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Abstract

Background: Nearly a year into the COVID-19 pandemic, we still lack effective anti-SARS-CoV-2 drugs with sub-

stantial impact on mortality rates except for dexamethasone. As the search for effective antiviral agents continues,

we aimed to review data on the potential of repurposing antiparasitic drugs against viruses in general, with an

emphasis on coronaviruses.

Methods: We performed a review by screening in vitro and in vivo studies that assessed the antiviral activity

of several antiparasitic agents: chloroquine, hydroxychloroquine (HCQ), mefloquine, artemisinins, ivermectin,

nitazoxanide (NTZ), niclosamide, atovaquone and albendazole.

Results: For HCQ and chloroquine we found ample in vitro evidence of antiviral activity. Cohort studies that assessed

the use of HCQ for COVID-19 reported conflicting results, but randomized controlled trials (RCTs) demonstrated

no effect on mortality rates and no substantial clinical benefits of HCQ used either for prevention or treatment of

COVID-19. We found two clinical studies of artemisinins and two studies of NTZ for treatment of viruses other than

COVID-19, all of which showed mixed results. Ivermectin was evaluated in one RCT and few observational studies,

demonstrating conflicting results. As the level of evidence of these data is low, the efficacy of ivermectin against

COVID-19 remains to be proven. For chloroquine, HCQ, mefloquine, artemisinins, ivermectin, NTZ and niclosamide,

we found in vitro studies showing some effects against a wide array of viruses. We found no relevant studies for

atovaquone and albendazole.

Conclusions: As the search for an effective drug active against SARS-CoV-2 continues, we argue that pre-clinical

research of possible antiviral effects of compounds that could have antiviral activity should be conducted. Clinical

studies should be conducted when sufficient in vitro evidence exists, and drugs should be introduced into

widespread clinical use only after being rigorously tested in RCTs. Such a search may prove beneficial in this

pandemic or in outbreaks yet to come.
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Table 1. Articles screened, reviewed and included in the review

Druga Total abstract screened In vitro and animal model studies included In vivo studies included

Chloroquine and HCQ 1191 10 21
Artemisinins 116 14 2
Mefloquine 78 3 0
Ivermectin 93 7 5
NTZ 88 14 3
Niclosamide 72 17 0

aNo articles were found for albendazole and atovaquone.

Introduction

The COVID-19 pandemic has already incurred a shocking price
in terms of lives lost, worldwide economic recession, political
tensions and psychological stress.1 ,2 This pandemic’s effects on
high-risk populations are still being studied.3 Since time is crit-
ical, and no treatment except dexamethasone has been proven
to decrease mortality,4 there is now a worldwide rush to find an
effective antiviral agent.

Repurposing of existing antivirals is ongoing but results from
most studies thus far have been poor, with many agents showing
promise in small groups of relatively young patients, who are less
likely to succumb to COVID-19. The few controlled trials that
have been performed are somewhat disappointing; the protease
inhibitor lopinavir/ritonavir has failed to demonstrate clear supe-
riority over a placebo in one randomized controlled trial (RCT).
A combination of lopinavir, ritonavir, ribavirin and interferon
beta-1b was found to be effective in alleviating symptoms and
shortening viral shedding, but such complex regimen is unlikely
to become a mainstay of treatment.5

Another antiviral compound, remdesivir, was initially shown
to be modestly effective in shortening illness duration in an
RCT.6 However, recent clinical trials including the World Health
Organization solitary trail (that did not include a placebo group),
did not show any mortality benefits.7 ,8 The drug is administered
only intravenously, probably does not decrease mortality and is
unavailable to most clinicians worldwide.

Under these circumstances, the use of older antiparasitic
agents, based on in vitro antiviral activity, animal studies or
preliminary data on COVID-19 patients, is an interesting option.
In this review, we describe the available evidence on the activity
of antiparasitic agents, including antimalarial drugs, on viruses
and specifically on SARS-CoV-2 and reviewed interventional and
observational studies that assessed the clinical effect of those
therapies for COVID-19.

Methods

Type of studies

In this review, we screened in vivo and in vitro studies that
focus on antiviral activities of several antiparasitic agents, includ-
ing specific activity against COVID-19 and other coronavirus-
related infections [Middle East respiratory syndrome (MERS),
SARS and SARS-CoV-1]. Antiparasitic agents include HCQ,
chloroquine, mefloquine, artemisinins, ivermectin, nitazoxanide
(NTZ) and niclosamide, atovaquone and albendazole. The struc-
tures and uses of these drugs are given in Table 2. We included

studies published during the COVID-19 pandemic in English. We
have included RCTs, non-randomized comparative cohorts, case
series and case reports containing data on the antiviral activity
of individual drugs. In vitro studies were included if detailing an
experiment with a relevant drug and a specific virus.

