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Abstract: Parkinson’s disease (PD) is a neurodegenerative disorder that manifests with rest tremor,
muscle rigidity and movement disturbances. At the microscopic level it is characterized by formation
of specific intraneuronal inclusions, called Lewy bodies (LBs), and by a progressive loss of dopamin-
ergic neurons in the striatum and substantia nigra. All living cells, among them neurons, rely on Ca2+

as a universal carrier of extracellular and intracellular signals that can initiate and control various
cellular processes. Disturbances in Ca2+ homeostasis and dysfunction of Ca2+ signaling pathways
may have serious consequences on cells and even result in cell death. Dopaminergic neurons are
particularly sensitive to any changes in intracellular Ca2+ level. The best known and studied Ca2+

sensor in eukaryotic cells is calmodulin. Calmodulin binds Ca2+ with high affinity and regulates the
activity of a plethora of proteins. In the brain, calmodulin and its binding proteins play a crucial
role in regulation of the activity of synaptic proteins and in the maintenance of neuronal plasticity.
Thus, any changes in activity of these proteins might be linked to the development and progression
of neurodegenerative disorders including PD. This review aims to summarize published results
regarding the role of calmodulin and its binding proteins in pathology and pathogenesis of PD.

Keywords: Ca2+- signaling; Ca2+ homeostasis; calmodulin; calmodulin binding proteins; calcineurin;
calmodulin kinase II; Parkinson’s disease

1. Introduction

Parkinson’s disease (PD) is an age-related neurodegenerative disorder second in preva-
lence to Alzheimer disease (AD). PD manifests with rest tremor, muscle rigidity sometimes
coupled with intense pain and with movement disturbances such as postural disabilities
and gait disturbance. Non-motor features of PD include pain and sensory phenomena,
anxiety and depression, autonomic dysfunction, cognitive impairment and dementia. It is
a progressive disease, with symptoms aggravating with time. A characteristic histopatho-
logical feature of the affected brain areas of patients with PD or other synucleinopathies
is the presence of specific inclusions such as Lewy bodies (LBs) and Lewy neurites (LNs)
which contain mainly an aggregated form of α-synuclein [1]. The major characteristic of
α-synuclein is its remarkable conformational plasticity [2]. The ability of α-synuclein to
adopt toxic conformations might be due to the deficiency in the protein folding machinery
that includes chaperones/co-chaperones or inadequate degradation of misfolded protein
by the ubiquitin-proteasome system or the autophagy-lysosomal pathway. Thus, proper
folding and degradation of α-synuclein are crucial factors for preventing accumulation
of toxic intracellular inclusions [3]. Interestingly, it was found that mutated α-synuclein,
present in patients with an early familial form of PD, is more prone to aggregation [4].

Appearance of motor symptoms in PD is attributed to loss of dopaminergic neurons
in the striatum and substantia nigra. Usually, these symptoms develop when 70–80% of
neurons are destroyed [5]. In turn, non-motor symptoms are a gradual consequence of
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progressive neurodegenerative changes in the brain [6]. There are multiple risk factors
that increase the chance for developing PD. To them belong ageing or presence of muta-
tions in genes encoding PD-related proteins such as α-synuclein, parkin, PINK1, DJ-1 or
LRRK2 [7–11].

Calmodulin (CaM), the best studied Ca2+-binding protein, is abundantly expressed
in the brain. Particularly high levels of this protein are observed in postsynaptic mem-
branes, postsynaptic densities and synaptic vesicles [12]. Of note, expression of CaM is
up-regulated in response to the increase in intracellular Ca2+ concentration ([Ca2+]i). For
instance, it was shown that CaM expression was higher in cells treated with rotenone, a
known inhibitor of mitochondrial complex-I that increases [Ca2+]i and triggers apopto-
sis [13]. CaM regulates the activity of a plethora of proteins, called calmodulin binding
proteins (CaMBPs) [14]. In the brain, CaMBPs play a crucial role in the regulation of the
activity of synaptic proteins and in the maintenance of neuronal plasticity. For that reason,
CaMBPs have often been linked to the neurodegenerative disorders such as PD [15]. In
this review, based on published data, we describe the potential involvement of CaM and
selected CaMBPs (Figure 1) in pathology and pathogenesis of PD.
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2. Ca2+ Signaling and CaM

