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Abstract
Background: Gestational	diabetes	mellitus	(GDM)	has	many	adverse	outcomes	that	
seriously	threaten	the	short-	term	and	long-	term	health	of	mothers	and	infants.	This	
study	comprehensively	analyzed	the	clinical	diagnostic	value	of	GDM-	related	clinical	
indexes	and	urine	polypeptide	research	results,	and	established	comprehensive	index	
diagnostic models.
Methods: In	this	study,	diagnostic	values	from	the	clinical	indexes	of	serum	triglycer-
ide	(TRIG),	high-	density	lipoprotein	cholesterol	(HDL-	C),	fasting	plasma	glucose	(FPG)	
and	glycosylated	hemoglobin	(HbA1c),	and	7	GDM-	related	urinary	polypeptides	were	
analyzed	retrospectively.	The	multiple	logistic	regression	equation,	multilayer	percep-
tron	neural	network	model,	radial	basis	function,	and	discriminant	analysis	function	
models	of	GDM-	related	indexes	were	established	using	machine	language.
Results: The	results	showed	that	HbA1c	had	the	highest	diagnostic	value	for	GDM,	
with	an	area	under	the	curve	(AUC)	of	0.769.	When	the	cut-	off	value	was	4.95,	the	
diagnostic	sensitivity	and	specificity	were	70.5%	and	70.0%,	respectively.	Among	the	
seven	GDM-	related	urinary	polypeptides,	human	hemopexin	(HEMO)	had	the	highest	
diagnostic	value,	with	an	AUC	of	0.690.	When	the	cut-	off	value	was	368.5,	the	sensi-
tivity	and	specificity	were	79.5%	and	43.3%,	respectively.	The	AUC	of	the	multilayer	
perceptron	neural	network	model	was	0.942,	followed	by	binary	 logistic	regression	
(0.938),	 radial	 basis	 function	model	 (0.909),	 and	 the	 discriminant	 analysis	 function	
model	(0.908).
Conclusion: The	establishment	of	a	GDM	diagnostic	model	combining	blood	glucose,	
blood	lipid,	and	urine	polypeptide	indexes	can	lay	a	foundation	for	exploring	machine	
language and artificial intelligence in diagnostic systems.
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1  |  INTRODUC TION

In	the	normal	population,	carbohydrates,	lipids,	and	proteins	can	be	
transformed	into	each	other,	and	dynamically	balanced	to	meet	the	
normal	physiological	needs	of	 the	human	body.	Acetyl	CoA,	pyru-
vic	 acid,	 α-	ketoglutarate,	 and	 oxaloacetic	 acid	 are	 four	 important	
transfer stations in the process of nutrient transformation. When 
the	plasma	glucose	level	increases,	the	amounts	of	acetyl	coenzyme	
A,	pyruvic	acid,	α-	ketoglutarate,	and	oxaloacetic	acid	also	increase,	
which definitely affects lipid metabolism and protein metabolism. 
The	pathogenesis	of	gestational	diabetes	mellitus	(GDM)	is	related	
to insulin resistance and decreased insulin sensitivity in the second 
and third trimesters of pregnancy.1	During	pregnancy,	the	increase	
in	estrogen,	progesterone,	and	cortisol	further	disrupts	glucose	in-
sulin balance.2	Hyperglycemia	in	GDM	patients	also	affects	lipid	and	
protein metabolism.

Studies have shown that dyslipidemia and glucose metabolism 
disorders	often	coexist	 in	GDM	patients	and	are	closely	related	to	
insulin resistance.3	 Pregnancy-	induced	 insulin	 resistance	 ensures	
adequate	 nutrition	 for	 the	 fetus	 and	 placenta.	However,	 in	moth-
ers	with	obesity,	metabolic	syndrome,	or	GDM,	the	excess	nutrition	
places	the	fetuses	at	risk	of	metabolic	disease	over	their	 lifetime.4 
GDM	patients	with	dyslipidemia	have	a	higher	incidence	of	adverse	
pregnancy	outcomes,	especially	preterm	labor	and	preeclampsia.5

In	 terms	 of	 GDM-	related	 protein	 metabolism,	 a	 prospective	
case-	control	study	indicated	that	higher	dietary	and	circulating	con-
centrations	of	 isoleucine,	 leucine,	valine,	and	 total	branched-	chain	
amino	acids	(BCAAs)	are	related	to	a	greater	risk	of	progression	from	
GDM	to	type	2	diabetes	(T2D)	later	in	life.6 It is suggested that pro-
tein	metabolic	systems,	such	as	dietary	and/or	plasma	BCAAs,	also	
play	an	important	role	in	the	pathophysiology	of	GDM	and	T2D.

