculate nucleus (LGN) induced by an angular bar sweep), the task is to make the output neuron 
selective for one particular stimulus: the output neuron should strongly respond to one stimulus and remain quiet 
for any other stimulus. The network and the stimuli are depicted schematically in Fig. 2(b) and (f). This task is 
solved by the BCM learning rule acting on the synapses4.

First, we study two orthogonal stimuli presented to the network. In each stimulus one input neuron spikes 
with a certain rate while the other input neuron is quiet, see Fig. 2(b). For orthogonal stimuli the BCM rule guar-
antees that the weight vector converges to a maximally selective fixed point, if the stimuli are presented randomly, 
round by round, for a certain duration. We choose the same stimulus durations for both the VDP and the SDP 
rule (10 ms), which reflects the time scale on which the instantaneous rate changes in vivo22. For the optimal VDP 
realization of the BCM rule, given in Equation (17), the weights converge to a maximally selective fixed point, see 
Fig. 2(c). For the same stimulus duration, the variance of the weight changes induced by the optimal SDP reali-
zation of BCM, given in Equation (16), is much larger, see Fig. 2(d). This variability results in bad performance 
because the weights leave the maximally selective fixed point, causing instability, see Fig. 2(e). Therefore, to bound 
the variance of the weight change and thus guarantee stability, the stimuli must be available significantly longer 
for the SDP rule than for the VDP rule.

We next investigate the performance for more realistic stimuli49. Here, each stimulus has a Gaussian profile 
with certain peak and base rates and standard deviation, see Fig. 2(f). With such stimuli, the convergence is not 
guaranteed, and the maximal selectivity decreases with increasing base/peak rate ratio and standard deviation 
of the Gaussian profile. Since the weight vector does not converge, but BCM only increases the selectivity, the 
variance of the weight changes induced by learning determines how selective the neuron can be. We now choose 
different stimulus durations for the VDP rule (10 ms) and the SDP rule (500 ms). With significantly longer stim-
ulus duration for the SDP rule, both realizations of BCM yield similar performance, shown as a function in the 
number of stimulus presentations in Fig. 2(g). This implies that the total exposition time of the neuron to stimuli 
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is at least an order of magnitude smaller for the VDP rule compared to SDP rule, see Fig. 2(h) where the selectiv-
ity is shown as a function of total exposition time on a log scale.

Discussion
We use Stein’s model and its diffusion approximation as an abstraction for cortical in vivo neuronal dynamics, 
following the influential paper by Michael N. Shadlen and William T. Newsome22. Their work, which contains 
a detailed discussion of the biological justifications38 and limitations of the model, points out a crucial property 
implied by excitation and inhibition being balanced: the neuron produces a highly variable spike train, which is 
essentially independent of the spike timing of the presynaptic neurons. This is consistent with experimental obser-
vations16,50. We approximate Stein’s model by its diffusion approximation. The diffusion approximation is justified 
by the large number of postsynaptic potentials (PSPs) arriving at cortical neurons, a phenomenon known as high 
input or synaptic bombardment regime. Rough estimates (100–1000 neurons out of 1000–10000 input neurons 
spike with a rate of 10 Hz) yield a spike arrival rate in the order of 1 kHz −10 kHz22. In our approach we estimate 
the variance of the diffusion approximation by sampling the membrane potential. It is clear that the sampling 
rate cannot be higher than the arrival rate because otherwise the approximation would be invalid (the difference 
between two samples is assumed be a Gaussian, but if the sampling rate is too high, then this assumption does not 
hold). Hence, the arrival rate determines a natural upper bound for a reasonable sampling rate. Notably, taking the 
diffusion approximation is not necessary to recover our results qualitatively: in Stein’s model (allowing for fewer 
and stronger synaptic inputs) the information about the rate contained in the membrane potential trajectory typ-
ically exceeds the information in spike trains as long as the arrival rate is significantly higher than the output rate.

