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Abstract
Background: Gestational diabetes mellitus (GDM) has many adverse outcomes that 
seriously threaten the short-term and long-term health of mothers and infants. This 
study comprehensively analyzed the clinical diagnostic value of GDM-related clinical 
indexes and urine polypeptide research results, and established comprehensive index 
diagnostic models.
Methods: In this study, diagnostic values from the clinical indexes of serum triglycer-
ide (TRIG), high-density lipoprotein cholesterol (HDL-C), fasting plasma glucose (FPG) 
and glycosylated hemoglobin (HbA1c), and 7 GDM-related urinary polypeptides were 
analyzed retrospectively. The multiple logistic regression equation, multilayer percep-
tron neural network model, radial basis function, and discriminant analysis function 
models of GDM-related indexes were established using machine language.
Results: The results showed that HbA1c had the highest diagnostic value for GDM, 
with an area under the curve (AUC) of 0.769. When the cut-off value was 4.95, the 
diagnostic sensitivity and specificity were 70.5% and 70.0%, respectively. Among the 
seven GDM-related urinary polypeptides, human hemopexin (HEMO) had the highest 
diagnostic value, with an AUC of 0.690. When the cut-off value was 368.5, the sensi-
tivity and specificity were 79.5% and 43.3%, respectively. The AUC of the multilayer 
perceptron neural network model was 0.942, followed by binary logistic regression 
(0.938), radial basis function model (0.909), and the discriminant analysis function 
model (0.908).
Conclusion: The establishment of a GDM diagnostic model combining blood glucose, 
blood lipid, and urine polypeptide indexes can lay a foundation for exploring machine 
language and artificial intelligence in diagnostic systems.
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1  |  INTRODUC TION

In the normal population, carbohydrates, lipids, and proteins can be 
transformed into each other, and dynamically balanced to meet the 
normal physiological needs of the human body. Acetyl CoA, pyru-
vic acid, α-ketoglutarate, and oxaloacetic acid are four important 
transfer stations in the process of nutrient transformation. When 
the plasma glucose level increases, the amounts of acetyl coenzyme 
A, pyruvic acid, α-ketoglutarate, and oxaloacetic acid also increase, 
which definitely affects lipid metabolism and protein metabolism. 
The pathogenesis of gestational diabetes mellitus (GDM) is related 
to insulin resistance and decreased insulin sensitivity in the second 
and third trimesters of pregnancy.1 During pregnancy, the increase 
in estrogen, progesterone, and cortisol further disrupts glucose in-
sulin balance.2 Hyperglycemia in GDM patients also affects lipid and 
protein metabolism.

Studies have shown that dyslipidemia and glucose metabolism 
disorders often coexist in GDM patients and are closely related to 
insulin resistance.3 Pregnancy-induced insulin resistance ensures 
adequate nutrition for the fetus and placenta. However, in moth-
ers with obesity, metabolic syndrome, or GDM, the excess nutrition 
places the fetuses at risk of metabolic disease over their lifetime.4 
GDM patients with dyslipidemia have a higher incidence of adverse 
pregnancy outcomes, especially preterm labor and preeclampsia.5

In terms of GDM-related protein metabolism, a prospective 
case-control study indicated that higher dietary and circulating con-
centrations of isoleucine, leucine, valine, and total branched-chain 
amino acids (BCAAs) are related to a greater risk of progression from 
GDM to type 2 diabetes (T2D) later in life.6 It is suggested that pro-
tein metabolic systems, such as dietary and/or plasma BCAAs, also 
play an important role in the pathophysiology of GDM and T2D.

Based on the screening of GDM-related clinical indexes and 
urine polypeptides,7–9 the clinical diagnostic value of each index was 
compared horizontally, and the diagnostic models of different sta-
tistical classification methods were established in combination with 
each index. We hope that through the establishment of the diagno-
sis model, clinical, and research indexes can be applied to the clinical 
prevention, diagnosis, and dynamic monitoring of GDM. This study 
preliminarily discussed the clinical application prospects of GDM-
related markers before the establishment of an artificial intelligence 
GDM diagnostic system.