All living cells rely on Ca2+ as a universal carrier of extracellular and intracellular
signals that can ignite a plethora of cellular processes [16,17]. Ca2+ enters the cell along a
steep concentration gradient, through various types of plasma membrane Ca2+ channels
and can be removed from the cytoplasm against the gradient thanks to the action of
the Na+/Ca2+ exchanger (NCX), plasma membrane (PMCA) and endoplasmic reticulum
(SERCA) Ca2+-ATPases, and the mitochondrial Ca2+ uniporter (MCU). Ca2+ accumulated
in the mitochondria and endoplasmic reticulum (ER) can be released into the cytoplasm via
the mitochondrial Na+/Ca2+ exchanger (NCLX) and inositol-1,4,5-tris-phosphate receptor
(IP3R) or ryanodine receptor (RyR) channels. Other types of channels and ATPases, for
example in the Golgi or lysosomal membranes, are also part of the cellular Ca2+ transport
system [16].

Dysfunction of Ca2+ signaling may have serious consequences and even result in
cell death. Dopaminergic (DA) neurons are especially vulnerable to any disturbances in
Ca2+ homeostasis because, due to their pacemaking activity mediated by the L-type Cav1.3
channels, they experience regular Ca2+ fluxes but have poor Ca2+ buffering capacity [18].
Studies performed on animals indicate that neurons in the substantia nigra are much more
vulnerable to neurodegeneration than, for example, striatal spiny neurons, in which the
Cav1.3 channels are only episodically activated [19]. Indeed, increased [Ca2+]i in substantia
nigra neurons was one of the earliest observations in PD brains [20]. Furthermore, it has
now become obvious that many proteins implicated in PD are involved in controlling
cellular Ca2+ fluxes and that their dysfunction caused by mutations results in serious
disturbances in [Ca2+]i [21]. For example, it was shown that mutations in α-synuclein
enhanced formation of α-synuclein oligomers, which then integrated into the plasma
membrane and facilitated Ca2+ entry into primary neurons and astrocytes [22]. Thus,
disturbances in [Ca2+]i observed in neurons of PD brain may then affect Ca2+ signaling
pathways and cell functioning.
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The major Ca2+ sensor in eukaryotic cells is CaM. It is a ubiquitous low molecular
weight (16.7 kDa) protein, highly conserved within the plant and animal kingdom. In
mammals, there are three genes encoding CaM, namely, CALM1, CALM2 and CALM3,
which differ only in the non-coding regions [23]. CaM belongs to the EF-hand protein
superfamily [24]. It is composed of two, N- and C-terminal, globular domains or lobes, each
containing two EF-hand motifs that bind Ca2+ with high affinity (10−6–10−9 M), linked by a
highly flexible central linker domain. Upon Ca2+ binding, the helices in each EF-hand motif
undergo a major rearrangement that substantially alters conformation of the two lobes and
sets up the ground for a wide range of interactions. Moreover, due to high flexibility of
the linker domain, the two lobes can interact with CaM-binding domains located within a
variable distance, which contributes to the high number and versatility of CaMBPs [14].
Mechanistically, the interaction mediated by the two lobes of CaM can (1) link together
two domains within a single protein molecule and change its conformation and activity,
(2) bridge two protein molecules leading to dimerization or (3) bring together two different
proteins building a protein scaffold [25]. Functionally, CaM binding may either positively
or negatively modulate its target activity. Independently of the mode of interaction, CaM
serves as a universal intermediary protein through which the Ca2+ signal is transmitted to
numerous proteins and modulates a great number of cellular processes.