Experiments revealed that synaptic plasticity depends on the presynaptic and postsynaptic rates23–26, the exact 
time difference of presynaptic and postsynaptic spikes27–30, the postsynaptic membrane potential31–33, and ultimately 
the calcium concentration in the postsynaptic dendritic spine in consequence of voltage-dependent calcium and 
N-methyl-D-aspartate receptor (NMDAR) channel activation51,52. Modest calcium levels cause LTD whereas high lev-
els result in LTP53,54. Hence, via voltage-gated calcium and NMDAR channels, plasticity is inherently voltage depend-
ent. Thus, the magnitude of voltage fluctuations may translate to different levels of calcium concentration. In particular, 
as the calcium influx depends nonlinearly on the voltage due to channel activation thresholds, larger voltage fluctua-
tions might lead to a higher calcium concentration even if the mean voltage stays unchanged. This establishes a possible 
link between voltage fluctuations and plasticity. However, it is not clear if there exists a mechanism that implements 
the estimator in Equation (7) and thereby exploits a high sampling rate to estimate the voltage fluctuations precisely.

Figure 1.  Required stimulus duration of SDP and VDP rules. (a) Obtaining information about the rate from 
spikes (blue) and voltage (green). The amount of information is quantified as the inverse variance of the optimal 
rate estimate (Fisher information). (b) Standard deviation (SD) of the rate estimate based on spikes (blue) and 
voltage (green) as function of stimulus duration. Horizontal grey line indicates that for fixed information level 
the required duration differs by an order of magnitude. Dashed lines correspond to Equations (5) and (8), solid 
lines are respective simulations (empirical SD of estimates according to Equations (4) and (6) of a simulated 
neuron). (c) Factor of time improvement for information extraction as a function of sampling rate according to 
Equation (9), for different firing rates 10 Hz (solid), 20 Hz (dotted), 40 Hz (dashed). (d) Weight change as 
function of stimulus duration. Grey horizontal line indicates desired weight change, shaded areas show one SD 
of the weight change applied by optimal SDP rule (blue) and VDP rule (green) according to Equations (11) and 
(13). Parameters (if not varied in the respective plot) are r 10 Hz= , ϑ = −55 mV, = −u 70 mVr , τ = .0 02 s, 
1/ 1 kHzε = , 100 trials.
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In our neuron model the somatic membrane potential is a local observable at the postsynaptic part of the syn-
apse. However, this is a strong assumption, which is only legitimate for synapses close to the soma. For synapses 
on distant dendritic spines, the somatic membrane potential can be replaced by a local potential in the dendritic 
compartment, which potentially still contains more information about the postsynaptic instantaneous rate than 
single back propagating action potentials (BAPs)55.

Notably, our approach requires a biophysical pathway that transports information about the fluctuations of 
the somatic membrane potential of the postsynaptic neuron (and thus its instantaneous rate) back along the den-
drites to the postsynaptic site of a synapse. There is experimental evidence that this is possible for the mean of the 
membrane potential31–33 and see56 for a review of the voltage dependence of LTP and LTD. This pathway does not 
need to be fast, and the signalling mechanism does not necessarily need to be a voltage signal.

It has been observed that excitatory and inhibitory synaptic inputs to cortical neurons exhibit strong temporal 
and quantitative relations, a phenomenon termed balanced excitation and inhibition, see57 for review. One distin-
guishes two types of balance: (1) loose balance, where a large number of uncorrelated small excitatory and inhib-
itory synaptic inputs cancel each other out on average (2) tight balance, where inhibition closely tracks excitation 
with a very short time lag, see44. Loose balance was postulated to explain the high-degree variability in neuronal 
responses to natural stimuli16,22,37. This led to a widely accepted class of network models (balanced networks) that 
display asynchronous irregular spiking dynamics34,35,39, resembling the activity in many cortical areas. Tight bal-
ance has been suggested to be a signature of highly efficient coding, see44 and the references therein, however it is 
not consistent with trial to trial variability of neuronal responses and asynchronous irregular firing58.