2  |  MATERIAL S AND METHODS

2.1  |  Study population

The subjects were women aged 24–42 years. Based on a previous 
study,9 78 GDM patients (GDM group) were randomly selected 
between February 2018 and August 2019, and 30 normal preg-
nant women (N group) were selected in the same period. We had 
the complete clinical data of all subjects from early pregnancy (8–
12 weeks) to 42 days postpartum. A 75 g glucose (one-step method) 

oral glucose tolerance test (OGTT) was performed at 24–28 weeks 
of gestation. The diagnosis of GDM met the diabetes diagnosis 
standard of the American Diabetes Association (ADA) from 2011. 
In the GDM group, subjects with previous impaired glucose toler-
ance, acute and chronic infectious diseases, tumors, cardiovascular 
diseases, and severe liver and kidney dysfunction were excluded. 
Subjects with other complications of GDM, such as thyroid dysfunc-
tion, hypertension, preeclampsia, and anemia, were also excluded.

2.2  |  Data collection

The serum triglyceride (TRIG) and high-density lipoprotein choles-
terol (HDL-C) values in the first trimester (8–12 weeks), and values of 
fasting plasma glucose (FPG) and glycosylated hemoglobin (HbA1c) 
of OGTT in the second trimester (24–28  weeks) were collected 
by the laboratory information system (LIS) at our hospital. Seven 
GDM-related urinary peptide markers were successfully identified 
in previous studies, including coagulation factor IX (F IX), TBC1 fam-
ily member 5 isoform a (Homosapiens) (TBC1D5a), human immuno-
globulin kappa constant (human C_k gene), urine albumin (ALBU), 
alpha-2-macroglobulin (A2MG), human hemopexin (HEMO), and 
alpha-1-Microglobulin (AMBP).8,9 The peak values of the seven urine 
polypeptides were retrospectively analyzed.

2.3  |  Receiver operating characteristic 
(ROC) analysis

The ROC curves of the 11 indexes were established by SPSS 22.0 
software. The area under the curve (AUC) value was calculated to 
evaluate the diagnostic value of each index. The binary logistic re-
gression equation of the comprehensive indexes was established, 
and the ROC curve and AUC analysis of the regression equation 
were carried out to explore the diagnostic value of multiple indexes.

2.4  |  Establishment of the clinical diagnosis model

The N and GDM groups were the stratified factors, and the sam-
ples in each group were randomly regrouped. The diagnostic mod-
els were established using the statistical methods of the multilayer 
perceptron neural network model, radial basis function, and discri-
minant analysis function. The values of TRIG, HDL-C, FPG, HbA1c, 
F IX, TBCID5a, human C_k gene, ALBU, A2MG, HEMO, and AMBP 
were the input layers, and the N and GDM groups were the output 
layers. Seventy percent of the samples were randomly used to es-
tablish the model, and 30% were used to verify the diagnostic ef-
ficiency of the model.

All statistical analyses were performed using SPSS 22.0. 
Statistical methods included the multilayer perceptron neural net-
work model, radial basis function, and the discriminant analysis 
function. After establishing the model, the accuracy, sensitivity, and 
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specificity of the model for disease diagnosis were calculated, and 
the performance of the model was comprehensively evaluated. The 
Delong test was performed using SAS 9.4 software to compare the 
statistical differences between the traditional method and the deep 
learning approach, based on the ROC curve.

3  |  RESULTS

3.1  |  Predictive value of lipid metabolism markers 
in the first trimester of GDM

The clinical characteristics of all the subjects and the levels of 
lipid metabolism markers were compared (Table  1). There were 
no significant differences in age, pre-pregnancy body mass index, 
average gestational age, and average number of pregnancies 
and births, between the two groups (p > 0.05).8 The serum TRIG 
and HDL-C levels in the first trimester were significantly differ-
ent (p < 0.05) between the GDM and N groups. The mean value, 
standard deviation, and P value of TRIG and HDL-C were shown, 
and the difference in TRIG between the two groups was more sig-
nificant (p = 0.02).

