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How machine learning can help select capping
layers to suppress perovskite degradation
Noor Titan Putri Hartono 1, Janak Thapa1, Armi Tiihonen 1, Felipe Oviedo1, Clio Batali1, Jason J. Yoo1, Zhe Liu1,

Ruipeng Li2, David Fuertes Marrón1,3, Moungi G. Bawendi 1, Tonio Buonassisi 1✉ & Shijing Sun 1✉

Environmental stability of perovskite solar cells (PSCs) has been improved by trial-and-error

exploration of thin low-dimensional (LD) perovskite deposited on top of the perovskite

absorber, called the capping layer. In this study, a machine-learning framework is presented

to optimize this layer. We featurize 21 organic halide salts, apply them as capping layers onto

methylammonium lead iodide (MAPbI3) films, age them under accelerated conditions, and

determine features governing stability using supervised machine learning and Shapley values.

We find that organic molecules’ low number of hydrogen-bonding donors and small topo-

logical polar surface area correlate with increased MAPbI3 film stability. The top performing

organic halide, phenyltriethylammonium iodide (PTEAI), successfully extends the MAPbI3
stability lifetime by 4 ± 2 times over bare MAPbI3 and 1.3 ± 0.3 times over state-of-the-art

octylammonium bromide (OABr). Through characterization, we find that this capping layer

stabilizes the photoactive layer by changing the surface chemistry and suppressing

methylammonium loss.
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Perovskite solar cell (PSC) stability is still far less than the
~25 years required to enter the mainstream photovoltaic
(PV) market1, despite efficiencies reaching 25.2%2.

Improving environmental stability is a critical step. Recent studies
suggest that mixing low-dimensional (LD) perovskite with the
absorber improves the stability, but device performance suffers
because carrier transport is reduced due limited carrier mobility
through the LD material3–5.

In contrast, the capping-layer method improves poor carrier
transport by intercalating the 2D perovskite with conductive
organic materials. As a result, short-circuit current (JSC) recovers.
With improved surface passivation because of the capping layer,
the open-circuit voltage (VOC) increases, as does environmental
stability at ambient temperature with elevated (40–90%) relative
humidity (RH)6,7. The capping layer is formed by reacting
organic halides in a solvent with the 3D perovskite network
underneath, forming the LD perovskite network with intercalated
organics. The choice of organic halides is known to affect device
stability, however the relationship between structure and stability
has not been fully explored, in part because the parameter space is
vast8. Perovskite thin-film deposition with a range of organic
halides has been reported, including benzene rings/phenyl with
amine (e.g., phenylethylammonium iodide9–11, phenylethy-
lammonium bromide9,12, aniline iodide13,14, benzylammonium
iodide14, teophylline15, caffeine16), long carbon chains with
amine (e.g., n-butylammonium iodide17,18, n-octylammonium
iodide18), fluorous amine (e.g., 2‐(4‐fluorophenyl)ethylammo-
nium iodide19), branched amines (e.g., 1,8-octanediammonium
iodide20, diethylammonium bromide21, diethylammonium
iodide21, n-hexyl trimethyl ammonium bromide6), and large,
complex structures (e.g., Eu-porphyrin complex22). Photovoltaic
devices based on these materials demonstrated improved stability
and efficiency than their non-capped controls under various
environmental test conditions. However, little is known about
which specific chemical properties among the different types of
organic halides control the improved stability of the capped
materials.

Inspired by recent studies on inverse design of polymers and
inorganic solids23–25, as well as on using machine learning to
understand PSCs’ properties26–28, we present a machine-learning
framework to investigate LD organic-inorganic perovskites ser-
ving as a capping layer for MAPbI3. We elucidate which prop-
erties of capping layers are responsible for enhancing stability,
and the underlying mechanisms whereby they work. With this
information, we can generate materials-design guidelines.

Results
Study overview and objectives. We consider 21 organic salts as
capping-layer materials, with different sizes, branches, and che-
mical properties, including both iodine and bromine-based salts.
Capping layers are deposited using spin coating atop 300 nm
thick films of methylammonium lead iodide (CH3NH3PbI3, or
MAPbI3)29. The poor MAPbI3 stability guarantees a strong
baseline degradation rate, and strong signal-to-noise for our
study. (In principle, the framework developed in this study can be
extended to different perovskite absorber compositions, including
mixed-cation and -anion materials that gained popularity in
recent years.) For each film, 12 different processing conditions are
explored. Following sample fabrication, perovskite films are tested
unencapsulated under rigorous accelerated aging conditions (85%
RH, 85 °C temperature, and 0.16 Sun illumination). We photo-
graph the samples in situ every 3 min, calibrate color using cali-
bration tiles with thin-plate spline color warping method30, and
extract numerical values for degradation onset and rate from the
time series images as a proxy for film stability28,31–33.