3. CaM-Regulated Ca2+ Homeostasis

CaM regulates several types of Ca2+ channels that provide Ca2+ influx into the cyto-
plasm. The list includes voltage-gated Ca2+ channels; NMDA glutamate receptors (NM-
DARs); Ca2+ permeable, non-selective transient receptor potential (TRP) channels; inositol
1,4,5-trisphosphate receptor (IP3R) channels that release Ca2+ from the ER and store op-
erated Ca2+ (SOC) channels responsible for the refilling of the ER Ca2+ stores. The pore
forming α1 subunit of the L-type voltage-gated Ca2+ channels has two CaM binding motifs.
The one located in the C-terminal part is occupied by apo-CaM while the second, present
in the N-terminal part of the molecule, interacts with the other lobe of CaM only in the
presence of Ca2+. Upon Ca2+ entry through the channel, CaM brings together the N- and
C-terminal regions of the α1 subunit and induces a conformational change that results in
channel closure [25]. In the case of NMDAR, CaM binds in a Ca2+-dependent manner to
the C-terminus of the NR1 subunit at two sites and induces inhibition of the Ca2+ flow. The
mechanism may involve reversible dimerization of two NR1 subunits, whereby the two
lobes of CaM would contact and bridge their C-termini [26]. Two CaM binding motifs were
also identified in TRPV1 although the bridging mechanism has not been confirmed [27]. In
the case of SOC channels, which are responsible for the major component of the Ca2+ influx
in many excitable and non-excitable cells, CaM interacts with the C-terminal cytoplasmic
domain of STIM1, a Ca2+ sensor protein located in the ER membrane, and disrupts its
interaction with Orai1, the pore forming component of SOC in the plasma membrane [28].
Of note, an earlier work identified Orai1 as a CaM-binding protein [29], so the regulation
might be, in fact, dual. Two CaM binding sites are also present in IP3R type 1. It is supposed
that, in analogy to voltage-gated channels, CaM binds to one of these sites in an apo-form
and, upon increase in [Ca2+]i, to the second one, bringing about a conformational change
in the channel subunit and its deactivation [30]. As evidenced above, Ca2+-induced bind-
ing of CaM leads to inhibition of Ca2+ influx, a phenomenon known as Ca2+-dependent
inactivation (CDI).

Regarding PD, many CaM-regulated Ca2+ channels seem to be implicated in this
pathology. As mentioned above, in dopaminergic neurons of the substantia nigra, the
L-type Ca2+ channels are responsible for the autonomous pacemaking Ca2+ influx. Of
note, L-type Cav1.3 channel expression was found to be higher in substantia nigra neurons
of deceased PD patients [19]. Moreover, an increase in the level of Cav1.2 and Cav1.3 α1
subunits was also detected in the substantia nigra of MPTP-treated mice [31]. Isradipine,
the L-type Ca2+ channel blocker, reduced motor impairment and prevented the loss of
dopaminergic neurons in the striatum and substantia nigra of those animals [31]. Although
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the effect of isradipine was shown in animal models, recent data did not confirm the
neuroprotective role of this drug in clinical studies. Such discrepancy might be due to
different concentrations of isradipine used in these experiments [32].

Other L-type Ca2+ channels, Cav1.2, were formerly considered to be functional only
in excitable cells like dopaminergic neurons or muscle cells; however, recently, this type of
channels has been found to function in microglial cells. Microglia in the brain play a major
role in immune response and, thus, might be involved in neurodegeneration observed in
PD. Activated microglia can exist in two stages, M1 and M2. The M1 stage, also called
neuroinflammatory, when NOS (nitric oxide synthase) and NF-κB (nuclear factor kappa-light-
chain-enhancer of activated B cells) pathways are activated, is responsible for production
of different pro-inflammatory factors such as tumor necrosis factor α (TNF-α), interleukin 1β
(IL-1β), interleukin 6 (IL-6), reactive oxygen species (ROS) or nitric oxide (NO). In the M2
stage, called neuroprotective, in which production of interleukin-4 (IL-4)/interleukin-13 (IL-13)
and interleukin-10 (IL-10)/tumor growth factor β (TGF-β) takes place, microglia facilitate
phagocytosis of cell debris and misfolded proteins, promote tissue repair and support
neuronal survival [33]. A recent study has demonstrated that Ca2+ antagonists enhanced
theneuroinflammatory M1 stage and inhibited the neuroprotective M2 stage. Furthermore,
these studies reported severe impairment of dopaminergic neurons accompanied by be-
havioral changes in microglia-specific Cav1.2 knock-down mice treated with MPTP. These
data prove detrimental effects of microglial Cav1.2 blockade in PD [34].