3.2  |  ROC analysis

The results of TRIG, HDL-C, FPG, and HbA1c, and the peptide peak 
values of F IX, TBC1D5a, human C_k gene, ALBU, A2MG, HEMO, 
and AMBP were collected from 78 GDM patients and 30 normal 
pregnant women. The ROC curve was established using the above 
data, and the AUC was calculated (Table 2, Figure 1). The AUC of 
the 11 indexes were 0.704, 0.565, 0.698, 0.769, 0.612, 0.621, 0.670, 
0.641, 0.612, 0.690, and 0.600, respectively. ROC analyses of ALBU, 
A2MG, HEMO, and AMBP have been reported.8

Among the 11 indexes, HbA1c had the highest diagnostic value 
for GDM, with an AUC of 0.769. When the cut-off value was 4.95, the 
diagnostic sensitivity and specificity were 70.5% and 70.0%, respec-
tively. Among the seven GDM-related urinary polypeptides, HEMO 
had the highest diagnostic value for GDM, with an AUC of 0.690. 
When the cut-off value was 368.5, the sensitivity and specificity 

were 79.5% and 43.3%, respectively. The other six urinary poly-
peptides were human C_k gene, ALBU, TBCID5a, F IX, A2MG, and 
AMBP in descending order of the AUC.

3.3  |  Multivariate logistic regression analysis

Multivariate logistic regression analysis was used to analyze the di-
agnostic value of the 11 GDM-related indexes. The diagnostic for-
mula is as follows:

As shown in Figure 2, the AUC of the multiple logistic regression 
equation of 11 indexes was 0.938 (95% CI: 0.890–0.985). When the 
cut-off value was 0.475, the sensitivity and specificity were 94.9% 
and 76.7%, respectively.

3.4  |  Establishment of the multilayer perceptron 
neural network model

Using SPSS software, a two-layer perceptron neural network model 
was constructed. The model settings were as follows: the input 
layer had 11 indexes, the hidden layer had two nodes, and the hid-
den layer activation function was a hyperbolic tangent function; the 
output layer had two nodes (N and GDM groups), the output layer 
activation function was a softmax function, and the cross-entropy 
error function was used. Among the 108 samples, 74 (68.5%) were 
in the training group and 34 (31.5%) were in the validation group.

For GDM diagnosis, the accuracy rate of the training group sam-
ple classification was 96.1%, and that of the validation group was 
96.3% (Table 3). The accuracy of model classification for the GDM 
group was higher. The classification of GDM samples showed that 
3.9% of the training group samples and 3.7% of the validation group 
samples were incorrectly diagnosed as normal samples (N group) 

Y= logit(P)=−19.886+1.046XTRIG−0.187XHDL−C

+1.394XFPG+2.989XHbA1c−0.003XFIX−0.001XTBC1D5a

+0.044Xhumanc_kgene+0.009XABLU+0.001XA2MG

−0.009XHEMO−0.022XAMBP

Parameters N Group (n = 30)
GDM group 
(n = 78) p value

Age(year)* 31.83 ± 3.71 32.88 ± 4.21 0.436

Pre-pregnancy BMI* 21.26 ± 2.52 23.35 ± 3.45 0.054

Average gestational age* 39.54 ± 1.08 38.97 ± 1.95 0.346

Average number of pregnancies* 1.90 ± 0.99 2.13 ± 1.21 0.206

Average number of births* 1.40 ± 0.50 1.41 ± 0.55 0.510

TRIG (mmol/L) 1.13 ± 0.44 1.76 ± 1.23 0.020

HDL-C (mmol/L) 1.55 ± 0.24 1.48 ± 0.32 0.038

*It has been reported.

TA B L E  1 Analysis of the clinical 
characteristics，lipid metabolism markers, 
TRIG and HDL-C, in the GDM and N 
groups (−X ± S).
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and were missed diagnoses; the classification of the N group sam-
ples showed that 30.4% of the training group samples and 28.6% of 
the validation group samples were incorrectly diagnosed as GDM 
samples, and misdiagnosis occurred.

The prediction probability of the GDM group samples was 
higher than 0.6, and that of the N group samples was higher than 
0.4, which indicated that the probability of GDM group samples 
being correctly predicted by this model was higher than that of 
the N group samples (Figure 3A). The AUC of the diagnostic value 
model was 0.942 (Figure 3B). A model scoring system was used 
to screen cases. About 70% of GDM patients were screened out 
if 50% of high-score patients were included; about 90% of GDM 
patients could be screened out if 70% of high-score patients were 
included (Figure 3C, 3D).

The importance of the 11 independent variables was analyzed 
(Table 4). The importance of the independent variables was ranked 
from high to low. Among all the independent variables, HbA1c con-
tributed the most to the model, with an importance coefficient of 
0.140 (100%).