To determine which capping-layer properties and processing
conditions govern film stability, we employ a supervised-learning
algorithm with a feature importance ranking. As model inputs,
we include structural and chemical features of the organic
molecules in the capping layers, derived from the PubChem
201934 database, as well as 12 processing conditions. The 12
processing conditions vary capping-layer annealing temperature
and capping-layer precursor solution concentration. As model
output, we use degradation onset and rate. We then determine the
feature importance ranking, using Shapley value concept35, and
use this ranking to infer design rules for organic molecules
comprising capping layers.

The model trained on our experimental data, and subsequent
feature importance ranking, indicate that the number of
hydrogen-bond donors and the organic-molecule topological
surface area are the two most important features of an organic
capping-layer molecule governing film stability. To determine
why our best-performing molecule exhibits the best stability
among the 21 screened materials, we perform in-depth materials
characterization, examining both the surface and the bulk.

Figure 1a shows the overview of the study and objectives for
finding the design guidelines of capping layer for suppressing
degradation in perovskite solar cells. Figure 1b shows the example
of average change in color in the accelerated aging test, from
black to yellow.
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Fig. 1 The workflow of the study and aging test result over time.
a Schematic overview of this study, aimed at developing design rules for
capping layer of perovskite solar cells. b the raw image changes for
tetrapropylammonium iodide (TPAI)-capped, phenyltriethylammonium
iodide (PTEAI)-capped, which have similar molecular weights, and bare
MAPbI3 films.
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Capping-layer composition, fabrication, and aging tests. Capping-
layer precursors consist of 15 A-site organic cations in different
lengths and shapes (Fig. 2a). The number of carbon atoms in
these materials ranges between 1 and 16, with primary (two N–H
bonds), secondary (one N–H bond), tertiary (no N–H bond)
amine, or quaternary (no N–H bond, no lone pairs). Two X-site
anions, iodide and bromide, are tested. A total of 21 unique
organic-halide salts are explored. The AX capping-layer material
is dissolved in solvent, spin coated atop a MAPbI3 thin film with
excess PbI236 (Fig. 2b), and annealed at temperatures between 50
and 125 °C for 10 min.

For the samples that stay dark for longer than 300 min, each
sample condition is repeated for at least two times to ensure
adequate statistics. The samples were aged under 85% RH, 85 °C
temperature, and 0.16 Sun visible-only illumination in batches of
28 samples. Each aging test is stopped after the sample turns
yellow, indicating the degradation from perovskite black phase
into the PbI2 phase37,38. Illumination (0.16 Sun) is added, which
allows optical images to be taken every 3 min as a proxy for film
degradation. The red, green, and blue (RGB) color values are
extracted for different time points of the degradation from the
image data. The increasing red and green (RG) colors correspond
to changes in film color from black to yellow, as shown in Fig. 2c,
d. The onsets are described as the rapid change from black to
yellow evidenced in the red and green (RG) channels (Supple-
mentary Figs. 1 and 2), which are the key descriptors for stability
in this study. Although this study focuses on the degradation
onset, it is possible to consider the rate of color change (or the
slope, Supplementary Fig. 3). Because both red and green
channels overlap, it is sufficient to consider only the red channel
(Supplementary Fig. 4). The complete comparison of film color
before and during the degradation is shown in Supplementary

Fig. 2, where the bare MAPbI3 color change onset occurred at
107 min on average, and MAPbI3 films with specific capping
layers, e.g., tetrapropylammonium iodide (TPAI), tetrapropylam-
monium bromide (TPABr), tetrabutylammonium iodide (TBAI),
tetrabutylammonium bromide (TBABr), and phenyltriethylam-
monium iodide (PTEAI) retained their dark color 4 ± 2 times
longer. The longer alkyl chain performs better than the shorter
one. Branched molecule and phenyl group molecule also lead to
better film stability. All the most stable capping-layer materials in
this study have quaternary ammonium group, instead of primary,
secondary, or tertiary. The quaternary ammonium has been
shown to effectively passivate the charged defects and help to
minimize the initiation of film degradation39.