We model loose balance that is maintained over time and stimuli (termed detailed balance in36). Hence, the 
mean of the membrane potential µ is constant over time and stimuli. Therefore, stimuli are encoded in the fluctu-
ations of the membrane potential, rather than its mean, see Equation (3). This implies that the instantaneous rate 
can be decoded from the membrane potential quickly depending on the sampling rate, see Equation (8). Without 
balance, we would have to write the rate as µ σr( , ) and the variance of an optimal rate estimator based on the 
membrane potential becomes

Figure 2.  Fast selectivity with BCM and natural stimuli. (a) The BCM learning rule; weight change as function 
of the postsynaptic rate. (b) Task with orthogonal stimuli (dashed gray and gray) and two input neurons; for 
orthogonal stimuli the weights converge to a maximally selective fixed point (rate based analysis). (c) Evolution 
of the two weights (light and dark green) from (b) over time for the optimal VDP realization of BCM. (d) 
Evolution of the weights (light and dark blue) from (b) over time for the optimal SDP realization of BCM. (e) 
Respective selectivity of the weights in (c) and (d) over time; while the VDP rule (green) converges, the SDP 
(blue) jumps out of the maximally selective fixed point. Parameters in (c), (d) and (e) are =N 2, m 2= , peak 
rate 10 Hz, initial weights 0 8 mV. , T 10 ms= , 55 mVϑ = − , = −u 70 mVr , τ = .0 02 s, ε =1/ 1 kHz, 
η = .0 000001, 1000BCMτ = , 1 Hzθ = . (f) Task with non-orthogonal stimuli (Gaussian rate profiles). For such 
stimuli, BCM still increases the selectivity (rate based simulation). (g) Selectivity as a function of the number of 
stimulus presentations; duration of individual stimuli is 500 ms for SDP rule (blue) and 10 ms for the VDP rule. 
(h) Selectivity as a function of time (log scale). Duration of stimuli is chosen such that the variance of the weight 
change for SDP rule (blue) and VDP rule (green) match and are small to allow close to optimal selectivity, see 
(g). Parameters in (g) and (h) are =N 100, m 10= , peak rate 10 Hz, base rate 2 Hz, standard deviation of 
Gaussian rate profile 10, initial weights 0.1 mV, 55 mVϑ = − , u 70mVr = − , τ = .0 02 s, ε =1/ 1 kHz, 
η = .0 000001, τ = 1000BCM , 1 Hzθ = .
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derived along the lines of Equation (8). In this case the information about the rate in the membrane potential 
cannot simply be increased by a higher sampling rate, since the variance of the mean potential only decreases with 
observation time T  and the membrane time constant τ, indicated by the second term of Equation (19). It turns out 
that the time scale of information extraction is thus in the same order as in the spike based case. This reveals that 
one functional advantage of the loosely balanced state is efficient encoding of the instantaneous rate in the mem-
brane potential.

The main prediction of our model is how synaptic plasticity depends on the variance of the postsynaptic mem-
brane potential, assuming a specific rate based learning rule, for example the BCM rule. So far, voltage dependence 
has only been studied with fixed postsynaptic (super-threshold) depolarization, inconsistent with in vivo conditions, 
without controlling the variance of the depolarization31–33. This revealed the existence of a voltage threshold for 
LTD and a higher voltage threshold for LTP induction31. It would be interesting to study high variance depolariza-
tion because in this way both thresholds are reached and it is not clear how or if the LTP and LTD components are 
combined. Concretely, the rate of the postsynaptic neuron can be controlled in two ways by current injection: (1) 
by injecting a current with large mean and zero variance (2) by injecting a current with small mean and large vari-
ance38. Our hypothesis is that the effect on the synaptic efficacy only depends on the rate of the neuron, not how it is 
induced. If this does not hold true, this would give an argument against rate based plasticity models.

Furthermore, our model predicts that as a consequence of loosely balanced excitation and inhibition the 
instantaneous rate can be well estimated from voltage recordings. To test this hypothesis one can compute the 
instantaneous rate of a neuron in vivo using two protocols. The classic protocol is via construction of the PSTH 
from many spike train recordings. Our proposed protocol is to estimate it via Equation (6) from a single or few 
voltage recordings. We hypothesize that the number of required voltage recordings is much smaller than the 
number of spike train recordings in order to get a certain accuracy. As a consequence the number of required 
repetitions of the experiment can be reduced in order to compute the instantaneous rate and interestingly the 
instantaneous rate could also be computed in scenarios where the experiment cannot be repeated at all since the 
stimulus is actually unknown.