Regarding the involvement of other CaM-regulated Ca2+ channels in PD, the data
are still rather scarce. However, it was reported that dopamine depletion and L-DOPA
treatment led to redistribution an altered ratio of NMDAR subunits in striatal synapses
of both animal model and PD patient brains [35]. Moreover, in PD patients, a significant
increase in NMDA-sensitive glutamate binding in the striatum was also observed [36].
Expression of another channel, TRPC1, which serves as a component of SOC channels, was
reduced in the substantia nigra of mice that received intraperitoneal injections of MPPT
and in rat pheochromocytoma PC12 cells incubated with MPP+ [37]. Overexpression of
TRPC1 protected MPP+-treated PC12 cells against apoptosis and increased their survival
while TRPC1 knock-down had a contrary effect, probably due to depletion of the ER
Ca2+ store and induction of ER stress [38]. Other types of TRP channels, not involved in
SOCE, also seem to be implicated in PD [39]. With regard to STIM1, the reports are so far
contradictory. It was shown that STIM1 expression was unaltered in the substantia nigra
of PD patients and that STIM1 silencing decreased the viability of human neuroblastoma
SH-SY5Y cells [38]. However, STIM1 silencing in MPP+-treated PC12 cells resulted in
increased cell viability and prevented mitochondrial dysfunction [40]. IP3Rs play an
important role in maintaining Ca2+ homeostasis since in addition to Ca2+ release from ER,
they also participate in Ca2+ transfer between ER and mitochondria [41]. The expression
of IP3R type-1 in neurons of the cerebellum and motor cortex of rats with experimental
hemiparkinsonism was found to be higher than in control rats [42]. However, it was
shown that an inhibitor of RyR, 4-phenyl butyric acid (4-PBA), but not that of IP3R, was
able to attenuate the increase in [Ca2+]i observed in dopaminergic neurons treated with
6-hydroxydopamine (6-OHDA), an agent inducing parkinsonism [43]. The RyR inhibitor
also protected cells from apoptosis.

Another CaM target that regulates Ca2+ homeostasis is the plasma membrane Ca2+-
ATPase (PMCA). PMCA is an ATP-dependent ion pump that is responsible for Ca2+ efflux
from the cytoplasm [44]. When [Ca2+]i increases, PMCA is activated by CaM, acidic
phospholipids and protein kinases and by other means, e.g., dimerization, and its affinity
for Ca2+ increases (KD ≈ 100–200 nM). CaM binds to the C-terminal autoinhibitory domain
of PMCA and relieves the inhibition [45]. Regarding PD, it was demonstrated that in a
cellular model of this disease, in which primary midbrain neurons were treated with MMP+,
a significant downregulation of PMCA2 was observed [46]. In addition, downregulation of
PMCA2 rendered the cells more vulnerable to MPP+-induced toxicity, whereas PMCA2
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overexpression made these cells more resistant. However, to further elucidate the role of
PMCA in PD additional studies, including animal models, are required.

As evidenced above, increased expression of Ca2+ channels and downregulation
of PMCA are frequently reported in cellular and animal models of PD and both might
contribute to the increased [Ca2+]i observed in PD neurons. Thus, calmodulin, by pro-
viding a negative feedback regulation of Ca2+ channel activity and stimulating PMCA
activity, appears as a crucial player in sustaining Ca2+ homeostasis that is so essential for
neuronal survival.

4. CaM-Dependent Protein Kinase II and Its Substrates

One of the important CaM binding proteins in the brain is CaM-dependent protein
kinase II (CaMKII). At its basal state, CaMKII is locked in an inactive conformation through
the binding of a regulatory segment to its substrate binding site. Upon the influx of Ca2+,
CaM binds to CaMKII and induces its autophosphorylation/activation [47]. CaMKII is
highly concentrated in the postsynaptic density (PSD), and its activation by CaM is a
major event maintaining long-term potentiation (LTP), memory formation and neuronal
excitability [48,49]. Molecular modeling studies revealed that formation of disulfide bridges
in the CaMKII molecule, due to oxidative stress often prevailing in PD-damaged neurons,
leads to the loss of CaM-CaMKII interaction and to defective Ca2+_ signaling in neurons [50].
CaMKII can also be inactivated following dephosphorylation by PP1 phosphatase [51].
Selected CaMKII substrates potentially involved in PD pathology are shown in Figure 2.
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Experiments performed on mice treated with MPTP, a drug which selectively tar-
gets dopaminergic neurons in the substantia nigra, showed that reduction of CaMKII
activity was associated with cognitive deficit and learning disability in these mice [52,53].
Interestingly, these findings positively correlated with the results showing a decrease in
the level/activity of CaMKII substrate, tyrosine hydroxylase, a rate-limiting enzyme for
dopamine synthesis [54]. Moreover, it was shown that CaMKII antagonist, KN-93, reduced
autophosphorylation of the kinase and phosphorylation of tyrosine hydroxylase. Inhibition
of these two proteins caused a decrease in L-DOPA-induced dyskinesia and extracellular
dopamine efflux [55]. Notably, some other studies show that CaMKII activity is higher in
a rat model of PD and that its inhibition reverses deficits in synaptic function and motor
behavior [56]. CaMKII was also found to bind to dopamine D2 receptors in vitro and in
rat striatal neurons in which these receptors are expressed at a high level. Interestingly, an
increase in CaMKII-D2 receptor interaction in striatal neurons was observed in a rat model
of PD after chronic administration of L-DOPA [57].