Types of outcome measures

Clinically relevant outcomes such as mortality rates, hospital
admission rates, lengths of hospital stay and disease severity
were recorded. In addition, virologic parameters such as viral
clearance time, viral shedding duration and viral load when
relevant were also described.

Search methods for identification of studies

We conducted a systematic electronic literature screen using the
PubMed search engine by searching one or more of the following
terms: ‘COVID’, ‘MERS’, ‘SARS’ or ‘antiviral’, combined with
the names of several antiparasitic agents (chloroquine, HCQ,
mefloquine, artemisinins, NTZ, niclosamide, ivermectin, alben-
dazole and atovaquone). We used references of retrieved papers,
including reviews or systematic reviews to identify further stud-
ies. Two reviewers independently screened all studies published
before 15 November 2020. We excluded all retrieved articles that
did not fulfil the inclusion criteria. In cases of disagreement, a
third reviewer acted as arbitrator.

Results

The numbers of all in vitro and in vivo articles that were included
are shown in Table 1. Our main findings are summarized in
Tables 2 and 3. As we found neither in vitro nor in vivo studies
for albendazole or atovaquone, these two agents are not included
in this review.

Chloroquine and HCQ

Chloroquine and HCQ are 4-aminoquinoline organic com-
pounds that have long been used for the treatment and
prevention of malaria, as antibacterial therapy for Q fever and
as immune modulators. These two drugs are very similar in
structure, and their mechanism of action appears identical. HCQ
is well tolerated and is generally regarded to have a better safety
profile than chloroquine.
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Table 2. Mechanism of action of antiparasitic drugs when used as antiviral agents

Most adverse reactions of HCQ are mild and include
gastrointestinal adverse effects, skin rash and photosensitivity.
Large cumulative dosages, commonly administered over a
prolonged period of time, have been associated with irreversible
toxic retinopathy. Cardiac toxicity is rare but may be life
threatening.9 According to current knowledge, significant QT

prolongation occurs in 3–13% of patients, with increasing
incidence with age and among patients that are co-treated
with azithromycin. Although torsades de pointes has not been
recorded in small cohorts of COVID-19 patients, it is possible
that fatal arrhythmias will be encountered if the drug will be used
extensively.10–12
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Table 3. Activity of selected antiparasitic agents against different coronaviruses

Drug In-vitro study Animal Model Clinical trial comments

HCQ26 ,27 ,30–41 ,43–49 SARS-CoV-2 SARS-CoV-2 Conflicting results Widely used worldwide,
conflicting results in
observational studies, no
benefit in RCTs.

Chloroquine21–25 ,29 SARS-CoV-1 SARS-CoV2
MERS-CoV

None None None

Artemisinins66–68 SARS-CoV-1 None None In silico study suggests
possible activity against
SARS-CoV-2

Mefloquine71 ,72 Pangolin& Feline
coronaviruses

None None

Ivermectin34 ,78 ,81 SARS-CoV-2 None None Conflicting results. A
synergistic effect with HCQ
has been suggested.

NTZ23 ,94–96 MERS-CoV-1 Canine
coronavirus SARS-CoV-2

None One clinical trial Benefit unclear

Niclosamide97–99 SARS-CoV-1, MERS-CoV None None

Chloroquine is active in vitro and in animal models against
several viruses, including human immunodeficiency virus
(HIV),13 hepatitis C virus (HCV),14 influenza type H1N1,15

H5N1,16 flaviviruses such as dengue virus and Zika,17 MERS
virus18–20 and SARS-CoV-1.21–25

In early in vitro studies, chloroquine was found effective in
blocking SARS-CoV-2 infection at low concentrations.23 Recent
in vitro and physiologically based pharmacokinetic modelling
studies found higher potency for HCQ compared to chloroquine
in reducing SARS-CoV-2.26 ,27

Clinical experience with HCQ and chloroquine

From the onset of the COVID-19 pandemic, HCQ was admin-
istered in most affected countries. A dose of 400 mg twice daily
followed by 200 mg twice daily of HCQ was predicted to achieve
an antiviral effect based on pharmacokinetic (PK) modelling,
although dosage and treatment duration varied between guide-
lines.27 In the current review, we did not specify the exact doses
that were used; we refer the reader to a previous systematic
review for more specific details.28

In some non-randomized comparative studies or small
cohorts, a shortening of clinical disease, a faster viral clearance
and a decrease in the likelihood to develop pneumonia were
reported after the use of chloroquine or HCQ.29–32 The
combination of HCQ and azithromycin was also suggested to be
beneficial in non-randomized small non-comparative studies.30 ,33

Possible synergistic effects with ivermectin were also suggested.34

Other observational studies demonstrated no significant
reduction in mortality rates after HCQ treatment.35–39 In one
study, all-cause mortality risk was significantly higher among
HCQ-treated patients compared to patients that were not treated
with HCQ [adjusted hazard ratio 1.83; 95% confidence interval
(CI) 1.16–2.89; P = 0.009].40