References
	 1.	 Sejnowski, T. J., Koch, C. & Churchland, P. S. Computational Neuroscience. Science 241, 1299 (1988).
	 2.	 Dayan, P. & Abbott, L. F. Theoretical Neuroscience (MIT Press, 2001).
	 3.	 Gerstner, W., Kistler, W. M., Naud, R. & Paninski, L. Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition 

(Cambridge University Press, 2014).
	 4.	 Bienenstock, E. L., Cooper, L. N. & Munro, P. W. Theory for the development of neuron selectivity: orientation specificity and 

binocular interaction in visual cortex. J. Neurosc. 2, 32–48 (1982).
	 5.	 Gerstner, W., Kempter, R., van Hemmen, J. L. & Wagner, H. A neuronal learning rule for sub-millisecond temporal coding. Nature 

383, 76 (1996).
	 6.	 Kempter, R., Gerstner, W. & Van Hemmen, J. L. Hebbian learning and spiking neurons. Phys. Rev. E 59, 4498 (1999).
	 7.	 Pfister, J.-P. & Gerstner, W. Beyond Pair-Based STDP: A Phenomenological Rule for Spike Triplet and Frequency Effects. In Advances 

in Neural Information Processing Systems 1081–1088 (2005).
	 8.	 Toyoizumi, T., Pfister, J.-P., Aihara, K. & Gerstner, W. Generalized Bienenstock-Cooper-Munro Rule for spiking neurons that 

maximizes information transmission. PNAS 102, 5239–5244 (2005).
	 9.	 Mayr, C. G. & Partzsch, J. Rate and pulse based plasticity governed by local synaptic state variables. Front. Synaptic Neurosci. 2, 33 

(2010).
	10.	 Clopath, C. & Gerstner, W. Voltage and spike timing interact in STDP–a unified model. Front. Synaptic Neurosci. 2, 25 (2010).
	11.	 Clopath, C., Büsing, L., Vasilaki, E. & Gerstner, W. Connectivity reflects coding: a model of voltage-based STDP with homeostasis. 

Nat. Neurosci. 13, 344–352 (2010).
	12.	 Oja, E. Simplified neuron model as a principal component analyzer. J. Math. Biol. 15, 267–273 (1982).
	13.	 Izhikevich, E. M. & Desai, N. S. Relating STDP to BCM. Neural Comput. 15, 1511–1523 (2003).
	14.	 Litwin-Kumar, A. & Doiron, B. Formation and maintenance of neuronal assemblies through synaptic plasticity. Nat. Commun. 5, 

5319 (2014).
	15.	 Zenke, F., Agnes, E. J. & Gerstner, W. Diverse synaptic plasticity mechanisms orchestrated to form and retrieve memories in spiking 

neural networks. Nat. Commun. 6 (2015).
	16.	 Softky, W. R. & Koch, C. The Highly Irregular Firing of Cortical Cells is Inconsistent with Temporal Integration of Random EPSPs. 

J. Neurosc. 13, 334–350 (1993).
	17.	 Rieke, F., Warland, D., de Ruyter van Steveninck, R. & Bialek, W. Spikes: Exploring the Neural Code (MIT Press, 1999).
	18.	 London, M., Roth, A., Beeren, L., Häusser, M. & Latham, P. E. Sensitivity to perturbations in vivo implies high noise and suggests 

rate coding in cortex. Nature 466, 123 (2010).
	19.	 Graupner, M., Wallisch, P. & Ostojic, S. Natural Firing Patterns Imply Low Sensitivity of Synaptic Plasticity to Spike Timing 

Compared with Firing Rate. J. Neurosci. 36, 11238–11258 (2016).
	20.	 Brette, R. Philosophy of the Spike: Rate-Based vs. Spike-Based Theories of the Brain. Front. Syst. Neurosci. 9, 151 (2015).
	21.	 Stein, R. B. The information capacity of nerve cells using a frequency code. Biophys. J. 7, 797–826 (1967).
	22.	 Shadlen, M. N. & Newsome, W. T. The Variable Discharge of Cortical Neurons: Implications for Connectivity, Computation, and 