3.5  |  Establishment of the radial basis 
function model

A two-layer radial basis function model was constructed using the 
radial basis function module of SPSS to classify normal pregnant 
women and GDM patients. There were 11 indexes in the input 
layer, six nodes in the hidden layer, and the activation function was 

Index
Cut-off 
value

Sensitivity 
(%)

Specificity 
(%) AUC 95%CI

TRIG 1.14 73.1 63.3 0.704 0.600–0.808

HDL-C 1.42 59.0 53.3 0.565 0.456–0.675

FPG 4.36 69.2 56.7 0.698 0.597–0.798

HbA1c 4.95 70.5 70.0 0.769 0.679–0.859

F IX 2598.5 66.7 53.3 0.612 0.486–0.739

TBC1D5a 853.0 67.9 56.7 0.621 0.502–0.739

Human C_k gene 200.5 69.2 63.3 0.670 0.556–0.785

ALBU* 258.5 75.6 40.0 0.641 0.532–0.750

A2MG* 254.0 78.2 33.3 0.612 0.497–0.726

HEMO* 368.5 79.5 43.3 0.690 0.583–0.796

AMBP* 73.5 74.4 36.7 0.600 0.476–0.724

*It has been reported.

TA B L E  2 ROC analysis

F I G U R E  1 ROC analysis of the 11 
GDM-related indexes
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a softmax function. The output layer had two nodes (N group and 
GDM group), and the activation function was the identity function; 
the sum of squares error function was used. Among the 108 sam-
ples, 74 (68.5%) were in the training group and 34 (31.5%) were in 
the validation group.

The accuracy rates of the GDM training and validation groups 
were 86.3% and 92.6%, respectively (Table 5). According to the 
classification of GDM group, 13.7% of the training group sam-
ples and 7.4% of the GDM validation group samples were mis-
diagnosed as the N group. A total of 34.8% of the training group 
samples and 28.6% of the verification group samples were misdi-
agnosed as GDM.

The prediction probability of the GDM group was higher than 
0.6 and that of the N group was higher than 0.4, which indicated 
that the prediction probability of GDM patients was better than that 
of normal pregnant women (Figure 4A). This model is more suitable 
for screening diagnosis. The diagnostic value of the model showed 
that the AUC was 0.909 (Figure 4B). A model scoring system was 
used to screen cases. Nearly 60% of GDM patients were screened 

out if 50% of high-score patients were included; about 80% of GDM 
patients could be screened out if 70% of high-score patients were 
included (Figure 4C, 4D).

The importance of the 11 independent variables was analyzed 
(Table 6) and ranked from high to low. Among all the independent 
variables, AMBP contributed the most to the model, with an impor-
tance coefficient of 0.159 (100%).

3.6  |  Establishment of the discriminant analysis 
function model

The discriminant functions of the 11 independent variables in the N 
and GDM groups were established using the SPSS discriminant anal-
ysis model. The Bayes discriminant function analysis method was 
used. All samples were preliminarily classified and cross-validated 
to clarify the diagnostic efficiency of the discriminant analysis func-
tion model.

Bayes discriminant function:

The accuracies of the GDM preliminary classification and cross-
validation groups were 82.1% and 80.8%, respectively (Table 7). In 
the GDM group, 17.9% of the preliminary classification samples and 
19.2% of the cross-validation samples were incorrectly classified as 
the N group, and were missed diagnoses; for the N group samples, 
20% of the initial samples and 30% of the cross-validation samples 
were incorrectly classified as GDM.

After establishing the Bayes discriminant function of the 11 
independent variables, the probability values (P values) of two 
new variables used to distinguish the N group and GDM group 
were saved, namely Dis-N and Dis-GDM. The ROC curve was 