Based	 on	 the	 screening	 of	 GDM-	related	 clinical	 indexes	 and	
urine	polypeptides,7–	9 the clinical diagnostic value of each index was 
compared	horizontally,	and	the	diagnostic	models	of	different	sta-
tistical classification methods were established in combination with 
each index. We hope that through the establishment of the diagno-
sis	model,	clinical,	and	research	indexes	can	be	applied	to	the	clinical	
prevention,	diagnosis,	and	dynamic	monitoring	of	GDM.	This	study	
preliminarily	 discussed	 the	 clinical	 application	 prospects	 of	GDM-	
related	markers	before	the	establishment	of	an	artificial	intelligence	
GDM	diagnostic	system.

2  |  MATERIAL S AND METHODS

2.1  |  Study population

The	subjects	were	women	aged	24–	42	years.	Based	on	a	previous	
study,9	 78	 GDM	 patients	 (GDM	 group)	 were	 randomly	 selected	
between	 February	 2018	 and	 August	 2019,	 and	 30	 normal	 preg-
nant	women	 (N	group)	were	selected	 in	 the	same	period.	We	had	
the	complete	clinical	data	of	all	subjects	from	early	pregnancy	 (8–	
12	weeks)	to	42	days	postpartum.	A	75	g	glucose	(one-	step	method)	

oral	glucose	tolerance	test	(OGTT)	was	performed	at	24–	28	weeks	
of	 gestation.	 The	 diagnosis	 of	 GDM	 met	 the	 diabetes	 diagnosis	
standard	of	 the	American	Diabetes	Association	 (ADA)	 from	2011.	
In	 the	GDM	group,	 subjects	with	previous	 impaired	glucose	 toler-
ance,	acute	and	chronic	infectious	diseases,	tumors,	cardiovascular	
diseases,	 and	 severe	 liver	 and	 kidney	 dysfunction	were	 excluded.	
Subjects	with	other	complications	of	GDM,	such	as	thyroid	dysfunc-
tion,	hypertension,	preeclampsia,	and	anemia,	were	also	excluded.

2.2  |  Data collection

The	serum	triglyceride	 (TRIG)	and	high-	density	 lipoprotein	choles-
terol	(HDL-	C)	values	in	the	first	trimester	(8–	12	weeks),	and	values	of	
fasting	plasma	glucose	(FPG)	and	glycosylated	hemoglobin	(HbA1c)	
of	 OGTT	 in	 the	 second	 trimester	 (24–	28	 weeks)	 were	 collected	
by	 the	 laboratory	 information	 system	 (LIS)	 at	 our	 hospital.	 Seven	
GDM-	related	urinary	peptide	markers	were	successfully	 identified	
in	previous	studies,	including	coagulation	factor	IX	(F	IX),	TBC1	fam-
ily	member	5	isoform	a	(Homosapiens)	(TBC1D5a),	human	immuno-
globulin	 kappa	 constant	 (human	C_k	 gene),	 urine	 albumin	 (ALBU),	
alpha-	2-	macroglobulin	 (A2MG),	 human	 hemopexin	 (HEMO),	 and	
alpha-	1-	Microglobulin	(AMBP).8,9	The	peak	values	of	the	seven	urine	
polypeptides were retrospectively analyzed.

2.3  |  Receiver operating characteristic 
(ROC) analysis

The ROC curves of the 11 indexes were established by SPSS 22.0 
software.	The	area	under	the	curve	 (AUC)	value	was	calculated	to	
evaluate the diagnostic value of each index. The binary logistic re-
gression	 equation	 of	 the	 comprehensive	 indexes	was	 established,	
and	 the	 ROC	 curve	 and	 AUC	 analysis	 of	 the	 regression	 equation	
were carried out to explore the diagnostic value of multiple indexes.

2.4  |  Establishment of the clinical diagnosis model

The	N	and	GDM	groups	were	 the	 stratified	 factors,	 and	 the	 sam-
ples in each group were randomly regrouped. The diagnostic mod-
els were established using the statistical methods of the multilayer 
perceptron	neural	network	model,	radial	basis	function,	and	discri-
minant	analysis	function.	The	values	of	TRIG,	HDL-	C,	FPG,	HbA1c,	
F	IX,	TBCID5a,	human	C_k	gene,	ALBU,	A2MG,	HEMO,	and	AMBP	
were	the	input	layers,	and	the	N	and	GDM	groups	were	the	output	
layers. Seventy percent of the samples were randomly used to es-
tablish	 the	model,	and	30%	were	used	to	verify	 the	diagnostic	ef-
ficiency of the model.

All	 statistical	 analyses	 were	 performed	 using	 SPSS	 22.0.	
Statistical methods included the multilayer perceptron neural net-
work	 model,	 radial	 basis	 function,	 and	 the	 discriminant	 analysis	
function.	After	establishing	the	model,	the	accuracy,	sensitivity,	and	
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specificity	of	the	model	for	disease	diagnosis	were	calculated,	and	
the performance of the model was comprehensively evaluated. The 
Delong	test	was	performed	using	SAS	9.4	software	to	compare	the	
statistical differences between the traditional method and the deep 
learning	approach,	based	on	the	ROC	curve.