Information Coding. J. Neurosci. 18, 3870–3896 (1998).
	23.	 Brown, T. H., Chapman, P. F., Kairiss, E. W. & Keenan, C. L. Long-term synaptic potentiation. Science 242, 724–728 (1988).
	24.	 Dudek, S. M. & Bear, M. F. Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-D-aspartate 

receptor blockade. PNAS 89, 4363–4367 (1992).
	25.	 Bliss, T. V., Collingridge, G. L. & Morris, R. G. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 

361, 31–39 (1993).
	26.	 Sjöström, P. J., Turrigiano, G. G. & Nelson, S. B. Rate, Timing, and Cooperativity Jointly Determine Cortical Synaptic Plasticity. 

Neuron 32, 1149–1164 (2001).
	27.	 Markram, H., Lübke, J., Frotscher, M. & Sakmann, B. Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs. 

Science 275, 213–215 (1997).



www.nature.com/scientificreports/

1 0Scientific REPOrTS |  (2018) 8:4609  | DOI:10.1038/s41598-018-22781-0

	28.	 Bi, G.-Q. & Poo, M.-M. Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing, Synaptic 
Strength, and Postsynaptic Cell Type. J. Neurosci. 18, 10464–10472 (1998).

	29.	 Froemke, R. C. & Dan, Y. Spike-timing-dependent synaptic modification induced by natural spike trains. Nature 416, 433–438 (2002).
	30.	 Wang, H.-X., Gerkin, R. C., Nauen, D. W. & Bi, G.-Q. Coactivation and timing-dependent integration of synaptic potentiation and 

depression. Nat. Neurosci. 8, 187–193 (2005).
	31.	 Artola, A., Bröcher, S. & Singer, W. Different voltage-dependent thresholds for inducing long-term depression and long-term 

potentiation in slices of rat visual cortex. Nature 347, 69 (1990).
	32.	 Ngezahayo, A., Schachner, M. & Artola, A. Synaptic Activity Modulates the Induction of Bidirectional Synaptic Changes in Adult 

Mouse Hippocampus. J. Neurosci. 20, 2451–2458 (2000).
	33.	 Sjöström, P. J., Turrigiano, G. G. & Nelson, S. B. Endocannabinoid-Dependent Neocortical Layer-5 LTD in the Absence of 

Postsynaptic Spiking. J. Neurophysiol. 92, 3338–3343 (2004).
	34.	 Van Vreeswijk, C. & Sompolinsky, H. Chaos in Neuronal Networks with Balanced Excitatory and Inhibitory Activity. Science 274, 

1724–1726 (1996).
	35.	 Brunel, N. Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. J. Comput. Neurosci. 8, 183–208 

(2000).
	36.	 Vogels, T. P., Sprekeler, H., Zenke, F., Clopath, C. & Gerstner, W. Inhibitory Plasticity Balances Excitation and Inhibition in Sensory 

Pathways and Memory Networks. Science 334, 1569–1573 (2011).
	37.	 Shadlen, M. N. & Newsome, W. T. Noise, neural codes and cortical organization. Curr. Opin. Neurobiol. 4, 569–579 (1994).
	38.	 Camera, G. L., Giugliano, M., Senn, W. & Fusi, S. The response of cortical neurons to in vivo-like input current: theory and 

experiment: I. Noisy inputs with stationary statistics. Biol. Cybern. 99, 279–301 (2008).
	39.	 Renart, A. et al. The Asynchronous State in Cortical Circuits. Science 327, 587–590 (2010).
	40.	 Stein, R. B. A theoretical analysis of neuronal variability. Biophys. J. 5, 173 (1965).
	41.	 Lánský, P. On approximations of Stein’s neuronal model. J. Theor. Biol. 107, 631–647 (1984).
	42.	 Tuckwell, H. C. Nonlinear and Stochastic Theories vol. 2 (Cambridge University Press, 1988).
	43.	 Burkitt, A. N. A Review of the Integrate-and-Fire Neuron Model: I. Homogeneous Synaptic Input. Biol. Cybern. 95, 1–19 (2006).
	44.	 Denève, S. & Machens, C. K. Efficient codes and balanced networks. Nat. Neurosci. 19, 375–382 (2016).
	45.	 Nobile, A., Ricciardi, L. & Sacerdote, L. Exponential trends of Ornstein–Uhlenbeck first-passage-time densities. J. Appl. Probab. 22, 

360–369 (1985).
	46.	 Wasserman, L. All of Statistics: A Concise Course in Statistical Inference (Springer Science & Business Media, 2013).
	47.	 Cooper, L. N. & Bear, M. F. The BCM theory of synapse modification at 30: interaction of theory with experiment. Nat. Rev. Neurosci. 