Recently, the results of three large scale RCTs were pub-
lished. The ‘RECOVERY Collaborative group’ trial compared
1561 patients treated with HCQ to 3155 patients that received

standard of care. Death within 28 days occurred in 421 patients
(27.0%) in the HCQ group compared to 790 (25.0%) in the
usual-care group (rate ratio, 1.09; 95% CI, 0.97–1.23; P = 0.15).
Furthermore, patients in the HCQ group that were not under-
going mechanical ventilation at baseline had a higher frequency
of invasive mechanical ventilation or death (30.7 vs 26.9%; risk
ratio, 1.14; 95% CI, 1.03–1.27).41 The WHO solitary study com-
pared 954 patients treated with HCQ to 909 patients receiving
its control. Death occurred in 10.9% of patients receiving HCQ
and in 9.2% receiving its control (rate ratio, 1.19; 95% CI,
0.89–1.59; P = 0.23). The use of HCQ did not reduced initia-
tion of ventilation or hospitalization duration.7 The third study
evaluated 479 hospitalized adults with respiratory symptoms
from COVID-19. It demonstrated no significant differences in the
distribution of the Day 14 clinical status score (measured using a
7-category ordinal scale) for patients receiving HCQ compared
with placebo [adjusted odds ratio (OR), 1.02].42

Few smaller RCTs were also published. Two of them demon-
strated no significant differences in the virological cure rates
between HCQ treatment and the standard of care groups.43 ,44

In three others, no mortality and clinical status benefits were
observed using HCQ (or HCQ and Azithromycin) compared
with standard of care treatment.45–48

One large RCT assessed the role of HCQ in post-exposure
prevention of COVID-19. It demonstrated no significant differ-
ence in the new cases of COVID-19 between the HCQ treatment
(800 mg once, followed by 600 mg in 6–8 hours, then 600 mg
daily for 4 additional days) and the placebo groups.49

A specific alert cautioning against HCQ use without appro-
priate monitoring was issued by the Food and Drug Adminis-
tration (FDA).50 Similarly, the WHO recently discontinued the
Solidarity Trial citing lack of any benefit of HCQ.51

Artemisinins

It is produced from the plant Artemisia annua; artemisinin
and its derivatives have become the main weapon in the fight
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against malaria. The antimalarial effect of artemisinins is proba-
bly related to the formation of reactive oxygen species, although
its full mechanism of action is unknown.52 Modulation of heme
oxygenase-1 by artesunate has been also suggested as a treatment
that lowers mortality and improves sepsis-related lung injury in
an animal model.53

The effect of artemisinins when used as antiviral agents
has been assessed for several viruses.54 ,55 Artemisinin and arte-
sunate inhibited the viral production of hepatitis B virus and
Epstein-Barr virus.56 Artemisinins, either alone or synergistically
with other antiviral agents, was shown to be active against
Cytomegalovirus,57–60 inhibited replication of John Cunningham
(JC) virus.61 and BK virus62 and has been used anecdotally to
treat HHV6 myocarditis.63

There has been one notable demonstration of widespread
artemisinin use as an ‘accidental’ antiviral. During the 2014
Ebola epidemic in Liberia, all patients were prescribed either
artesunate–amodiaquine or artemether–lumefantrine regimens
empirically for suspected co-infection with malaria. Those who
were treated with artesunate–amodiaquine had a 31% lower
risk of death. This effect was stronger among patients without
malaria.64 ,65 This was, however, a non-randomized trial, and
unknown confounding factors, such as cases of low-level Plas-
modium parasitemia that might have been missed, may have
biased the results.

A. annua extract exhibited activity against SARS CoV-1 as
measured by a cytopathic effect reduction (that does not prove
an effect on the virus itself).66 In another study, artesunate did
not show an inhibitory activity against SARS CoV-1 in a cell
line.67 A recent in silico study showed a potential interaction
between artemisinins and the SARS-CoV-2 Spike protein Lys353
and Lys31 binding hotspots, but did not directly assess antiviral
activity.68 These in vitro and in silico studies, and the fact
that artesunate leads to a decrease in sepsis-related lung injury
in an animal model, suggest that artemisinins may prove to
be interesting candidates for further testing as anti-COVID-19
agents.53

Mefloquine

Mefloquine is an antimalarial similar in structure to quinine.
It is active through the destruction of the asexual forms of the
Plasmodium parasite. In the past, it has been used for patients
with progressive multifocal encephalopathy due to in vitro anti-
JC virus activity.69 A RCT failed to demonstrate any benefit,
and its use as an antiviral has been largely abandoned.70 In
vitro, mefloquine demonstrates antiviral activity against coro-
naviruses, similar to earlier reports with JC virus. In a cell
culture, mefloquine inhibits the cytopathic effect of two coron-
aviruses closely related to SARS CoV-2: the pangolin coronavirus
GX_P2V/pangolin/2017/Guangxi and feline coronavirus.71 ,72 To
the best of our knowledge, no RCT is currently assessing the
possible use of mefloquine for COVID-19.

