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Abstract 

Background:  Hyperlipidaemia is an important factor that induces coronary artery disease (CAD). This study aimed to 
explore the lipid metabolism patterns and relevant clinical and molecular features of coronary artery disease patients.

Methods:  In the current study, datasets were fetched from the Gene Expression Omnibus (GEO) database and non-
negative matrix factorization clustering was used to establish a new CAD classification based on the gene expression 
profile of lipid metabolism genes. In addition, this study carried out bioinformatics analysis to explore intrinsic biologi-
cal and clinical characteristics of the subgroups.

Results:  Data for a total of 615 samples were extracted from the Gene Expression Omnibus database and were asso-
ciated with clinical information. Then, this study used nonnegative matrix factorization clustering for RNA sequenc-
ing data of 581 lipid metabolism relevant genes, and the 296 patients with CAD were classified into three subgroups 
(NMF1, NMF2, and NMF3). Subjects in subgroup NMF2 tended to have an increased severity of CAD. The CAD index 
and age of group NMF1 were similar to those of group NMF3, but their intrinsic biological characteristics exhibited 
significant differences. In addition, weighted gene coexpression network analysis (WGCNA) was used to determine 
the most important modules and screen lipid metabolism related genes, followed by further analysis of the DEGs in 
which the significant genes were identified based on clinical information. The progression of coronary atherosclerosis 
may be influenced by genes such as PTGDS and DGKE.

Conclusion:  Different CAD subgroups have their own intrinsic biological characteristics, indicating that more person-
alized treatment should be provided to patients in each subgroup, and some lipid metabolism related genes (PDGTS, 
DGKE and so on) were related significantly with clinical characteristics.
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Introduction
Coronary artery disease (CAD) is a major cause of both 
death and disability worldwide and is responsible for 
more than one-third of all deaths in individuals over the 
age of 35 [1–3]. CAD is an ischaemic heart disease caused 
by lipid deposition in the blood vessel wall and the for-
mation of atherosclerotic plaque, which leads to lumen 
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stenosis and reduction in the myocardial blood supply. 
Once the plaque is ruptured, it quickly blocks the blood 
vessels, resulting in a severe shortage of blood supply to 
the myocardial tissue and then to myocardial ischaemic 
necrosis, resulting in a series of secondary lesions, the 
most serious of which is acute myocardial infarction [4].

As with most complex diseases, the risk of CAD is 
affected by the interaction of genetic and lifestyle factors. 
It has been reported that more than half of the risk of 
CAD is associated with dyslipidaemia, and the increase 
in major blood lipid indicators is closely related to the 
occurrence of cardiovascular risk events [5]. Lipid metab-
olism pathways might be an indicator of increased sever-
ity. From genome‐wide association studies (GWASs), 
several genetic variants have been found to be closely 
related to CAD [6, 7], and CAD is highly heritable with 
genetic risk accounting for 40% to 60% of the suscepti-
bility to CAD [8, 9]. However, our ability to understand 
the molecular basis of CAD remains limited [8]. In this 
regard, it is necessary to address the association of lipid 
metabolism pathways in candidate genomes with CAD 
development.

Unlike previous the most studies, which only paid 
attention to the differences between normal controls and 
CAD cases, this study mainly focused on the differen-
tially expressed genes between CAD cases. This will help 
to reveal the heterogeneity between patients and predict 
clinical endpoints. It will also contribute to the manage-
ment of patients. CAD patients were classified according 
to lipid metabolism related genes to deepen the under-
standing of the molecular mechanism of CAD, and deter-
mine the key genes and associated signalling pathways 
related to CAD, which could play essential roles in gene 
therapy.

Materials and methods
Data collection
Two datasets (GSE1228 [10] and GSE20686 [11]) were 
fetched from the Gene Expression Omnibus (GEO) data-
base (https://​www.​ncbi.​nlm.​nih.​gov/​geo/). GSE12288, 
including 222 samples from 112 healthy controls and 110 
CAD cases, provided the Duke CAD index(CADi) [12] of 
CAD patients, which is an assessment of the severity of 
CAD. In addition, GSE20686 was composed of GSE20680 
and GSE20681, which involved 195 and 198 samples, 
respectively. This study used the R/Bioconductor pack-
age GEO query [13] to extract GEO objects. The GEO 
objects, including the gene expression matrixes and clini-
cal information, were returned by the getGEO function.