Machine-learning regression, feature importance ranking, and
design principles. Machine-learning regression is performed on a
color change-based degradation descriptor described in the pre-
vious section. Colors of the samples are extracted from JPEG
pictures that have been color calibrated to ensure reproducibility
and repeatability. Specifically, the onsets, i.e., time-intercepts of
rapid color change from black to yellow, are the key descriptors
for stability in this study. The onset time is a continuous variable;
hence we are using regression as supposed to classification
machine-learning models. This onset descriptor acts as the output
of our machine-learning model, which is used to train the models
with the input coming from the database and the processing
condition.

We featurize 21 organic capping-layer materials using their
material properties from the PubChem 2019 database34, namely
molecular weight, x log P (or partition coefficient that indicates
hydrophobicity/hydrophilicity of molecules)40, the number of
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Fig. 2 Capping-layer precursors and accelerated aging results of best-performing capping-layer material. a A-site cations used in this study and their
chemical structure: (1) formamidinium (FA), (2) guanidinium (GA), (3) ethylammonium (EA), (4) dimethylammonium (DMA), (5) iso-propylammonium
(iPA), (6) imidazolium (ID), (7) t-butylammonium (tBA), (8) phenylammonium (PhA), (9) benzylammonium (BzA), (10) phenethylammonium (PEA), (11)
n-octylammonium (OA), (12) dodecylammonium (DA), (13) tetrapropylammonium (TPA), (14) phenyltriethylammonium (PTEA), and (15)
tetrabutylammonium (TBA). b The film structure with 3D MAPbI3 at the bottom and LD capping layer deposited atop. c The time-dependent red and green
values of camera images, and d the camera images of pre-degraded and 500min-degraded films for bare MAPbI3 control material, (11) OABr, used in
state-of-the-art high-efficiency devices, and (14) PTEAI, our best-performing material in this study, with scale bar 0.5 cm.
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rotatable bonds, complexity41,42, topological polar surface area
(TPSA)43, the number of hydrogen-bond donors44, and the
number of each element (carbon, hydrogen, bromine, nitrogen,
and iodine). For each of the 21 candidate materials, we test 12
unique processing conditions by varying the annealing tempera-
ture of capping layer after spin coating step, and the concentra-
tion of capping-layer precursor solution. These material-property
and processing-condition features are used as inputs into our
machine-learning models, and are described in more detail in
Supplementary Table 1. The 21 capping-layer materials can be
grouped arbitrarily into four different groups: organics with
carbon atom fewer than 5, long-chain organics with carbon atom
more than 5, phenyl-based organics, and branched organics, as
shown in Fig. 3a. In general, both phenyl-based14 and branched45

organics have previously been reported to increase stability.
Using the scikit-learn library in Python46, 6 regression models

are trained on the data from 260 accelerated aging tests shown in
Fig. 3a, including linear regression, K-nearest neighbors (KNN)
regression47, random forest regression48, gradient boosting
regression with decision trees49, multilayer perceptron neural
network with three hidden layers (each has 128, 256, and 64
units) by using Adam solver50, and support vector machine
regression (SVR)51. The hyperparameters in different models are
optimized (Supplementary Tables 2 and 3) using GridSearchCV

function on scikit-learn library, which performs an exhaustive
search of parameters based on minimum fivefold cross-validated
root mean squared error (RMSE). The ML input is either
normalized, which calibrates the mean to zero and scales to unit
variance, or not. The fivefold cross-validated RMSE result for
both input types are shown in Supplementary Fig. 5. Random
forest regression results in the lowest fivefold cross-validated
RMSE for non-normalized input, as shown in Fig. 3b. Random
forest regression is a method with several decision trees, where
each of their estimators is independently predicted from a
different subset of data, and in the end, the estimators are
averaged52. The RMSE of linear regression is quite high and it has
inconsistent weights (as shown in Supplementary Figs. 6 and 7).
The RMSE of multilayer perceptron neural network is large due
to dataset that is small to be used with neural-network method.
RMSE’s of the random forest regression and gradient boosting
regression with decision trees are lower, about 104 and 112 min,
respectively, which is still high, considering the degradation onset
range of 0–700min. The high RMSE is caused by the variability
in 12 different synthesis conditions, in addition to inherent
high variability in the bare MAPbI3’s degradation profile53,54

(standard deviation of red onset across 35 bare MAPbI3 samples
≈ 45min), as shown in Fig. 3a and Supplementary Table 4.
Figure 3c demonstrates the randomly-split 20%:80% test:train set
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observation and prediction results of random forest regression
and linear regression, which shows that the random forest model
is the best-performing model for our data, without the evidence of
overfitting.