Multiple evidence points that there is a link between pathological changes of the cholin-
ergic system (degeneration of cholinergic nuclei in the striatum) and motor symptoms in
PD, such as L-DOPA-induced dyskinesia. CaM-CaMKII is involved in this pathway since it
regulates, through phosphorylation, at least two components of this pathway, acetylcholine
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receptor and neurotrophin receptor p75 [58,59]. Interestingly, it was shown that inhibition
of CaMKII resulted in loss of BDNF-induced inhibitory cholinergic transmission [59].

CaMKII phosphorylates and activates a key enzyme involved in serotonin synthesis,
the tryptophan hydroxylase [60]. Interestingly, the activity of tryptophan hydroxylase was
reduced in serotonergic neurons of PD patients [61], which then, most probably, resulted in
non-motor psychiatric symptoms [62–66]. Based on these data, modulation of serotonin
dependent neurotransmission by specific drugs might be considered in preclinical and
clinical studies that aim at alleviating both motor and non-motor PD symptoms.

CaMKII also regulates the activity of adenosine A2A receptors (A2ARs) [67] that are
involved in glutamate and dopamine release. A2ARs belong to the superfamily of G-
protein-coupled receptors (GPCRs) which are abundantly expressed in the striatum, globus
pallidus, and substantia nigra. Moreover, they interact and co-localize with dopamine re-
ceptors. Interestingly, it was shown previously that combination of simultaneous activation
of dopaminergic receptors and inhibition of adenosine A2A receptors can improve mobility
of PD patients. In agreement with this finding are data showing that a selective antagonist
of adenosine A2AR, istradefylline (KW-6002), reversed the movement dysfunction and
had a neuroprotective effect in animal models of PD [68]. Istradefylline improved mobility
when used alone or when it was administered together with L-DOPA and dopamine recep-
tor agonists. Long-term treatment with L-DOPA triggers side effects such as dyskinesia
and abnormal involuntary movement in PD patients. Thus, to treat PD patients and reduce
L-DOPA side effects adenosine A2AR antagonists in combination with L-DOPA can be
applied. Quite recently, clinical trials on the potential use of istradefylline were completed
and, what is important, it was found that such therapy can be applicable in both moderate
and advanced stages of PD [69].

Another CaMKII substrate, deregulation of which might play an important role in
PD, is cyclin-dependent kinase 5 (Cdk5). It was found that in a mouse model of PD Cdk5
activates inflammasomes, cytosolic multiprotein complexes responsible for the activation
of pro-inflammatory responses [70]. Another study performed in a PD mouse model
demonstrated that specific inhibition of Cdk5, by adeno-associated virus serotype-9 (AAV9)
mediated Cdk5 inhibitory peptide (CIP), was protective against loss of dopaminergic
neurons in the substantia nigra. Importantly, treatment with this inhibitor resulted in
improved motor and anxiety-like symptoms in these mice [71]. Moreover, it was reported
that inhibition of Cdk5 activity enhanced CaMKII autophosphorylation/activation in
cultured neurons [72], which suggests that Cdk5 inhibitors can be considered as potential
drugs in the treatment of PD symptoms. However, to justify a prospective therapeutic
intervention aiming to normalize CaMKII activity and/or substrates in PD, further research
is needed.

5. Involvement of Other CaM Binding Proteins in PD

Calcineurin (CaN) is a Ca2+ and CaM–regulated phosphatase. CaN is highly expressed
in the mammalian brain, especially in neurons [73]. It is built of a catalytic subunit (CaNA)
and a Ca2+-binding regulatory subunit (CaNB) [74]. CaNA contains an autoinhibitory
domain and CaM-binding site. When [Ca2+]i is low, the autoinhibitory domain masks the
catalytic core and maintains CaN in an inactive state. Increase in [Ca2+]i and binding of Ca2+