Removal of batch effects
To obtain a larger cohort of CAD cases and compare 
samples among different cohorts, it is necessary to 

correct the batch effects among the three objects firstly. 
The “sva” package [14, 15] in R is often used to identify, 
estimate and remove the variation produced in high-
throughput gene expression microarray experiments to 
eliminate batch effects. In this study, in the R language 
environment, Using the "ComBat" function in the "SVA" 
package, batch effects were processed. After batch cor-
rection was completed, principal component analysis 
(PCA) was performed to assess whether the batch effects 
were eliminated.

Differentially expressed genes (DEGs) screening
In this study, 581 lipid metabolism related genes 
(LMRGs) were downloaded from the Molecular Signa-
tures Database website (https://​www.​gsea-​msigdb.​org/​
gsea/​msigdb/​index.​jsp).​The advantage of linear models 
for microarray data (limma) is that the linear model is 
used to analyse the experiment as a whole, and research-
ers can adjust multiple influencing factors or individual 
factors. The linear model can study the dependence 
between variables by using multiple variables as covari-
ates, and the adoption of linear models for analysing 
differential gene expression [16]. A limma package in R 
was used to screen DEGs between CAD cases and nor-
mal samples based on LMRGs and this study considered 
|log2fold change (FC)|> 1 and Franklin Delano Roosevelt 
value < 0.05 as the thresholds for selecting the significant 
DEGs [16].

Functional enrichment analysis
Metascape (http://​metas​cape.​Org), a free analysis and 
gene annotation resource that helps biologists under-
stand one or multiple gene lists, integrates many authori-
tative databases such as DrugBank, Gene Ontology (GO), 
UniProt and Kyoto Encyclopedia of Genes and Genomes 
(KEGG), which not only allows complete biological func-
tion annotation and enrichment analysis, but also facili-
tates protein network analysis and drug reaction analysis. 
At the same time, the data of the platform is updated very 
frequently, which ensures the reliability and relevance of 
the data in the database [17]. Terms with ≥ 3 enriched 
genes and a P value < 0.01 were defined as significant and 
classified into clusters according to their similar mem-
bership degree. The most enriched term within a cluster 
was chosen as the one to represent the cluster.

PPI (protein–protein interactions) network construction
The Search Tool for the Retrieval of Interacting Genes 
(STRING) database (version 11.0; www.​string-​db.​
org) [18], the most commonly used online tool for PPI 
network analysis in the biomedical field, was used to 
develop the PPI network of DEGs. Moreover, the interac-
tion score was defined as more than 0.4. Finally, the PPI 
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network was visualized by using the Cytoscape software 
[19].

Identification of CAD subgroups
A previously reported list of 581 LMRGs was prepared 
for nonnegative matrix factorization (NMF) clustering 
[20]. The NMF method extracts the biological correla-
tion coefficient of the data in the gene expression matrix, 
organizes the genes and samples, grasps the internal 
structural characteristics of the data, and then groups the 
samples, and this method is widely used in disease typ-
ing. Unsupervised NMF clustering was achieved through 
the R package “NMF” on the meta-dataset [21]. The k 
values at which the cophenetic curve drops fastest were 
selected as the optimal number of clusters [22].

Clinical characterization of the three subgroups
A pairwise proportion test was used to compare the pro-
portion of males in the subgroups. In addition, the dif-
ferences in age and CADi between the subclasses were 
tested by pairwise Wilcoxon’s rank‐sumtest.

Specific upregulated genes in each subgroup
By comparing the patients in a specific subgroup with 
those in every other subgroup, subgroup-specific up-
regulated genes were identified. This used Wilcoxon’s‐
sum rank test to analyse differential expression with the 
thresholds absolute difference of means > 0.2 and Benja-
mini‐Hochberg adjusted p < 0.05.

Using WGCNA to screen disease‑related modules 
and genes
In order to assess lipid metabolism related gene expres-
sion, weighted gene coexpression network analysis 
(WGCNA) was implemented. WGCNA is a well-devel-
oped and widely used systematic biological algorithm 
[23]. It constructs a scale-free network on the basis of the 
relation matrix and constructs the topological overlap 
matrix. Then, according to the degree of topological dif-
ference, the genes with strong coexpression relationships 
were divided into different gene modules, which were 
investigated as a whole, and trait (phenotypic) informa-
tion was further introduced to explore the correlation 
between the eigengenes of each module and the disease 
status, Finally, enrichment analysis, core gene screening 
and other methods to determine the key signalling path-
ways or key genes related to traits [24].