To interpret our model, we further analyze the random forest
regression results using SHAP (Shapley Additive exPlanations)35,
a generalized metric for feature importance, which utilizes the
game-theory-based Shapley values to calculate the contribution of
each feature to the model’s output. SHAP indicates how each
feature contributes to the model output (red color change onset
time). Figure 3d shows the 14 features (inputs) ranked using
SHAP based on random forest regression. The yellow color
corresponds to high value of the features consisting of molecular
properties and processing conditions, whereas the purple color
corresponds to low value of the features. The x-axis of Fig. 3d,
labeled as the SHAP value (impact on the model output),
represents the red degradation onset values. If the SHAP value is

positive, the degradation onset increases hence the film lasts
longer, and vice versa. The y-axis of Fig. 3d, listing all the 14
features, are ranked based on their contribution to the
degradation onset.

Low number of hydrogen-bond donor and small topological
polar surface area (TPSA) are the top most important factors
determining stability, shown as the yellow points on the positive
side of SHAP value. PTEAI, as the most stable capping-layer
material in this study, indeed has a low number of hydrogen-
bond donor (0) and a small TPSA (0 Å2). The statistical analysis
(ANCOVA) of the films shows that the red degradation onset of
the most stable capping-layer material in this study, PTEAI, is
statistically significantly different, with 95% confidence level, in
comparison to other materials and bare MAPbI3 film (Supple-
mentary Fig. 8). This result is also consistent with gradient
boosting regression with decision trees method (Supplementary
Fig. 9). Both number of hydrogen-bond donor and TPSA are
correlated, because the hydrogen-bond donor presents when
there is a bond between electronegative atoms (in our case,
nitrogen) and hydrogen, creating a polar surface area on the
molecule. The Pearson correlation value coefficient of hydrogen-
bond donor and TPSA is 0.81 (Supplementary Fig. 10)43. This
evidence might support the hypothesis that hydrogen bonding
plays a very important role in degradation of perovskite solar
cells55–59, especially under high-humidity testing conditions. The
next important features which affect stability are molecular weight
and concentration of precursor solution. On the other hand, x log
P or partition coefficient (an indicator for hydrophobicity),
complexity, and the number of carbons, iodines, or bromines
generally have lower ranks in the model. If we consider the
recently published capping-layer materials, such as theophylline,
caffeine, and theobromine15,16, assuming they were fabricated and
aged in the same manner as the materials in this study, the onsets
are predicted to happen at 103.2, 264.2, and 121.5 min
respectively. As a reference, PTEAI onset happens at (462 ± 115)
min. Due to its lower number of hydrogen-bond donor and
smaller polar surface area, caffeine is predicted to be more stable
among these three materials, even though its surface passivation
property is worse than theophylline15. If the topological polar
surface area and number of hydrogen bonding are indeed the
most important features, in future studies researchers can explore
more complex quaternary ammonium group (NR4

+), where R is
an alkyl or an aryl group, for instance, N,N,N-trimethylnaphtha-
len-1-aminium iodide (Supplementary Fig. 11).

The advantage of using SHAP instead of traditional interpret-
ability methods, is its robustness to correlated features35 than
traditional interpretability methods, due to the game-theoretic
nature of feature attribution. However, if strong multicollinearity
exists (i.e., very high shared variance among features causing
significant variations in model training), highly correlated
features, for instance the molecular weight and the number of
carbon atoms, might be incorrectly attributed feature importance,
according to how the model is fitting the data. To diminish these
spurious attributions, we train various different models via cross-
validation and make our final decision based on contrasting the
feature ranks (Supplementary Figs. 12–18). The consistency
among models, along with testing using cross-validation, allows
us to physically interpret the models. The most robust approach,
which is incompatible with our exploratory goals, could have
been to perform causal inference using randomized control trials
or experiments in a more limited compound space. The tradeoff,
of course, is the slow and poor exploration of the material space.