3  |  RESULTS

3.1  |  Predictive value of lipid metabolism markers 
in the first trimester of GDM

The clinical characteristics of all the subjects and the levels of 
lipid	 metabolism	markers	 were	 compared	 (Table	 1).	 There	 were	
no	significant	differences	in	age,	pre-	pregnancy	body	mass	index,	
average	 gestational	 age,	 and	 average	 number	 of	 pregnancies	
and	births,	between	the	two	groups	(p > 0.05).8 The serum TRIG 
and	HDL-	C	 levels	 in	 the	 first	 trimester	were	 significantly	 differ-
ent	(p	<	0.05)	between	the	GDM	and	N	groups.	The	mean	value,	
standard	deviation,	and	P	value	of	TRIG	and	HDL-	C	were	shown,	
and the difference in TRIG between the two groups was more sig-
nificant	(p = 0.02).

3.2  |  ROC analysis

The	results	of	TRIG,	HDL-	C,	FPG,	and	HbA1c,	and	the	peptide	peak	
values	of	F	 IX,	TBC1D5a,	human	C_k	gene,	ALBU,	A2MG,	HEMO,	
and	AMBP	were	 collected	 from	 78	GDM	patients	 and	 30	 normal	
pregnant women. The ROC curve was established using the above 
data,	and	 the	AUC	was	calculated	 (Table	2,	Figure	1).	The	AUC	of	
the	11	indexes	were	0.704,	0.565,	0.698,	0.769,	0.612,	0.621,	0.670,	
0.641,	0.612,	0.690,	and	0.600,	respectively.	ROC	analyses	of	ALBU,	
A2MG,	HEMO,	and	AMBP	have	been	reported.8

Among	the	11	indexes,	HbA1c	had	the	highest	diagnostic	value	
for	GDM,	with	an	AUC	of	0.769.	When	the	cut-	off	value	was	4.95,	the	
diagnostic	sensitivity	and	specificity	were	70.5%	and	70.0%,	respec-
tively.	Among	the	seven	GDM-	related	urinary	polypeptides,	HEMO	
had	the	highest	diagnostic	value	 for	GDM,	with	an	AUC	of	0.690.	
When	 the	 cut-	off	 value	was	 368.5,	 the	 sensitivity	 and	 specificity	

were	 79.5%	 and	 43.3%,	 respectively.	 The	 other	 six	 urinary	 poly-
peptides	were	human	C_k	gene,	ALBU,	TBCID5a,	F	IX,	A2MG,	and	
AMBP	in	descending	order	of	the	AUC.

3.3  |  Multivariate logistic regression analysis

Multivariate	logistic	regression	analysis	was	used	to	analyze	the	di-
agnostic	value	of	the	11	GDM-	related	indexes.	The	diagnostic	for-
mula is as follows:

As	shown	in	Figure	2,	the	AUC	of	the	multiple	logistic	regression	
equation	of	11	indexes	was	0.938	(95%	CI:	0.890–	0.985).	When	the	
cut-	off	value	was	0.475,	the	sensitivity	and	specificity	were	94.9%	
and	76.7%,	respectively.

3.4  |  Establishment of the multilayer perceptron 
neural network model

Using	SPSS	software,	a	two-	layer	perceptron	neural	network	model	
was constructed. The model settings were as follows: the input 
layer	had	11	indexes,	the	hidden	layer	had	two	nodes,	and	the	hid-
den layer activation function was a hyperbolic tangent function; the 
output	layer	had	two	nodes	(N	and	GDM	groups),	the	output	layer	
activation	function	was	a	softmax	function,	and	the	cross-	entropy	
error	function	was	used.	Among	the	108	samples,	74	(68.5%)	were	
in	the	training	group	and	34	(31.5%)	were	in	the	validation	group.

For	GDM	diagnosis,	the	accuracy	rate	of	the	training	group	sam-
ple	 classification	was	96.1%,	 and	 that	of	 the	validation	group	was	
96.3%	(Table	3).	The	accuracy	of	model	classification	for	the	GDM	
group	was	higher.	The	classification	of	GDM	samples	showed	that	
3.9%	of	the	training	group	samples	and	3.7%	of	the	validation	group	
samples	 were	 incorrectly	 diagnosed	 as	 normal	 samples	 (N	 group)	