DEGs screening based on genes in modules
After selecting the module with the highest correlation 
with the disease, this study analysed the DEGs within the 
module further. This study calculated the P value of genes 
and the adjusted P value, which were used by the t test 

method and Benjamini and Hochberg’s method, respec-
tively. An adjusted P-value < 0 0.05 between two groups 
was set as the selection criterion to screen out DEGs.

Results
Characteristics of coronary artery disease subjects
A total of 615 samples were included in this research, and 
according to the degree of coronary artery stenosis, the 
patients were divided into a control group(luminal steno-
sis of < 50%) and a case group(≥ 50% stenosis in ≥ 1 major 
vessel) (Table 1).

Removal of the batch effect
To eliminate batch effects between the different datasets, 
the ComBat method was applied. In the principal com-
ponent analysis diagram before the cross‐platform stand-
ardization, the sample scores of the three batches were 
distinguished (Fig.  1A). In contrast, after batch effect 
correction, the samples of the three batches were mixed 
together (Fig.  1B), indicating that the batch effect was 
eliminated.

Identification of DEGs and functional enrichment analysis
DEGs were identified using the R package “limma”. The 
distinguishable LMRG mRNA expression between CAD 
samples and healthy controls is displayed by heatmap 
visualization in Fig. 2A, including 51 DEGs. As shown in 
Fig. 2B, C, the KEGG pathway of the genes was found to 
be mainly enriched in “metabolism of lipids”, “fatty acid 
metabolism”, “ynthesis of PA”, “triglyceride catabolism” 
and “activation of gene expression by SREBF(SREBP)”. 
Additionally, GO analysis showed that the genes were 
mainly enriched in “lipid biosynthetic process”, “organic 
hydroxy compound metabolic process”, ” lipid catabolic 
process”, ”lipid modification”, ”phosphatidylinositol meta-
bolic process” and so on.

PPI network
As a result of removing the isolated nodes, the PPI net-
work consisted of 74 edges and 51 nodes (Fig.  2D). 
Several genes were identified as hub genes in the PPI 

Table 1  Cohorts and sample information included in this 
research

Cases: Patients with ≥ 50% stenosis in ≥ 1 major vessel;

Controls: Patients with luminal stenosis of < 50%

Cohort Control Case Total

GSE12288 112 110 222

GSE20680 108 87 195

GSE20681 99 99 198

Total 319 296 615
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network, including ACSL1, AGPAT1, AGPAT2, ALOX5, 
CEPT1 and LPCAT4. In the network, there were 8 nodes 
connected to AGPAT1, which had the highest degree of 
connectivity.

NMF identifies three subclasses in CAD
The 581 previously reported LMRGs were selected as the 
foundation of NMF analysis. The meta-dataset compris-
ing 296 CAD samples from GSE12288, GSE20680 and 
GSE20681 was classified based on the expression profile 
of LMRGs using NMF consensus clustering. The optimal 
value of k was determined by calculating the cophenetic 
correlation coefficient (Fig.  3A), and after comprehen-
sive consideration, the optimal number of clusters was 
selected as k = 3. The heatmap still maintained a clear 
boundary, indicating that the sample had stable and 
robust clustering (Fig. 3C).Three distinct molecular sub-
classes were designated NMF1, NMF2, and NMF3, with 
105, 97, and 94 cases respectively (Table  2), which had 
different gene expression patterns.

To describe the clinical features of the subgroups, the 
age, CADi and sex were studied for CAD cases of the 
GSE12288 dataset. In terms of age, there was no signifi-
cant difference between the groups. Moreover, As com-
pared to subgroups NMF2 and NMF3, subgroup NMF1 
had a lower proportion of males. In addition, subgroup 
NMF2 had a higher CADi than subgroups NMF3. How-
ever, no significant differences were found between sub-
groups NMF1 and NMF3 in CADi. The CADi of the 
NMF2 group seemed to be higher than that of the NMF1 
group, but the difference was not significant, which dem-
onstrated that cases in NMF2 subgroup may have had 
more severe CAD.