YNgroup= −68.225−6.988XFPG+23.351XHbA1c+0.330XTRIG

+14.487XHDL−C+0.015XFIX+0.005XTBC1D5a

−0.131Xhumanc_k gene+0.015XABLU+0.018XHEMO+0.002XAMBP

YGDMgroup= −72.992−7.261XFPG+24.808XHbA1c+0.661XTRIG

+13.766XHDL−C+0.013XFIX+0.005XTBC1D5a−0.104Xhuman c_k gene

+0.019XA2MG+0.011XHEMO−7.86×10
−5XAMBP

F I G U R E  2 Multivariate logistic regression ROC analysis

Known samples Observation value

Predictive value

N group
GDM 
group Accuracy

Training group n = 74 N group 16 7 69.6%

GDM group 2 49 96.1%

Overall percentage 24.3% 75.7% 87.8%

Validation group n = 34 N group 5 2 71.4%

GDM group 1 26 96.3%

Overall percentage 17.6% 82.4% 91.2%

TA B L E  3 The prediction classification 
results of multilayer perceptron neural 
network model
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analyzed using Dis-N and Dis-GDM, and the AUC was calculated. 
Through the images and result analysis, it was found that the 
ROC curves of Dis-N and Dis-GDM used the reference line as the 
symmetry lines (Figure 5). The AUC of the Dis-GDM curve was 
0.908 (95% CI: 0.853–0.963). When the cut-off value was 0.59, 
the diagnostic sensitivity and specificity were 90.0% and 78.2%, 
respectively.

3.7  |  Delong test

The Delong test was performed using SAS 9.4 software to compare 
the statistical differences between different machine learning meth-
ods based on the ROC curve (Table 8). The results showed that there 
was no significant difference (p < 0.05) in the ROC curve between 
different machine learning methods.

F I G U R E  3 Classification statistics of the multilayer perceptron neural network model

TA B L E  4 Importance of independent variables in the multilayer 
perceptron neural network model

Independent variable Importance
Standardization 
importance

HbA1c 0.140 100%

ALBU 0.137 97.7%

FPG 0.126 89.5%

human C_k gene 0.118 83.9%

AMBP 0.113 80.6%

F IX 0.092 65.3%

HEMO 0.090 64.4%

TRIG 0.056 40.2%

A2MG 0.048 34.1%

HDL-C 0.048 33.9%

TBCID5a 0.033 23.3%



    |  7 of 11HU and ZHANG

4  |  DISCUSSION

4.1  |  Glucose, lipid, and protein metabolism in GDM

With the extension of pregnancy, insulin sensitivity in normal preg-
nant women decreases significantly (40%–80%).10–12 Compared 
with women with normal glucose tolerance, GDM patients have 
lower insulin sensitivity, lower insulin response, and lower insulin 

secretion.12 They may have decreased glucose-insulin sensitivity 
because of a receptor defect in peripheral tissue, most probably in 
skeletal muscle.13 At the same time, GDM patients also have chronic 
β-cell dysfunction,14 which manifests by insufficient compensation 
of the β cells for the severe acquired insulin resistance in late preg-
nancy. 13 β-cell defects may occur prior to pregnancy and persist 
after delivery. Compared with normal pregnant women, those with 
a history of GDM have a >7-fold risk of developing T2D.15 GDM pa-
tients are at high risk of developing T2D in the order of 20%–60% in 
the first 5 years following an index pregnancy,16,17 and the degree of 
decline in β-cell function varies in relation to the severity of gesta-
tional dysglycemia.3

GDM patients are often accompanied by lipid metabolism dis-
orders, which are also closely related to insulin resistance.3 In 
patients with poor GDM control, TRIG levels are higher in the sec-
ond and third trimesters.18 In patients with mild GDM whose FPG 
is lower than 105 mg/dL, the increase in TRIG levels and the de-
crease in TRIG metabolism may be the cause of fetal macrosomia. 
Dyslipidemia in GDM patients increases the risk of vascular injury, 
which may lead to endothelial dysfunction, and is also a pathogenic 
factor for preeclampsia in GDM patients.19 Together with plasma 
and cell membranes, lipids are the main components of the arterial 
wall. Therefore, abnormal lipids may lead to vascular injury, which 
plays an extremely important role in the pathogenesis of GDM.20 
This study retrospectively analyzed the predictive value of TRIG 
and HDL-C levels in the first trimester of GDM. In agreement with 
the same conclusion as previous studies,7 two indexes showed 

Known samples Observation value

Predictive classification

N group
GDM 
group Accuracy

Training group n = 74 N group 15 8 65.2%

GDM group 7 44 86.3%

Overall percentage 29.7% 70.3% 79.7%

Validation group n = 34 N group 5 2 71.4%

GDM group 2 25 92.6%

Overall percentage 20.6% 79.4% 88.2%

TA B L E  5 The prediction classification 
results of the radial basis function model

TA B L E  6 Importance of independent variables in the radial basis 
function model

Independent variable Importance
Standardization 
importance

AMBP 0.159 100%

HEMO 0.154 96.8%

ALBU 0.123 77.4%

HbA1c 0.103 64.5%

FPG 0.097 61.1%

human C_k gene 0.074 46.3%

F IX 0.066 41.3%

TRIG 0.062 38.9%

TBCID5a 0.057 35.9%

HDL-C 0.057 35.8%

A2MG 0.048 30.3%

TA B L E  7 Prediction classification results of the discriminant analysis model.