Y= logit(P)=−19.886+1.046XTRIG−0.187XHDL−C

+1.394XFPG+2.989XHbA1c−0.003XFIX−0.001XTBC1D5a

+0.044Xhumanc_kgene+0.009XABLU+0.001XA2MG

−0.009XHEMO−0.022XAMBP

Parameters N Group (n = 30)
GDM group 
(n = 78) p value

Age(year)* 31.83 ± 3.71 32.88	±	4.21 0.436

Pre-	pregnancy	BMI* 21.26 ± 2.52 23.35	±	3.45 0.054

Average	gestational	age* 39.54	±	1.08 38.97	±	1.95 0.346

Average	number	of	pregnancies* 1.90	±	0.99 2.13 ± 1.21 0.206

Average	number	of	births* 1.40	±	0.50 1.41	±	0.55 0.510

TRIG	(mmol/L) 1.13	±	0.44 1.76 ± 1.23 0.020

HDL-	C	(mmol/L) 1.55	±	0.24 1.48	±	0.32 0.038

*It has been reported.

TA B L E  1 Analysis	of	the	clinical	
characteristics，lipid	metabolism	markers,	
TRIG	and	HDL-	C,	in	the	GDM	and	N	
groups	(−X ± S).
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and	were	missed	diagnoses;	the	classification	of	the	N	group	sam-
ples	showed	that	30.4%	of	the	training	group	samples	and	28.6%	of	
the	 validation	 group	 samples	were	 incorrectly	 diagnosed	 as	GDM	
samples,	and	misdiagnosis	occurred.

The	 prediction	 probability	 of	 the	 GDM	 group	 samples	 was	
higher	than	0.6,	and	that	of	the	N	group	samples	was	higher	than	
0.4,	which	 indicated	 that	 the	probability	of	GDM	group	samples	
being correctly predicted by this model was higher than that of 
the	N	group	samples	(Figure	3A).	The	AUC	of	the	diagnostic	value	
model	was	0.942	 (Figure	3B).	A	model	 scoring	 system	was	used	
to	screen	cases.	About	70%	of	GDM	patients	were	screened	out	
if	50%	of	high-	score	patients	were	included;	about	90%	of	GDM	
patients	could	be	screened	out	if	70%	of	high-	score	patients	were	
included	(Figure	3C,	3D).

The importance of the 11 independent variables was analyzed 
(Table	4).	The	importance	of	the	independent	variables	was	ranked	
from	high	to	low.	Among	all	the	independent	variables,	HbA1c	con-
tributed	the	most	 to	the	model,	with	an	 importance	coefficient	of	
0.140	(100%).

3.5  |  Establishment of the radial basis 
function model

A	two-	layer	radial	basis	function	model	was	constructed	using	the	
radial basis function module of SPSS to classify normal pregnant 
women	 and	 GDM	 patients.	 There	 were	 11	 indexes	 in	 the	 input	
layer,	six	nodes	in	the	hidden	layer,	and	the	activation	function	was	

Index
Cut- off 
value

Sensitivity 
(%)

Specificity 
(%) AUC 95%CI

TRIG 1.14 73.1 63.3 0.704 0.600– 0.808

HDL-	C 1.42 59.0 53.3 0.565 0.456–	0.675

FPG 4.36 69.2 56.7 0.698 0.597–	0.798

HbA1c 4.95 70.5 70.0 0.769 0.679–	0.859

F	IX 2598.5 66.7 53.3 0.612 0.486–	0.739

TBC1D5a 853.0 67.9 56.7 0.621 0.502–	0.739

Human	C_k	gene 200.5 69.2 63.3 0.670 0.556– 0.785

ALBU* 258.5 75.6 40.0 0.641 0.532– 0.750

A2MG* 254.0 78.2 33.3 0.612 0.497–	0.726

HEMO* 368.5 79.5 43.3 0.690 0.583–	0.796

AMBP* 73.5 74.4 36.7 0.600 0.476–	0.724

*It has been reported.

TA B L E  2 ROC	analysis

F I G U R E  1 ROC	analysis	of	the	11	
GDM-	related	indexes
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a	softmax	function.	The	output	 layer	had	two	nodes	(N	group	and	
GDM	group),	and	the	activation	function	was	the	identity	function;	
the	sum	of	squares	error	function	was	used.	Among	the	108	sam-
ples,	74	(68.5%)	were	in	the	training	group	and	34	(31.5%)	were	in	
the validation group.

The	accuracy	rates	of	the	GDM	training	and	validation	groups	
were	86.3%	and	92.6%,	 respectively	 (Table	5).	According	 to	 the	
classification	 of	 GDM	 group,	 13.7%	 of	 the	 training	 group	 sam-
ples	 and	 7.4%	 of	 the	 GDM	 validation	 group	 samples	 were	mis-
diagnosed	as	the	N	group.	A	total	of	34.8%	of	the	training	group	
samples and 28.6% of the verification group samples were misdi-
agnosed	as	GDM.