13, 798–810 (2012).
	48.	 Intrator, N. & Cooper, L. N. Objective Function Formulation of the BCM Theory of Visual Cortical Plasticity: Statistical 

Connections, Stability Conditions. Neural Netw. 5, 3–17 (1992).
	49.	 Clothiaux, E. E., Bear, M. F. & Cooper, L. N. Synaptic plasticity in visual cortex: comparison of theory with experiment. J. 

Neurophysiol. 66, 1785–1804 (1991).
	50.	 Cohen, M. R. & Maunsell, J. H. Attention improves performance primarily by reducing interneuronal correlations. Nat. Neurosci. 

12, 1594–1600 (2009).
	51.	 Mulkey, R. M. & Malenka, R. C. Mechanisms underlying induction of homosynaptic long-term depression in area CA1 of the 

hippocampus. Neuron 9, 967–975 (1992).
	52.	 Cummings, J. A., Mulkey, R. M., Nicoll, R. A. & Malenka, R. C. Ca 2+ Signaling Requirements for Long-term Depression in the 

Hippocampus. Neuron 16, 825–833 (1996).
	53.	 Shouval, H. Z., Castellani, G. C., Blais, B. S., Yeung, L. C. & Cooper, L. N. Converging evidence for a simplified biophysical model of 

synaptic plasticity. Biol. Cybern. 87, 383–391 (2002).
	54.	 Graupner, M. & Brunel, N. Calcium-based plasticity model explains sensitivity of synaptic changes to spike pattern, rate, and 

dendritic location. PNAS 109, 3991–3996 (2012).
	55.	 Markram, H., Helm, P. J. & Sakmann, B. Dendritic calcium transients evoked by single back-propagating action potentials in rat 

neocortical pyramidal neurons. J. Physiol. 485, 1 (1995).
	56.	 Lisman, J. & Spruston, N. Postsynaptic depolarization requirements for LTP and LTD: a critique of spike timing-dependent 

plasticity. Nat. Neurosci. 8, 839–841 (2005).
	57.	 Okun, M. & Lampl, I. Balance of excitation and inhibition. Scholarpedia 4, 7467 (2009).
	58.	 Okun, M. & Lampl, I. Instantaneous correlation of excitation and inhibition during ongoing and sensory-evoked activities. Nat. 

Neurosci. 11, 535–537 (2008).

Acknowledgements
We would like to thank Jean-Pascal Pfister and Simone Carlo Surace from the Institute of Neuroinformatics at 
the University of Zürich and ETH Zürich for helpful discussions. M.M.G. was supported by CNPq grant no. 
248952/2013-7.

Author Contributions
F.W., M.M.G., J.L., F.M. and A.S. conducted research, F.W. wrote the paper and performed simulations.

Additional Information
Competing Interests: The authors declare no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2018

http://creativecommons.org/licenses/by/4.0/

	Voltage dependence of synaptic plasticity is essential for rate based learning with short stimuli

	Materials and Methods

	Neuron model. 
	Information about the stimulus. 
	Information from spiking. 
	Information from membrane potential. 
	Time improvement. 

	Rate based plasticity with spiking neurons. 
	Optimal SDP rule. 
	Optimal VDP rule. 
	Time scale of stimuli. 

	Selectivity with the BCM rule. 
	BCM rule. 
	Optimal SDP and VDP realizations of the BCM rule. 
	Selectivity. 
	Simulation protocol. 

	Data availability. 
	Code availability. 

	Results

	Discussion

	Acknowledgements

	Figure 1 Required stimulus duration of SDP and VDP rules.
	Figure 2 Fast selectivity with BCM and natural stimuli.