to CaM and to CaNB waives the inhibition and leads to rapid activation of the phosphatase.
Neurodegeneration is characterized by activation of the CaN-NFAT signaling pathway and
by pro-inflammatory gene expression [75,76]. Regarding PD, activation of CaN was found
in brain at early stages of cognitive decline [77,78]. Similar changes in CaN activation were
also observed in corresponding animal models of aging and neurodegeneration [79]. In
turn, inhibition of CaN with the immunosuppressant drugs, tacrolimus and cyclosporine,
protected brain cells from neurotoxicity in experimental models of these diseases [80,81],
reduced neuroinflammation [82,83], improved the function of synapses [84], inhibited
cognitive loss [85] and could even extend lifespan [86].
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In vitro studies have shown that CaN interacts with α-synuclein, a main component
of LBs and that this interaction is mediated by Ca2+-CaM [87]. Moreover, it was found
that overexpression of α-synuclein activates the CaN-NFAT pathway in cell lines and
dopaminergic neurons, whereas inhibition of this pathway protects dopaminergic neurons
against α-synuclein-mediated toxicity [76]. This is in agreement with an in vivo study
showing that overexpression of α-synuclein in mice significantly promoted CaN activity
and subsequent nuclear translocation of NFAT transcription factor in dopaminergic neurons
of midbrain [76]. However, another study indicated that inhibition of CaM and CaN, with
genetic or pharmacological tools, shifts the α-synuclein-induced CaM-CaN cascade to a
protective mode. This may have mechanistic implications for activity of CaN and may
provide a therapeutic venue for the treatment of PD and other synucleinopathies [88]
(Figure 3).
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Small conductance Ca2+-activated K+ (SK) channels are another type of membrane
proteins regulated by CaM. Their activity results in membrane hyperpolarization and
reduced excitability and that is why they might serve as potential regulators of processes
dependent on the membrane currents, including neurotransmitter release [89]. At low
[Ca2+]i apo-CaM binds to the C-terminal part of a channel subunit with one of its lobes
while the other lobe binds to a site in another subunit upon increase in [Ca2+]i. Thus, CaM
confers Ca2+ sensitivity to the SK channel gating mechanism and the resultant dimerization
leads to channel activation [90]. Expression of SK channels, especially SK3 one, is high
in dopaminergic neurons of the substantia nigra. This expression was found to be lower
in rats infused with 6-OHDA into the striatum [91]. Blockade of SK channels showed
many promising effects both in cellular and in animal models [89]. For example, in hemi-
parkinsonian 6-OHDA lesion mouse model, SK channel inhibition by apamine protected
nigral dopaminergic neurons and improved motor performance [91]. However, protective
effects were also obtained with agonists of SK channels [89]. Adding to this discrepancy
is the failure of a clinical study involving SK channel inhibition [92], which suggests that
more information is needed before any therapeutical approaches can be considered.

An important enzyme activated by Ca2+-CaM is glutamate decarboxylase. It catalyzes
α-decarboxylation of L-glutamic acid to γ-aminobutyric acid (GABA). Glutamate decar-
boxylase is widely distributed in eukaryotes as well as prokaryotes, where it plays different
physiological functions. Regarding PD, a significant improvement in motor function was
observed in PD patients after adeno-associated virus (AAV)-glutamic acid decarboxylase
(GAD)-gene therapy. PET scans revealed a substantial reduction in thalamic metabolism
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that was restricted to the treated hemisphere, and a correlation between clinical motor
scores and brain metabolism in the supplementary motor area. Moreover, AAV-GAD-gene
therapy of the subthalamic nucleus of PD patients was safe and well tolerated [93].

One of the CaM binding proteins involved in a number of cellular processes is nitric
oxide synthase (NOS). The neuronal isoform of NOS (nNOS) is expressed in both immature
and mature neurons and requires Ca2+-CaM for its activity [94–96]. CaM functions as
a molecular switch, allowing electron transport from the C-terminal reductase domain
of NOS to its heme-containing N-terminal domain. Regarding PD, high levels of nNOS
and inducible NOS (iNOS) expression were observed in the substantia nigra and striatum
of PD patients and of experimental PD models [97]. Some other studies show that the
nNOS knockout mice are more resistant to MPTP-induced neurotoxicity compared with
wild-type animals [98]. This was confirmed by using the nNOS inhibitor, 7-nitroindazole.
Applying this agent protected neuronal cells against MPTP-induced neurotoxicity in animal
models [99,100]. Moreover, an overexpression of nNOS was reported in basal ganglia and
in the respiratory burst of circulating neutrophils of PD patients; at the same time, a
significant increase in NO production and protein tyrosine nitration were observed [101].
Based on these data it can be concluded that nNOS plays a key role in the pathogenesis of
PD and that antioxidant and anti-inflammatory agents could be considered for treatment
of this disease.