The	prediction	probability	of	 the	GDM	group	was	higher	 than	
0.6	 and	 that	of	 the	N	group	was	higher	 than	0.4,	which	 indicated	
that	the	prediction	probability	of	GDM	patients	was	better	than	that	
of	normal	pregnant	women	(Figure	4A).	This	model	is	more	suitable	
for screening diagnosis. The diagnostic value of the model showed 
that	 the	AUC	was	0.909	 (Figure	4B).	A	model	 scoring	 system	was	
used	to	screen	cases.	Nearly	60%	of	GDM	patients	were	screened	

out	if	50%	of	high-	score	patients	were	included;	about	80%	of	GDM	
patients	could	be	screened	out	 if	70%	of	high-	score	patients	were	
included	(Figure	4C,	4D).

The importance of the 11 independent variables was analyzed 
(Table	6)	and	ranked	from	high	to	 low.	Among	all	 the	 independent	
variables,	AMBP	contributed	the	most	to	the	model,	with	an	impor-
tance	coefficient	of	0.159	(100%).

3.6  |  Establishment of the discriminant analysis 
function model

The	discriminant	functions	of	the	11	independent	variables	in	the	N	
and	GDM	groups	were	established	using	the	SPSS	discriminant	anal-
ysis	model.	 The	 Bayes	 discriminant	 function	 analysis	method	was	
used.	 All	 samples	were	 preliminarily	 classified	 and	 cross-	validated	
to clarify the diagnostic efficiency of the discriminant analysis func-
tion model.

Bayes	discriminant	function:

The	accuracies	of	the	GDM	preliminary	classification	and	cross-	
validation	groups	were	82.1%	and	80.8%,	respectively	(Table	7).	In	
the	GDM	group,	17.9%	of	the	preliminary	classification	samples	and	
19.2%	of	the	cross-	validation	samples	were	incorrectly	classified	as	
the	N	group,	and	were	missed	diagnoses;	for	the	N	group	samples,	
20%	of	the	initial	samples	and	30%	of	the	cross-	validation	samples	
were	incorrectly	classified	as	GDM.

After	establishing	 the	Bayes	discriminant	 function	of	 the	11	
independent	 variables,	 the	 probability	 values	 (P	 values)	 of	 two	
new	variables	 used	 to	 distinguish	 the	N	 group	 and	GDM	group	
were	 saved,	 namely	 Dis-	N	 and	 Dis-	GDM.	 The	 ROC	 curve	 was	

YNgroup= −68.225−6.988XFPG+23.351XHbA1c+0.330XTRIG

+14.487XHDL−C+0.015XFIX+0.005XTBC1D5a

−0.131Xhumanc_k gene+0.015XABLU+0.018XHEMO+0.002XAMBP

YGDMgroup= −72.992−7.261XFPG+24.808XHbA1c+0.661XTRIG

+13.766XHDL−C+0.013XFIX+0.005XTBC1D5a−0.104Xhuman c_k gene

+0.019XA2MG+0.011XHEMO−7.86×10
−5XAMBP

F I G U R E  2 Multivariate	logistic	regression	ROC	analysis

Known samples Observation value

Predictive value

N group
GDM 
group Accuracy

Training group n	=	74 N	group 16 7 69.6%

GDM	group 2 49 96.1%

Overall percentage 24.3% 75.7% 87.8%

Validation group n	=	34 N	group 5 2 71.4%

GDM	group 1 26 96.3%

Overall percentage 17.6% 82.4% 91.2%

TA B L E  3 The	prediction	classification	
results of multilayer perceptron neural 
network	model
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analyzed	using	Dis-	N	and	Dis-	GDM,	and	the	AUC	was	calculated.	
Through	 the	 images	 and	 result	 analysis,	 it	 was	 found	 that	 the	
ROC	curves	of	Dis-	N	and	Dis-	GDM	used	the	reference	line	as	the	
symmetry	 lines	 (Figure	5).	The	AUC	of	 the	Dis-	GDM	curve	was	
0.908	 (95%	CI:	0.853–	0.963).	When	 the	cut-	off	 value	was	0.59,	
the	diagnostic	sensitivity	and	specificity	were	90.0%	and	78.2%,	
respectively.

3.7  |  Delong test

The	Delong	test	was	performed	using	SAS	9.4	software	to	compare	
the statistical differences between different machine learning meth-
ods	based	on	the	ROC	curve	(Table	8).	The	results	showed	that	there	
was	no	significant	difference	(p < 0.05) in the ROC curve between 
different machine learning methods.