Protection mechanisms in top-performing candidates. As
suggested by feature importance ranking, our top-performing
capping-layer material, PTEAI, which is reported to have no
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hydrogen bonding acceptor and 0 Å2 of TPSA as shown in
Fig. 4a, does achieve high stability34. The PTEAI-capped per-
ovskite enables 1.3 ± 0.3 times and 4 ± 2 times improvement in
stability, to the state-of-the-art OABr capping layer that we test in
this study, and bare MAPbI3 films, respectively7. To better
understand the protection mechanisms achieved by the PTEAI
capping layer, we further compared PTEAI-capped perovskite
with other capping layers such as TPAI, which contains the same
number of carbon atoms as PTEAI and has a similar molecular
weights but degrades faster, via X-ray diffraction (XRD), scanning
electron microscopy (SEM), and grazing-incidence wide-angle-X-
ray scattering (GIWAXS), as shown in Supplementary Figs.
19–26.

The powder XRD data are compared to butylammonium (BA)-
based 2D perovskite to confirm the new phase60–62. The addition
of a capping layer indeed introduces a new phase in the film,
indicated by the emergence of a new peak at 8.68° in the case of a
PTEAI capping layer, which matches with (BA)2(MA)3Pb4I13, as
shown in Fig. 4c and Supplementary Fig. 19. This indicates a
Ruddlesden–Popper (RP) perovskite phase, (PTEA)2(MA)3Pb4I13
(n= 4)60–62. n indicates the number of 3D perovskite layers
before separated by organic molecules, and the RP perovskite
formula is in the form of A0

2An�1BnX3nþ1, where A, B, and X
correspond to A-site cation, B-site cation, and X-anion. In the
case of the TPAI capping layer, the new peak matches with
(BA)2(MA)2Pb3I10, indicating a RP perovskite phase, (TPA)2(-
MA)2Pb3I10 (n= 3), as shown in Supplementary Fig. 2060–62. The
capping layer reacts with the excess PbI2 coming from the
MAPbI3 layer underneath, forming the RP perovskite phase at the
top7.

Within 460 min of accelerated aging tests, almost all of the bare
MAPbI3 degrades into lead iodide (PbI2), as indicated by the
emergent peak at 12.64° and almost complete suppression of the
MAPbI3 related peak at 14.02°, highlighted by the shaded purple
area in Fig. 4b. The PTEAI-capped films, on the other hand,
maintains its MAPbI3 and RP peaks (Fig. 4c), albeit shifted due to
thermally induced structural modification63, much longer than
bare or TPAI-capped films, shown in Supplementary Fig. 21. This
is further evidence that the RP phase in the capping layer reduces
the MAPbI3 degradation rate, because it helps suppress the
conversion of MAPbI3 into PbI2.

Comparing the surface morphology of MAPbI3 and PTEAI-
capped MAPbI3, we noticed a difference at pre-degradation time
point, where the capping layers coat the surface of MAPbI3,
including the grain boundaries, as shown in Fig. 4d, e. As
degradation occurs, and the surface reacts with the high-humidity
environment at elevated temperature, the grains change and more
pinholes appear, as shown in Supplementary Fig. 22.

GIWAXS images provide a deeper understanding about the
crystal structure difference of the surface with respect to the bulk
of the films. Figure 4f shows the pre-degraded data for the surface
at low incidence angle (θ= 0.12°) below the critical angle of
perovskites (0.18°), and the bulk at higher incidence angle (θ=
0.2°) along qr (horizontal) and qz (vertical) axes. The blue arrow
for capped samples shows the signature of capping materials/RP
phase, whereas the green arrow shows the MAPbI3 phase. The
ratio of the RP phase of PTEAI capping layer and the MAPbI3
phase close to the surface is much larger than deeper in the bulk,
which is dominated by the MAPbI3 phase. This indicates that the
capping-layer material mostly resides on the surface of the
perovskite thin film. In addition, we find that the LD perovskite
based on PTEAI and TPAI show different texture, based on their
vertical and horizontal integration of GIWAXS data. Further
analysis on crystallite textures from GIWAXS is shown in
Supplementary Figs. 23–26.