6. Conclusions

Parkinson’s disease (PD) is an age-related progressive neurodegenerative disorder
with symptoms aggravating with time. Appearance of PD symptoms is attributed to the
loss of dopaminergic neurons in the striatum and substantia nigra. Neuronal cell death
may be ascribed to increased [Ca2+]i, which is commonly observed in cells in various areas
of PD brain. Upon physiological increase in [Ca2+]i, a major Ca2+ sensor, CaM, interacts
with many CaMBPs, which are involved in Ca2+-homeostasis, intracellular Ca2+-signaling
pathways and other cellular processes. To CaMBPs belong different types of Ca2+channels,
plasma membrane Ca2+-ATPase and many enzymes, of which a kinase, CaMKII, and a
phosphatase, CaN, are of most importance. It might be assumed that under sustained Ca2+-
signaling, the activity of CaM is markedly enhanced and may lead to excessive activation
of CaMBPs with harmful consequences for different cell types, including neurons. Indeed,
experimental evidence suggests that, in most cases, inhibition of CaMBPs, by various
specific drugs brings about beneficial effects both in animal models of the disease and in
PD patients.

As it was described in this review, published data show that inhibition of CaM-
regulated proteins such as L-type Ca2+ channels, RyR receptors, SK channels or NOS may
protect dopaminergic neurons from apoptosis and improve motor function in mouse model
of PD. Moreover, it was shown that CaMKII antagonist caused a decrease in dyskinesia
and extracellular dopamine efflux in an experimentally induced PD model. Moreover,
drugs that inhibited CaMKII binding partners, to which belong tryptophan hydroxylase,
adenosine A2A receptor or Cdk5 kinase had a positive effect on dopaminergic cell survival.
Similarly, inhibition of CaM-activated phosphatase, CaN, protected brain cells from neuro-
toxicity, neuroinflammation and improved cognitive function in experimental models of
PD and other neurodegenerative diseases. All CaM binding proteins described in this work
and their function in norm and PD pathology are summarized in Table 1. Altogether, avail-
able results indicate that modulation of activity of various CaMBPs might be considered in
designing new therapies to treat PD patients.
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Table 1. Calmodulin binding proteins (CaMBPs) and their function in norm and PD.

CaMBP Norm PD Pathology Effect of Modification of Protein
Level/Activity

L-type channels Ca2+ influx
Increased expression in substantia
nigra neurons of deceased PD
patients [19].

CaV1.2 channel blocker protects
dopaminergic neurons exposed to rotenone
or MPTP [19,31].
CaV1.2 channel knock-down in microglia
impairs dopaminergic neurons in
MPTP-treated mice [34].

TRP channels Ca2+ influx
Reduced expression in the
substantia nigra neurons of PD
model [37].

Overexpression of TRPC1 protects
MPP+-treated PC12 cells against apoptosis
and increases their survival [38].

NMDARs
L-glutamate receptors,
mediate Ca2+ influx, role
in learning and memory.

Increase in NMDA-sensitive
glutamate binding in the striatum
of PD patients [36].
Redistribution and altered ratio of
NMDAR subunits in striatal
synapses of both animal model
and PD patient [35].

ND

IP3R/RyR
Ca2+ release from ER and
Ca2+ transfer from ER to
mitochondria.

Increased expression of IP3R in
cerebellum and motor cortex of
rat PD model [42].

RyR blockade attenuates Ca2+ overload,
preserves excitability and protects
dopaminergic neurons from apoptosis in
animal and cellular models of PD [43].

Orai1/STIM1 Replenishment of ER
Ca2+ stores.

STIM1 expression is unaltered in
the substantia nigra of PD
patients [38].

STIM1 silencing decreases viability of
human neuroblastoma SH-SY5Y cells [38].
STIM1 silencing in MPP+-treated PC12
cells prevents mitochondrial dysfunction
and improves cell viability [40].

PMCA Ca2+ efflux
Decreased PMCA2 expression in
a cellular PD model [46].

PMCA2 downregulation sensitizes cells to,
and upregulation protects from, MPP+
toxicity [46].

CaMKII

Maintaining long-term
potentiation (LTP),
memory formation and
neuronal excitability.

CaMKII activity is higher in a rat
model of PD [56].

CaMKII inhibition reverses deficits in
synaptic function and motor behavior in a
rat model of PD [56].
Reduction of CaMKII activity is associated
with cognitive deficit and learning
disability in mouse model of PD [52,53].

Involvement in dopamine
synthesis [54].