F I G U R E  3 Classification	statistics	of	the	multilayer	perceptron	neural	network	model

TA B L E  4 Importance	of	independent	variables	in	the	multilayer	
perceptron	neural	network	model

Independent variable Importance
Standardization 
importance

HbA1c 0.140 100%

ALBU 0.137 97.7%

FPG 0.126 89.5%

human	C_k	gene 0.118 83.9%

AMBP 0.113 80.6%

F	IX 0.092 65.3%

HEMO 0.090 64.4%

TRIG 0.056 40.2%

A2MG 0.048 34.1%

HDL-	C 0.048 33.9%

TBCID5a 0.033 23.3%
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4  |  DISCUSSION

4.1  |  Glucose, lipid, and protein metabolism in GDM

With	the	extension	of	pregnancy,	insulin	sensitivity	in	normal	preg-
nant	 women	 decreases	 significantly	 (40%–	80%).10– 12 Compared 
with	 women	 with	 normal	 glucose	 tolerance,	 GDM	 patients	 have	
lower	 insulin	 sensitivity,	 lower	 insulin	 response,	 and	 lower	 insulin	

secretion.12	 They	 may	 have	 decreased	 glucose-	insulin	 sensitivity	
because	of	a	receptor	defect	in	peripheral	tissue,	most	probably	in	
skeletal	muscle.13	At	the	same	time,	GDM	patients	also	have	chronic	
β-	cell	dysfunction,14 which manifests by insufficient compensation 
of the β	cells	for	the	severe	acquired	insulin	resistance	in	late	preg-
nancy. 13 β-	cell	 defects	may	 occur	 prior	 to	 pregnancy	 and	 persist	
after	delivery.	Compared	with	normal	pregnant	women,	those	with	
a	history	of	GDM	have	a	>7-	fold	risk	of	developing	T2D.15	GDM	pa-
tients	are	at	high	risk	of	developing	T2D	in	the	order	of	20%–	60%	in	
the	first	5	years	following	an	index	pregnancy,16,17 and the degree of 
decline in β-	cell	function	varies	in	relation	to	the	severity	of	gesta-
tional dysglycemia.3

GDM	patients	 are	often	accompanied	by	 lipid	metabolism	dis-
orders,	 which	 are	 also	 closely	 related	 to	 insulin	 resistance.3 In 
patients	with	poor	GDM	control,	TRIG	levels	are	higher	in	the	sec-
ond and third trimesters.18	 In	patients	with	mild	GDM	whose	FPG	
is	 lower	 than	 105	mg/dL,	 the	 increase	 in	 TRIG	 levels	 and	 the	 de-
crease in TRIG metabolism may be the cause of fetal macrosomia. 
Dyslipidemia	in	GDM	patients	increases	the	risk	of	vascular	 injury,	
which	may	lead	to	endothelial	dysfunction,	and	is	also	a	pathogenic	
factor	 for	 preeclampsia	 in	 GDM	 patients.19 Together with plasma 
and	cell	membranes,	lipids	are	the	main	components	of	the	arterial	
wall.	Therefore,	abnormal	 lipids	may	 lead	to	vascular	 injury,	which	
plays	 an	 extremely	 important	 role	 in	 the	pathogenesis	 of	GDM.20 
This study retrospectively analyzed the predictive value of TRIG 
and	HDL-	C	levels	in	the	first	trimester	of	GDM.	In	agreement	with	
the	 same	 conclusion	 as	 previous	 studies,7 two indexes showed 

Known samples Observation value

Predictive classification

N group
GDM 
group Accuracy

Training group n	=	74 N	group 15 8 65.2%

GDM	group 7 44 86.3%

Overall percentage 29.7% 70.3% 79.7%

Validation group n	=	34 N	group 5 2 71.4%

GDM	group 2 25 92.6%

Overall percentage 20.6% 79.4% 88.2%

TA B L E  5 The	prediction	classification	
results of the radial basis function model

TA B L E  6 Importance	of	independent	variables	in	the	radial	basis	
function model

Independent variable Importance
Standardization 
importance

AMBP 0.159 100%

HEMO 0.154 96.8%

ALBU 0.123 77.4%

HbA1c 0.103 64.5%

FPG 0.097 61.1%

human	C_k	gene 0.074 46.3%

F	IX 0.066 41.3%

TRIG 0.062 38.9%

TBCID5a 0.057 35.9%

HDL-	C 0.057 35.8%

A2MG 0.048 30.3%

TA B L E  7 Prediction	classification	results	of	the	discriminant	analysis	model.

Known samples

Model prediction classification

N group GDM group Accuracy

Preliminary classification N	group 24 6 80.0%

GDM	group 14 64 82.1%

Overall percentage 35.2% 64.8% 81.5%

Cross-	validation* N	group 21 9 70.0%

GDM	group 15 63 80.8%

Overall percentage 33.3% 66.7% 77.8%

*Cross-	validation	was	performed	only	for	the	individual	case	(observation)	in	the	analysis.	In	cross-	validation,	each	individual	case	is	classified	by	
functions derived from all cases except the individual case.
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significant	differences	between	the	N	group	and	GDM	group,	and	
the	TRIG	level	in	the	GDM	group	was	significantly	higher	than	that	
in	the	N	group.	Moreover,	the	HDL-	C	level	 in	the	GDM	group	was	
significantly	lower	than	that	in	the	N	group.