To confirm the subgroup assignments, PCA was 
performed to reduce the dimension of traits, and the 

subgroup designations were in accordance with the 
consensus matrix heatmap (Fig. 4A), indicating that the 
three different molecular subgroups of CAD had dis-
tinct gene expression patterns. To analyse all the differ-
entially expressed genes, By using the limma package, 
specific upregulated genes were identified, as shown in 
the Venn diagram, and 1648, 1000, and 867 genes were 
specifically upregulated in subgroups NMF1, NMF2, and 
NMF3, respectively (Fig.  4B, C). As shown in Fig.  4D-I, 
enrichment analysis of specific up-regulated genes was 
performed in each group. Genes specifically upregu-
lated in the NMF1 subgroups were mainly enriched in 
“chemical synaptic transmission”, “circulatory system 
process”, “NABA matrisome associated”, “cellular com-
ponent morphogenesis” and “visual perception”. Genes 
specifically upregulated in subgroups NMF2 were sig-
nificantly enriched in “regulated exocytosis”, haemosta-
sis”, “regulation of vesicle-mediated transport”, “cytokine 
signalling in immune system”, “transmembrane receptor 
protein tyrosine kinase signalling pathway”. Genes spe-
cifically upregulated in subgroup NMF1 were found to 
be enriched in “metabolism of RNA”, “HIV infection”, “cell 
cycle”, “adaptive immune system” and “cellular responses 
to stress”.

WGCNA modules and module‑trait analysis
According to the standard of the scale-free network, 
this study selected three as the weighting coefficient 
β value (Fig.  5A, B), making the correlation coeffi-
cient between the logarithm of the node connectiv-
ity (log (k)) and the logarithm of the probability of 
the node log ((p (k))) greater than 0.9. The number 
of genes in each gene module was more than 30, and 
three modules were identified by the dynamic shearing 
method (Fig. 5C). Moreover, to research the relation of 

Fig. 1  Principal component analysis (PCA) shows the degree of similarity between samples through cluster analysis. The closer the spatial distance 
of different samples was, the smaller the difference between samples was. A Before batch-effect removal. B After batch-effect removal



Page 5 of 12Liao et al. Lipids in Health and Disease           (2022) 21:87 	

Fig. 2  Identification of differentially expressed genes (DEGs), functional enrichment analysis and protein‒protein interaction (PPI) network of DEGs. 
A The distinguishable mRNA expression between CAD samples and healthy controls is displayed by heatmap visualization. B Coloured by P values, 
heatmap of enriched terms across input gene lists. C Coloured by cluster ID, where nodes that have the same cluster ID are relatively close to each 
other. D Protein‒protein interaction network of 51 differentially expressed LMRGs. E Correlation heatmap showing the coexpression patterns of the 
51 differentially expressed LMRGs in CAD cases
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WGCNA modules and clinical traits, this study calcu-
lated the corresponding p‐values and correlation coeffi-
cients among groups, age, CADi or sex and eigengenes 
of each module. The results showed that the three mod-
ules were significantly associated with the group traits. 
Turquoise module was significantly relevant to CADi 
and age, indicating that these lipid metabolism related 
genes in the modules may be more highly expressed in 
older CAD cases and lead to more severe CAD.

Fig. 3  Identification of CAD subgroups using NMF consensus clustering and the comparison of clinical features between the subgroups. A, B NMF 
clustering using 581 lipid metabolism related genes. Cophenetic and dispersion correlation coefficients for k = 2–5 are shown. C The heatmap 
shows the consensus matrix with a cluster count of 3. When k = 3, the heatmap maintains clear boundaries, indicating stable clustering for the 
cases. D Age of each subgroup. E CAD index of each subgroup. F Proportion of males in each subgroup

Table 2  Number of cases in each subgroup

Subgroup NMF1 NMF2 NMF3 Total

GSE12288 50 21 39 110

GSE20680 24 37 26 87

GSE20681 31 39 29 99

Total 105 97 94 296
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Screening of DEG based on genes the turquoise module
According to age, cases were divided into two groups 
(low age group: < 50 years; high age group: ≥ 50 years). 
Genes, such as PDGTS, HSDB3D1 and CYP2C8 were 
highly expressed in the high age groups (Fig.  6A, B). 
Taking CADi = 48 as the cut-off value (Fig.  6C, D), the 

patients were divided into a low CADi group (CADi < 48) 
and a high CADi group (CADi ≥ 48). Thirteen genes 
were upregulated in the high CADi group, DGKE was 
the most significant, and 4 genes were upregulated in the 
low CADi group. Finally, as shown in Fig. 6E, F, 16 genes, 
including TXNRT1 and PDGTS, were highly upregulated 