The feature importance ranking indicates hydrogen bonding
donor and topological polar surface area as the most important
capping-layer features, toward which the amine in the organics
significantly contributes. We hence investigate the surface
chemistry of the organic molecules in PTEAI-capped films.
Changes in organic-molecule bonds within the perovskite films
can be detected using Fourier-transform infrared spectroscopy
(FTIR) attenuated total reflection (ATR) geometry with a zinc
selenide (ZnSe) crystal. We measure bare MAPbI3 and PTEAI-
capped MAPbI3 using FTIR, and observe the main signature of
methylammonium (MA) at 3176 and 1580 cm−1, indicated by
NH3+ stretch (Fig. 5a, b) and bend (Figs. 5c, d) respectively. This
result suggests that MA in bare MAPbI3 disappeared at 460 min,
whereas MA in the PTEAI-capped film remained after 460 mins.

Using X-ray photoelectron spectroscopy (XPS), we observed no
significant traces of oxygen (O 1s) on the surface of PTEAI-
capped film, even after 640 min of accelerated aging tests (Fig. 5e),
revealing that the PTEAI-capped MAPbI3 inhibits the formation
of an oxygen-containing compounds64, and increases film
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Fig. 5 Capping-layer surface chemistry characterization of optimum
capping layer (PTEAI). Attenuated total reflection Fourier-transform
infrared spectroscopy (ATR-FTIR) with ZnSe crystal of bare (a, c) and
PTEAI-capped MAPbI3 (b, d). e The O 1s spectra obtained from x-ray
photoelectron spectroscopy (XPS) of bare and PTEAI-capped MAPbI3, and
f their corresponding atomic percentages. The purple circle and the green
diamond represent the atomic percentages of O 1s for bare and PTEAI-
capped MAPbI3 film, respectively.
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stability. In contrast, we found that the amount of oxygen-
containing compounds64 in bare MAPbI3 increases within 460
min, which can be attributed to a PbOx compound64,65. The
presence of the oxygen in fresh bare MAPbI3 indicating surface
contamination from atmospheric oxygen is significantly higher
than in fresh PTEAI-capped samples. After fitting the C 1s, I 3d,
N 1s, O 1s, and Pb 4f XPS peaks, the atomic percentages of each
element are calculated; for MAPbI3, the O 1s atomic composition
percentage increases from about 5–20% after aging for 460 min,
whereas for PTEAI-capped MAPbI3, the O 1s atomic composi-
tion percentage stays below 1%, as shown in Fig. 5f.

Considering the inorganic materials change on the film surface,
the XPS scans of Pb 4f reveal the presence of two different Pb-
containing species, in the near-surface region of the capped
layers, indicated by two doublet peaks, as shown in Supplemen-
tary Fig. 27 and in agreement with the formation of a second Pb-
containing species in the RP phases of both TPAI- and PTEAI-
capped samples. In bare MAPbI3, the initial one doublet peak of
Pb 4f is at 138.8 eV, and shifts to 138.2 eV as it degrades. The
capping layers, on the other hand, initially has two doublet peaks,
indicating the presence of two different Pb-bonds on the surface.
After 640 min, PTEAI-capped films still preserve its two doublet
peaks, while the TPAI-capped film’s extra peak disappears. The
co-existence of the two distinct Pb-doublets in capping-layer
samples as a function of time can therefore be directly correlated
with the resilience of the capping-layer surface to air exposure
and the observed stability of the absorber material.

Discussion
In this study, we present a machine-learning-assisted investiga-
tion of the features that increase the effectiveness of hybrid
organic-LD perovskite capping layers atop lead-halide perovskite
solar cells. We test MAPbI3 coated with 21 combinations of
organic molecules and halide anions, under accelerated aging
conditions of 85% RH, 85 °C, and 0.16 Sun illumination, and
featurize the organic molecules according to open-source data-
base values. We apply a random forest regression algorithm and
SHAP values to identify which features correlate most strongly
with improved stability, and find that the most important prop-
erties extending the degradation onset are (i) the low number of
hydrogen-bond donors and (ii) the small topological polar surface
area of the organic capping-layer molecules. By utilizing the
organic salt that exhibits the strongest features, phenyl-
triethylammonium iodide (PTEAI), we increase the stability of
bare MAPbI3 and state-of-the-art high-efficiency MAPbI3 with an
OABr-based capping layer by more than 4 ± 2 and 1.3 ± 0.3 times,
respectively. Synchrotron-based XRD indicates a new
Ruddlesden–Popper perovskite, (PTEA)2(MA)3Pb4I13, which
serves as a capping layer. XPS and FTIR reveal that the top-
performing capping layer stabilizes the MAPbI3 perovskite by
modifying the surface structure and chemistry, which coincides
with suppression in the methylammonium loss and formation of
both PbI2 and oxygen-containing compounds at the surface of
perovskite. Our findings suggest capping-layer design rules that
may further enhance the environmental stability of halide
perovskite-based devices under harsh conditions, and pushing
perovskite-based solar cells closer toward mainstream photo-
voltaics market.