Known samples

Model prediction classification

N group GDM group Accuracy

Preliminary classification N group 24 6 80.0%

GDM group 14 64 82.1%

Overall percentage 35.2% 64.8% 81.5%

Cross-validation* N group 21 9 70.0%

GDM group 15 63 80.8%

Overall percentage 33.3% 66.7% 77.8%

*Cross-validation was performed only for the individual case (observation) in the analysis. In cross-validation, each individual case is classified by 
functions derived from all cases except the individual case.



8 of 11  |     HU and ZHANG

significant differences between the N group and GDM group, and 
the TRIG level in the GDM group was significantly higher than that 
in the N group. Moreover, the HDL-C level in the GDM group was 
significantly lower than that in the N group.

Studies on GDM and protein metabolism have indicated that 
GDM causes elevated plasma amino acids, especially BCAAs, which 
cannot be synthesized by the human body and must be obtained 
mainly from the diet. 21,22 The increased circulating concentrations 

F I G U R E  4 Classification statistics of the radial basis function model

TA B L E  8 Delong test

Method ROC Area SD 95%CI p value

Multivariate logistic regression analysis 0.938 0.024 0.890–0.985 0.744

multilayer perceptron neural network model 0.942 0.021 0.900–0.984

Multivariate logistic regression analysis 0.938 0.024 0.890–0.985 0.338

radial basis function model 0.910 0.028 0.854–0.965

Multivariate logistic regression analysis 0.938 0.024 0.890–0.985 0.070

discriminant analysis function model 0.910 0.028 0.853–0.963

multilayer perceptron neural network model 0.942 0.021 0.900–0.984 0.271

radial basis function model 0.910 0.028 0.854–0.965

multilayer perceptron neural network model 0.942 0.021 0.900–0.984 0.091

discriminant analysis function model 0.910 0.028 0.853–0.963

radial basis function model 0.910 0.028 0.854–0.965 0.966

discriminant analysis function model 0.910 0.028 0.853–0.963



    |  9 of 11HU and ZHANG

of BCAAs directly affect the development of insulin resistance and 
T2D, possibly by increasing the presence of toxic BCAA intermedi-
ate metabolites, which in turn interferes with β-cell mitochondrial 
function.23 Therefore, BCCAs may be potential biomarkers of GDM, 
and plasma BCAAs can serve as reliable biomarkers for the preven-
tion, early diagnosis, and treatment of diabetes.24 Similarly, urine-
excreted metabolites, such as those related to the serotonin system, 
non-polar amino acids, and ketone bodies, may complete a predic-
tive or early diagnostic panel of biomarkers for GDM.25 Studies have 
shown that urinary tryptophan metabolism-related metabolites 
were significantly increased in the third trimester in women with 
GDM.26 The upregulation of these pathways could trigger insulin 
resistance and may respond to oxidative stress and inflammation 
during GDM.25 Our previous study on urine peptides in GDM pa-
tients8,9 also indicated that the changes in glucose metabolism had 
an impact on protein and amino acid metabolism, which can be re-
flected in urine. The relationship and mechanism between urinary 
polypeptides and GDM have been detailed in a previous paper.