Fig. 4  Principal component analysis (PCA) and the expression patterns of upregulated genes specific to subgroups. A PCA supported the 
classification into three CAD subgroups. B Venn diagram of upregulated DEGs from the intersection of the three subgroups. C Heatmap 
visualization of specific upregulated genes in each CAD subgroups. D, F, H Coloured by P values, heatmap of enriched terms across input gene lists 
of NMF1, NMF2, and NMF3, respectively. E, G and I are coloured by cluster ID, where nodes that have the same cluster ID are generally close to each 
other
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Fig. 5  Weighted gene coexpression network analysis. The correlation coefficient (R2) (A) and mean connectivity (B) scatter diagram corresponding 
to different P values. C Module eigengene dendrogram. The vertical axis represents the degree of topological difference between genes, and the 
farther the distance on the vertical axis, the greater the degree of topological difference between genes, meaning the weaker the coexpression 
relationship; the horizontal axis represents different modules, and the colour represents a module. D The module-character correlation heatmap 
between the modules and four clinical traits. Four distinct qualities are represented by the horizontal axis, while various gene coexpression modules 
are shown by the vertical axis. The colour in each cell in the graph indicates the correlation between the corresponding module and the character. 
Darker shades of red indicate stronger positive correlations. Deeper shades of green indicate stronger negative correlations. A correlation number is 
shown in each cell, and the significance of the correlation(p) is shown in parentheses below
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Fig. 6  Volcano plots and heatmaps of differentially expressed genes (DEGs). DEGs are shown in volcano plots and heatmaps based on the 
subgroups of low- and high-age (A, B), low- and high-CADi (C, D) and male and female (E, F) CAD patients
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in the male group. Moreover, PLEKHA4, HSD17B7 and 
so on were upregulated in the female group.

Discussion
In the current study, the batch effect from different data-
sets were successfully removed, and this research inves-
tigated the expression of 581 lipid metabolism genes in 
normal controls and CAD cases from three GEO data-
sets. Moreover, to identify CAD subgroups associated 
with lipid metabolic prognosis and processes, for the first 
time, this research divided 352 CAD patients into three 
groups (NMF1, NMF2 and NMF3) based on the lipid 
metabolism genes screened from previous publications. 
The results indicate that cases in subgroup NMF2 had 
more severe CAD. In addition, As shown by WGCNA, 
the turquoise module plays an important role in CAD. 
In general, this study investigated the lipid metabolic 
landscape of CAD and found that some lipid metabolism 
related genes (PDGTS, DGKE and so on) were signifi-
cantly related to clinical characteristics.

At present, there are many theories about the occur-
rence of coronary atherosclerosis, including the lipid 
infiltration theory, smooth muscle cell cloning theory, 
thrombosis theory, and endothelial injury response the-
ory [25, 26]. The endothelial injury reaction indicates 
that the lipid peroxidation stress reaction and inflam-
matory reaction induced by various risk factors cause 
damage to the structure of endothelial cells, which leads 
to an inflammatory-fibroproliferative reaction and dam-
ages the function of endothelial cells [27]. Coronary ath-
erosclerosis is not only a chronic inflammatory injury 
process but also a lipid accumulation and lipid peroxida-
tion stress process in which a large number of lipid per-
oxidation stress factors are involved [28]. Therefore, lipid 
metabolism disorders play an important role in endothe-
lial cell injury, so it is necessary and important to investi-
gate the relationship between lipid metabolism genes and 
CAD.

According to the expression of lipid metabolism-
related genes, CAD cases were further divided into three 
subgroups, and cases in distant subgroups showed dif-
ferent clinical characteristics and gene expression pro-
files. For instance, subjects in subgroup NMF2 tended to 
have an increased severity of CAD. DEGs of NMF2 were 
mainly enriched in regulation exocytosis, haemostatic, 
inflammatory mediators and vesicle-mediated transport. 
In CAD, the production of thrombin and lipid media-
tors leads to exocytosis of Weibel-Palade bodies, causing 
recruitment of platelets and leukocytes and fibrin deposi-
tion, which can induce further exocytosis of endothelial 
cells [29, 30]. Researching the mechanism of endocy-
tosis in endothelial cells may help us to understand the 
recruitment of platelets and leukocytes and thrombosis. 