Studies	 on	 GDM	 and	 protein	 metabolism	 have	 indicated	 that	
GDM	causes	elevated	plasma	amino	acids,	especially	BCAAs,	which	
cannot be synthesized by the human body and must be obtained 
mainly from the diet. 21,22 The increased circulating concentrations 

F I G U R E  4 Classification	statistics	of	the	radial	basis	function	model

TA B L E  8 Delong	test

Method ROC Area SD 95%CI p value

Multivariate	logistic	regression	analysis 0.938 0.024 0.890–	0.985 0.744

multilayer	perceptron	neural	network	model 0.942 0.021 0.900–	0.984

Multivariate	logistic	regression	analysis 0.938 0.024 0.890–	0.985 0.338

radial basis function model 0.910 0.028 0.854–	0.965

Multivariate	logistic	regression	analysis 0.938 0.024 0.890–	0.985 0.070

discriminant analysis function model 0.910 0.028 0.853–	0.963

multilayer	perceptron	neural	network	model 0.942 0.021 0.900–	0.984 0.271

radial basis function model 0.910 0.028 0.854–	0.965

multilayer	perceptron	neural	network	model 0.942 0.021 0.900–	0.984 0.091

discriminant analysis function model 0.910 0.028 0.853–	0.963

radial basis function model 0.910 0.028 0.854–	0.965 0.966

discriminant analysis function model 0.910 0.028 0.853–	0.963
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of	BCAAs	directly	affect	the	development	of	insulin	resistance	and	
T2D,	possibly	by	increasing	the	presence	of	toxic	BCAA	intermedi-
ate	metabolites,	which	 in	 turn	 interferes	with	β-	cell	mitochondrial	
function.23	Therefore,	BCCAs	may	be	potential	biomarkers	of	GDM,	
and	plasma	BCAAs	can	serve	as	reliable	biomarkers	for	the	preven-
tion,	 early	 diagnosis,	 and	 treatment	of	 diabetes.24	 Similarly,	 urine-	
excreted	metabolites,	such	as	those	related	to	the	serotonin	system,	
non-	polar	amino	acids,	and	ketone	bodies,	may	complete	a	predic-
tive	or	early	diagnostic	panel	of	biomarkers	for	GDM.25 Studies have 
shown	 that	 urinary	 tryptophan	 metabolism-	related	 metabolites	
were significantly increased in the third trimester in women with 
GDM.26 The upregulation of these pathways could trigger insulin 
resistance and may respond to oxidative stress and inflammation 
during	GDM.25	Our	previous	study	on	urine	peptides	 in	GDM	pa-
tients8,9 also indicated that the changes in glucose metabolism had 
an	impact	on	protein	and	amino	acid	metabolism,	which	can	be	re-
flected in urine. The relationship and mechanism between urinary 
polypeptides	and	GDM	have	been	detailed	in	a	previous	paper.

Therefore,	better	metabolic	control,	including	blood	lipid	regula-
tion,	and	blood	glucose	and	protein	intake	control,	may	play	a	pre-
ventive role in the occurrence of adverse prognoses in mothers and 
infants.27– 30

4.2  |  ROC analysis of GDM- related indexes

The ROC curve was used to analyze the clinical diagnostic value of 
11	GDM-	related	indexes.	The	indexes	included	TRIG,	HDL-	C,	FPG,	
HbA1c,	 F	 IX,	 TBCID5a,	 human	 C_k	 gene,	 ALBU,	 A2MG,	 HEMO,	
and	AMBP.	Among	all	the	indexes,	HbA1c	had	the	highest	diagnos-
tic	value,	with	an	AUC	of	0.769.	When	the	cut-	off	value	was	4.95,	

the	sensitivity	and	specificity	of	diagnosis	were	70.5%	and	70.0%,	
respectively.	Among	the	seven	GDM-	related	urinary	polypeptides,	
HEMO	had	the	highest	diagnostic	value	for	GDM,	with	an	AUC	of	
0.690.	When	the	cut-	off	value	was	368.5,	the	sensitivity	and	speci-
ficity	 were	 79.5%	 and	 43.3%,	 respectively.	 The	 other	 six	 urinary	
polypeptides	were	human	C_k	gene,	ALBU,	TBCID5a,	F	IX,	A2MG,	
and	AMBP	in	descending	order.