Methods
Film and capping-layer fabrication. For 3D methylammonium lead iodide
(MAPbI3) precursor solution: 1.5 M PbI2 (TCI Chemicals) solution was dissolved
in 9:1 DMF:DMSO mixed solvents, before mixing them with ammonium powder.
For every gram of methylammonium iodide (MAI) powder (Dyenamo), we added
5.10 mL PbI2 stock solution correspondingly, which corresponds to MAI:PbI2
molar ratio of 1:1.09. Capping-layer solutions were made in three different con-
centrations, 5, 10, and 15 mM, by mixing ammonium iodide/ammonium bromide

powder with isopropyl alcohol, pure, ACS reagent, ≥99.5% (Sigma-Aldrich). A list
of ammonium iodide/ammonium bromide powder manufacturers is listed in
Supplementary Table 5.

65 μL of MAPbI3 solution was then deposited on the precleaned substrate (glass
slides for UV-Vis, GIWAXS, and FTIR and XRD, FTO substrates for SEM, and
XPS), and spin coated with this 2-step recipe: 1000 rpm for 10 s and acceleration of
200 rpm/s, then 6000 rpm for 30 s and acceleration of 2000 rpm/s. 5 s after the start
of the second step, 150 μL of chlorobenzene was dropped on the substrate. Then,
the deposited film was annealed on the hotplate at 100 °C for 10 min. After the
substrate is cooled down, 60 μL of capping-layer solution was deposited on top, and
spin coated with 3000 rpm speed for 30 s. The substrate was then annealed with
various temperatures, 50, 75, 100, and 125 °C, for 10 min.

General characterization. The crystal structure and the film phases were char-
acterized using X-ray diffraction (XRD, Rigaku SmartLab), with Cu-Kα sources.
The film morphology and device cross-section were investigated using a ZEISS
Ultra-55 field-emission scanning electron microscope (FESEM, ZEISS). The X-ray
photoelectron spectroscopy was measured using K-Alpha+ XPS (Thermo Scien-
tific) with Al-Kα excitation source. The Fourier-transform infrared spectroscopy
(FTIR) was measured using Perkin-Elmer Spectrum 400 (Perkin-Elmer), in atte-
nuated total reflection (ATR) configuration with ZnSe and Ge crystals. Samples
were stored in inert conditions inside a nitrogen-purged glovebox between
synthesis and aging test/characterization steps.

GIWAXS characterization. Grazing-incidence wide-angle X-ray scattering
(GIWAXS) measurements on perovskite thin films were taken at beamline 11-BM
(CMS) at the National Synchrotron Light Source II (NSLS-II) of Brookhaven
National Laboratory. The X-ray beam with the energy of 13.5 keV shone on the
thin films in the grazing incident geometry. Multiple incident angles were chosen
to tune the X-ray penetration of the films and probe the structure of the surface
and the bulk. The scattering spectra were collected with the exposure time of 30 s
by an area detector (DECTRIS Pilatus 800 K) placed 257 mm away from the
sample. The data analysis was performed by using custom-made software
SciAnalysis66.