Increased interaction of
CaMKII-D2 receptor in striatal
neurons of a rat model of PD after
chronic administration of
L-DOPA [57].

CaMKII inhibition reduces of tyrosine
hydroxylase phosphorylation [55].

CaMKII mediates
cholinergic system by
regulation of acetylcholine
receptor and neurotrophin
receptor p75 [58,59].

ND
Inhibition of CaMKII results in loss of
BDNF-induced inhibitory cholinergic
transmission [59].

Activation of tryptophan
hydroxylase, a key
enzyme involved in
serotonin synthesis [60].

Activity of tryptophan
hydroxylase is reduced in
serotonergic neurons of PD
patients [61].

ND

Regulation of A2AR
activity [67]. ND

Inhibition of A2ARs reverses movement
dysfunction and is neuroprotective in
animal models of PD [68].
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Table 1. Cont.

CaMBP Norm PD Pathology Effect of Modification of Protein
Level/Activity

CaN
Maintaining neuronal
plasticity, long-term
potentiation (LTP),
memory formation.

CaN is activated in brain at early
stages of cognitive decline [77,78].

Inhibition of CaN protects brain cells from
neurotoxicity [80,81], reduces
neuroinflammation [82,83], improves the
function of synapses [84], inhibits cognitive
loss [85], and could extend lifespan [86].

CaN interacts with
α-synuclein [87].

Overexpression of α-synuclein activates
the CaN-NFAT pathway in cell lines and
dopaminergic neurons; inhibition of this
pathway protects dopaminergic neurons
against α-synuclein-mediated toxicity [76].
Inhibition of CaN moves the
α-synuclein-induced CaM-CaN cascade to
a protective mode. This may have
therapeutic implications for the treatment
of PD [88].

(SK) channels Neurotransmitter
release [89].

Lower expression in PD
models [91].

SK channel inhibition protects nigral
dopaminergic neurons and improves
motor performance in PD model [91].
SK channel activation has protective
effects [89].

Glutamate
decarboxylase

Decarboxylation of
L-glutamic acid to
GABA [93].

ND

Improvement in motor function in PD
patients after adeno-associated virus
(AAV)-glutamic acid decarboxylase (GAD)-
gene therapy [93].

NOS Learning, memory,
neurogenesis

High levels of nNOS and iNOS in
the substantia nigra and striatum
of PD patients and PD
models [97].
nNOS expression is increased in
basal ganglia and in the
respiratory burst of circulating
neutrophils of PD patients; a
significant increase in NO
production and protein tyrosine
nitration is observed [101].

nNOS inhibitor protects neuronal cells
against MPTP-induced neurotoxicity in
animal models [99,100].
nNOS knockout mice are more resistant to
MPTP-induced neurotoxicity compared
with wild-type animals [98].

ND—not determined.
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Abbreviations

A2AR, adenosine A2A receptor; [Ca2+]i, intracellular Ca2+ concentration; CaM, calmodulin;
CaMBPs, calmodulin binding proteins; CaMKII, calmodulin dependent protein kinase 2; CaN,
calcineurin; DA, dopaminergic; DLB, dementia with Lewy bodies; ER, endoplasmic reticulum;
GPCR, G protein coupled receptors; IP3R, inositol-1,4,5-tris-phosphate receptor; L-DOPA, l-3,4-
dihydroxyphenylalanine; LBs, Lewy bodies; LRRK2, leucine-rich repeat receptor kinase 2; LTP,
long-term potentiation; MCU, Ca2+ uniporter; MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine;
MPP+, 1-methyl-4-phenylpyridinium; NCX, Na+/Ca2+ exchanger; NCLX, mitochondrial Na+/Ca2+

exchanger; NFAT, nuclear factor of activated T-cells; NMDA, N-methyl-D-aspartate; NMDARs,
NMDA glutamate receptors; NCLX, mitochondrial Na+/Ca2+ exchanger, NOS, nitric oxide synthase;
6-OHDA, 6-hydroxydopamine; ORAI, Ca2+-release-activated calcium channel protein; PD, Parkin-
son’s disease; PMCA, plasma membrane Ca2+-ATPase; PP1, protein phosphatase 1; PSD, postsynaptic
density; ROS, reactive oxygen species; RyR, ryanodine receptor; SERCA, endoplasmic reticulum
Ca2+-ATPase; SOC channel, store operated Ca2+ channel; SOCE, store operated Ca2+ entry; STIM,
calcium signal transducer; TRP, transient receptor potential.
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