In addition, extracellular vesicles released from platelets, 
erythrocytes, endothelial cells and leukocytes transport 
much biological information to change the pathophysi-
ological processes of CAD [31]. Moreover, the CADi 
and age of the NMF1 group were similar to those of the 
NMF3 group, but they showed a great deal of difference 
in their intrinsic biological characteristics. Unlike the 
genes of the NMF1 group, which are mainly involved in 
the regulation of transport, those in the NMF3 group are 
highly expressed in terms of the immune system. A previ-
ous study reported that individuals infected with human 
immunodeficiency virus (HIV) are twice as likely to have 
an acute myocardial infarction and stroke as people with-
out HIV infection [32]. Apart from traditional risk fac-
tors, traits associated with HIV infection, including low 
CD4 + T-cell count, inflammatory response associated 
with HIV infection and some antiretroviral therapies, are 
independently related to cardiovascular disease [33]. The 
pathogenesis of HIV infection complicated with CAD is 
very complex and poorly understood, which is probably 
the result of the interaction of these traditional and non-
traditional cardiovascular risk factors through different 
links in the process of chronic infection. Nevertheless, 
further study is needed to determine the exact mecha-
nisms underlying HIV-related CAD.

To comprehensively investigate the relationship 
between clinical characteristics and lipid metabolism 
genes in the turquoise module. DEG screening was per-
formed. The PTGDS expression level increased in both 
the older and male groups. PTGDS catalyses the conver-
sion of prostaglandin H2 to prostaglandin D2, which is an 
effective platelet aggregation inhibitor [34]. PTGDS can 
restrain vascular smooth muscle cell proliferation and 
migration [35, 36]. Rezaee et  al. reported that PTGDS 
overexpression is thought to be a negative compensa-
tory reaction to the inflammatory events elevated by 
prostaglandins because of its anti-inflammatory proper-
ties [37]. In addition, the changes in the expression levels 
of PTGDS are opposite to the expression levels of miR-
520 [37]. Therefore, this research suggested that PTGDS 
is a circulating marker for cardiovascular injuries and 
the severity of CAD. Moreover, DGKE was upregulated 
in the high CADi group, and DGKE had high selectiv-
ity for diacylglycerol (DAG) containing arachidonic acid 
and may terminate signals transmitted by arachidonoyl-
DAG or contribute to the synthesis of phospholipids with 
specific fatty acid compositions. DGKE potentially alters 
LDL-C metabolism through its effects on DAG levels 
[38]. However, few studies are available on the function 
of DGKE, further research and experimental confirma-
tions are needed to verify these findings.
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Comparisons with other studies and what does the current 
work add to the existing knowledge
There are two new findings from the current study: a) a 
new CAD classification was established based on the 
gene expression profile of lipid metabolism genes. and 
different CAD subgroups have their own intrinsic bio-
logical and clinical characteristics; b) this study found 
that some lipid metabolism related genes (PDGTS, 
DGKE and so on) were related significantly with clinical 
characteristics.

Study strengths and limitations
This research applied nonnegative matrix factorization to 
reveal molecular subgroups in CAD based on lipid meta-
bolic genes and furthers the understanding of the genetic 
diversity of CAD. This study, however, had some limita-
tions. First, this research only focused on several major 
enrichment results, possibly neglecting potential genes 
related to CAD. Second, this study lacked experimental 
verification. Further experiments are needed to validate 
these findings.

Conclusion
In conclusion, cases of CAD were classified from the 
lipid metabolic perspective, and different subgroups may 
have their own intrinsic biological characteristics, the 
classification may contribute to predicting the progress 
and prognosis of CAD cases and personalized thera-
pies. Furthermore, PTGDS and DGKE may have crucial 
roles in the progression of CAD atherosclerosis. In addi-
tion, PTGDS may be a circulating marker for cardiovas-
cular injuries and the severity of CAD. The findings of 
this study can provide new insights into CAD therapy 
and contribute to further understanding of its molecular 
mechanism.
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