Therefore, better metabolic control, including blood lipid regula-
tion, and blood glucose and protein intake control, may play a pre-
ventive role in the occurrence of adverse prognoses in mothers and 
infants.27–30

4.2  |  ROC analysis of GDM-related indexes

The ROC curve was used to analyze the clinical diagnostic value of 
11 GDM-related indexes. The indexes included TRIG, HDL-C, FPG, 
HbA1c, F IX, TBCID5a, human C_k gene, ALBU, A2MG, HEMO, 
and AMBP. Among all the indexes, HbA1c had the highest diagnos-
tic value, with an AUC of 0.769. When the cut-off value was 4.95, 

the sensitivity and specificity of diagnosis were 70.5% and 70.0%, 
respectively. Among the seven GDM-related urinary polypeptides, 
HEMO had the highest diagnostic value for GDM, with an AUC of 
0.690. When the cut-off value was 368.5, the sensitivity and speci-
ficity were 79.5% and 43.3%, respectively. The other six urinary 
polypeptides were human C_k gene, ALBU, TBCID5a, F IX, A2MG, 
and AMBP in descending order.

4.3  |  Clinical value of the diagnostic model

Binary logistic regression analysis, multilayer perceptron neural net-
work model, radial basis function model, and discriminant analysis 
function model were established to comprehensively evaluate the 
diagnostic value of the 11 indexes in distinguishing the N and GDM 
groups. Among the four multi-parameter diagnostic models, the 
AUC of the multilayer perceptron neural network model was 0.942, 
followed by binary logistic regression (0.938), radial basis function 
model (0.909), and discriminant analysis function model (0.908). 
The results showed that the multilayer perceptron neural network 
model had the greatest diagnostic value for GDM. In the process 
of establishing the models, all training samples (or initial samples) 
and validation samples were comprehensively analyzed. The diag-
nostic accuracy of the multilayer perceptron neural network model 
for the N and GDM groups were 70% and 96.2%, respectively, which 
was higher than that of the other two diagnostic models (the dif-
ference was not statistically significant). The diagnostic accuracy of 
the three models for GDM patients was higher than that of normal 
pregnant women. Moreover, the sensitivity of disease diagnosis 
was high, which was suitable for preliminary clinical screening of all 
pregnant women. However, even with the deep learning approach, 

F I G U R E  5 ROC analysis of the 
discriminant analysis model
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the models still had low specificity. On the follow-up study, we will 
continue to improve the model by expanding the number of samples, 
introducing new parameters closely related to the disease, and refin-
ing the influencing factors.

Compared with single index analysis, the multi-index comprehen-
sive analysis method can use the diagnostic advantages of the many 
parameters, and increase the sensitivity and specificity of disease diag-
nosis. The establishment of diagnostic models will be helpful for early 
screening, prevention, and judging the prognosis of GDM, as well as 
facilitate clinical application and improve the prognosis of patients. In 
the absence of acknowledged GDM guidelines, research on intelligent 
diagnostic models is expected to provide a new diagnosis and treat-
ment model for GDM prevention and judgment of prognosis.

Compared with traditional statistical methods, machine learn-
ing methods, especially deep learning methods, have a strong abil-
ity for feature extraction and disease prediction. The performance 
of deep learning methods in some complex tasks has reached or 
even exceeded the level of human decision-making, and it is in-
creasingly used in medical diagnosis, emotion analysis, and other 
medical fields.31,32 However, the shortcomings of machine learning 
methods are also very clear. For example, the logistic regression 
method requires strict assumptions, which are easy to under-fit, 
and the classification accuracy is not high; the discriminant classi-
fication method tends to over-fit easily, and its effect is not good 
if the sample attributes are related. The deep learning method re-
quires a lot of data for training, and the model is in a black box 
state, making it difficult to understand the internal mechanism. 
Therefore, it is necessary to clarify the advantages and disadvan-
tages of different machine learning methods and run them cor-
rectly in order to achieve the expected goal of the research.

5  |  CONCLUSIONS

Through this study, we explored the diagnostic value of GDM-related 
indexes, established the GDM diagnosis model, and comprehensively 
analyzed the relationship between glucose metabolism, lipid metabo-
lism, and urine polypeptides in GDM patients. The GDM-related urine 
molecular peptide results, combined with FPG and other clinical in-
dexes, are expected to serve as the basis for the development of urine 
glucose metabolism detection kits for GDM patients. The establish-
ment of diagnostic models can lay the foundation for exploration of 
artificial intelligence and machine language in diagnostic systems. The 
study also provided the possibility of early prediction and monitoring 
of glucose metabolism in patients with GDM. Comprehensive analy-
sis of the relationship between glucose metabolism, lipid metabolism, 
and urinary polypeptides in GDM patients can also provide support 
for disease-related pathophysiological research.
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