4.3  |  Clinical value of the diagnostic model

Binary	logistic	regression	analysis,	multilayer	perceptron	neural	net-
work	model,	 radial	basis	 function	model,	and	discriminant	analysis	
function model were established to comprehensively evaluate the 
diagnostic	value	of	the	11	indexes	in	distinguishing	the	N	and	GDM	
groups.	 Among	 the	 four	 multi-	parameter	 diagnostic	 models,	 the	
AUC	of	the	multilayer	perceptron	neural	network	model	was	0.942,	
followed	by	binary	 logistic	 regression	 (0.938),	 radial	basis	 function	
model	 (0.909),	 and	 discriminant	 analysis	 function	 model	 (0.908).	
The	results	showed	that	the	multilayer	perceptron	neural	network	
model	 had	 the	 greatest	 diagnostic	 value	 for	GDM.	 In	 the	 process	
of	 establishing	 the	models,	 all	 training	 samples	 (or	 initial	 samples)	
and validation samples were comprehensively analyzed. The diag-
nostic	accuracy	of	the	multilayer	perceptron	neural	network	model	
for	the	N	and	GDM	groups	were	70%	and	96.2%,	respectively,	which	
was	higher	 than	 that	 of	 the	other	 two	diagnostic	models	 (the	dif-
ference was not statistically significant). The diagnostic accuracy of 
the	three	models	for	GDM	patients	was	higher	than	that	of	normal	
pregnant	 women.	 Moreover,	 the	 sensitivity	 of	 disease	 diagnosis	
was	high,	which	was	suitable	for	preliminary	clinical	screening	of	all	
pregnant	women.	However,	even	with	the	deep	learning	approach,	

F I G U R E  5 ROC	analysis	of	the	
discriminant analysis model
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the	models	still	had	low	specificity.	On	the	follow-	up	study,	we	will	
continue	to	improve	the	model	by	expanding	the	number	of	samples,	
introducing	new	parameters	closely	related	to	the	disease,	and	refin-
ing the influencing factors.

Compared	with	single	index	analysis,	the	multi-	index	comprehen-
sive analysis method can use the diagnostic advantages of the many 
parameters,	and	increase	the	sensitivity	and	specificity	of	disease	diag-
nosis. The establishment of diagnostic models will be helpful for early 
screening,	prevention,	and	judging	the	prognosis	of	GDM,	as	well	as	
facilitate clinical application and improve the prognosis of patients. In 
the	absence	of	acknowledged	GDM	guidelines,	research	on	intelligent	
diagnostic models is expected to provide a new diagnosis and treat-
ment	model	for	GDM	prevention	and	judgment	of	prognosis.

Compared	with	traditional	statistical	methods,	machine	learn-
ing	methods,	especially	deep	learning	methods,	have	a	strong	abil-
ity for feature extraction and disease prediction. The performance 
of	deep	 learning	methods	 in	some	complex	tasks	has	reached	or	
even	exceeded	 the	 level	 of	 human	decision-	making,	 and	 it	 is	 in-
creasingly	used	in	medical	diagnosis,	emotion	analysis,	and	other	
medical fields.31,32	However,	the	shortcomings	of	machine	learning	
methods	are	also	very	clear.	For	example,	 the	 logistic	 regression	
method	 requires	 strict	assumptions,	which	are	easy	 to	under-	fit,	
and the classification accuracy is not high; the discriminant classi-
fication	method	tends	to	over-	fit	easily,	and	its	effect	is	not	good	
if the sample attributes are related. The deep learning method re-
quires	 a	 lot	of	data	 for	 training,	 and	 the	model	 is	 in	 a	black	box	
state,	 making	 it	 difficult	 to	 understand	 the	 internal	 mechanism.	
Therefore,	it	is	necessary	to	clarify	the	advantages	and	disadvan-
tages of different machine learning methods and run them cor-
rectly in order to achieve the expected goal of the research.

5  |  CONCLUSIONS

Through	this	study,	we	explored	the	diagnostic	value	of	GDM-	related	
indexes,	established	the	GDM	diagnosis	model,	and	comprehensively	
analyzed	the	relationship	between	glucose	metabolism,	lipid	metabo-
lism,	and	urine	polypeptides	in	GDM	patients.	The	GDM-	related	urine	
molecular	peptide	results,	combined	with	FPG	and	other	clinical	 in-
dexes,	are	expected	to	serve	as	the	basis	for	the	development	of	urine	
glucose	metabolism	detection	kits	for	GDM	patients.	The	establish-
ment of diagnostic models can lay the foundation for exploration of 
artificial intelligence and machine language in diagnostic systems. The 
study also provided the possibility of early prediction and monitoring 
of	glucose	metabolism	in	patients	with	GDM.	Comprehensive	analy-
sis	of	the	relationship	between	glucose	metabolism,	lipid	metabolism,	
and	urinary	polypeptides	in	GDM	patients	can	also	provide	support	
for	disease-	related	pathophysiological	research.
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