Accelerated aging chamber and image acquisition. The images during accel-
erated aging tests were acquired using a Thorlabs DCC1645C CMOS USB camera
(with IR-Cut-Filter 650 nm removed), taken every 3 min automatically using
LabView software. X-Rite Color Checker Passport 2 was used as a color reference
to transform the sample images to the L*a*b color space. The color calibration
used 3D thin-plate spline color warping method, and the resulting data were
transformed back to red, green, blue (RGB) color space30. JPEG is a more com-
pressed file format than raw bitmap BMP. The quantitative RG color values
extracted from both formats, from the initial black perovskite phase until they
completely degrade and turn yellow, show negligible difference (Supplementary
Fig. 28). As the JPEG image data are more compressed and hence are faster to be
processed, are used as the stability proxy (Fig. 2c; Supplementary Fig. 2). The
relative humidity (RH) set point was maintained at 85 ± 3% using an Arduino-
controlled feedback system, and both the RH and temperature were measured
using an Adafruit Si7021 sensor and EasyLog EL-USB-2 data logger. The visible
only white illumination intensity in the chamber was 0.16 Sun, using an Advanced
Illumination DL097 LED lamp. The samples were heated using in-house-built
graphite heating elements, controlled at 85 ± 2 °C. Sample placement inside the
aging chamber was randomized, to minimize risk of systematic placement-related
errors. The humidity, heating element temperature, and chamber temperature were
recorded throughout the test, ensuring the environment humidity and temperature
profiles in each round were the same.

Data integrity. The synthesis conditions were recorded by the experimenter using
a laboratory notebook, then transcribed to Google Sheets. Accelerated aging test
data (camera image time series) were automatically pushed to Dropbox, and
subsequently quantified using the 3D thin-plate spline color warping method.
Features were extracted from calibrated RGB data using Python and MATLAB,
where various parameters including red-channel onset (the time-intercept of red
color degradation that corresponds to the yellowing/changing of perovskite phase
into PbI2) were extracted onto a local computer. Raw GIWAXS, XPS, and FTIR
data were processed using their own software packages, with different file labeling
conventions, and stored on different local computers. Metadata (linking different
files containing synthesis conditions, calibrated aging test data, GIWAXS, XPS, and
FTIR data) were created on an ad-hoc basis, as samples were deemed of high
scientific significance. Not all the data obtained are reported in this paper.

Machine-learning analysis. All the features’ values are numerical and can be
treated as continuous variables, which therefore do not need further encoding. The
capping-layer material name is not used as one of the features, because its prop-
erties have been included in the features instead. Therefore, the preprocessing done
is normalization of the input data for the models. We performed normalization of
the model inputs (X) using the StandardScaler algorithm, in the scikit-learn
library46, which calibrates the mean and scales to unit variance. The inputs of the
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tree-based algorithms, however, do not need normalization. Therefore, we consider
both the normalized/non-normalized input (X), and compared their cross-
validated root mean squared error (RMSE). All the machine-learning models
presented in this study were constructed using the scikit-learn library in Python. 6
machine-learning models are trained, including ordinary least squares (LR), K-
nearest neighbor regression (KNN), random forest regression (RF), gradient
boosting regression with decision trees (GB), neural network (multilayer percep-
tron) regression (NN), and support vector machine regression (SVR). The LR
model minimizes the residual sum of squares between the experimental/observed
data points and the predicted data points (MSE). This serves as the benchmark of
the other non-linear 5 algorithms. The other 5 algorithms have their hyperpara-
meters optimized using GridSearchCV function based on their MSE after fivefold
cross-validation (random 80%:20% training: test split). The cross-validation
approximates the testing error, or the error of generalization to related out-of-
distribution data. The model hyperparameters were optimized using Grid-
SearchCV, and after the models were trained, the root mean squared error (RMSE)
was calculated based on fivefold cross-validation. Random forest regression is an
ensemble method that works by having multitude of decision trees, where each is
constructed independently from a different subsample52. Random forest regression
resulted in the lowest RMSE, and this fitted model was used to rank the feature
importance of the material properties and processing conditions using SHAP
(SHapley Additive exPlanations)35. The SHAP formula is shown in Eq. (1), where
g is the explanation model, M is the maximum coalition size/the number of sim-
plified input features, ϕiϵR is the feature attribution for a feature i, z0ϵf0; 1gM , and
ϕ0 represents the model output with all the simplified inputs missing.

g z0ð Þ ¼ ϕ0 þ
XM

i¼1

ϕiz
0
i ð1Þ

Our data and trained models are available in the GitHub repository (https://
github.com/PV-Lab/capping-layer).

Data availability
The machine-learning input that supports the findings of this study are available in
PubChem 2019 database: https://doi.org/10.1093/nar/gky1033.34 The degradation onset
and slope data are available in Supplementary Data 1.

Code availability
The codes and the data sets used for preprocessing and regression are available in GitHub
repository (https://github.com/PV-Lab/capping-layer). The regression algorithms are
implemented using scikit-learn46 and the Shapley values are implemented using SHAP35

Python library.
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