Ivermectin

Ivermectin is used to treat many parasitic infections such as
filariasis, soil-transmitted helminths, scabies and head lice, and

it is relatively safe. The discoverers of avermectin, its precur-
sor, received the 2015 Nobel Prize for their achievement.73 Its
antiparasitic effect involves an increase in parasite cell membrane
permeability, a mechanism naturally irrelevant to viruses. It has
been shown, however, to display some in vitro activity against
dengue virus, chikungunya virus and other flaviviruses.74–76 One
RCT that was conducted in Thailand and published only as an
abstract demonstrated shorter duration of NS1 antigenemia in
patients with dengue fever; however, it failed to demonstrate any
clinical benefit.77

In vitro studies suggest that ivermectin leads to a ∼5000-
fold reduction in SARS-CoV-2 RNA at 48 hours, likely through
inhibiting IMPα/β1-mediated nuclear import of viral proteins.78

It remains unclear, however, if relevant concentrations can be
achieved with current human or veterinary drug formulations,
and what the in vivo effect would be. A synergistic effect of
ivermectin and HCQ has also been suggested.34

Recently, few countries in Latin America used ivermectin as
a routine, yet unproven, treatment of COVID-19. In northern
Bolivia 350 000 doses were given to health care workers and in
Peru around 20 000 bottles of animal-grade ivermectin were sold
on the black market as a treatment for COVID-19.79 A recent
RCT evaluated the effect of ivermectin or ivermectin and doxycy-
cline therapy on hospitalized COVID-19 patients. No significant
difference in fever, cough or sore throat were observed between
placebo and treatment groups after 7 days. Earlier virological
clearance was observed in the ivermectin group compared to
placebo, but not in the ivermectin and doxycycline group.80

A retrospective cohort study demonstrated lower mortality in
the ivermectin group compared with the standard of care (15.0
vs 25.2%, OR 0.52, 95% CI 0.29–0.96, P = 0.03) and lower
mortality of patients with severe pulmonary disease treated with
ivermectin (38.8 vs 80.7%, OR 0.15, CI 0.05–0.47, P = 0.001),
but with no significant differences in the rates of successful
weaning from mechanical ventilation (36.1 vs 15.4%, OR 3.11
(0.88–11.00), P = 0.07).81 Other small, non-randomized trials,
which are potentially biased, have reported conflicting results
regarding the benefit of ivermectin.82–84

As the level of evidence of these data is likely low, the efficacy
of ivermectin against COVID-19 remains to be proven. However,
based on current evidence, it is unlikely that Ivermectin will be a
game changer in COVID-19 treatment.

Nitazoxanide

NTZ is an antiparasitic drug used for the treatment of Giardia
and Cryptosporidium infections, and the research of its possible
repurposing for treatment of several viruses is ongoing. These
viruses include, among others, parainfluenza, respiratory syncy-
tial virus, canine coronavirus, rhinovirus and flaviviruses, includ-
ing HCV, hepatitis B virus, HIV and influenza.85–90 NTZ has an in
vitro synergistic effect against influenza A virus when combined
with oseltamivir and zanamivir.91 NTZ acts against influenza
viruses by blocking the maturation of the viral hemagglutinin at
the post-translational level.92 Tizoxanide, the active circulating
metabolite of NTZ, is capable of inhibiting the replication of
several strains of influenza A and B-16 strains of influenza
A/H1N1, H3N2, H3N2v, H3N8, H5N9, H7N1 and one strain
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of influenza B.89 In an RCT that included 624 patients with
influenza virus infection, NTZ was associated with a reduction
in the duration of symptoms compared to a placebo.90 In another
RCT conducted among patients with acute respiratory illness
that required hospital admission in Mexico (6.6% of whom were
infected with various coronaviruses), NTZ was not associated
with any benefits compared to placebo.93 Patients in this study,
however, had multiple causative agents, both bacterial and viral,
so the measure of effect of NTZ on specific pathogens was
impossible to assess.

NTZ exhibits antiviral activity against MERS-CoV and other
coronaviruses by inhibiting the expression of the viral N pro-
tein,94 ,95 and inhibits the SARS-CoV-2 at a low-micromolar
concentration.23 One small prospective non-controlled study that
assessed NTZ treatment of in and outpatients with COVID-19
was performed. Among 20 women (pregnant or in immediate
puerperium) that were treated with NTZ, two women died.
Five hospitalized patients showed a positive outcome with two
patients weaned from mechanical ventilation. A total of 16
outpatients treated with NTZ were cured.96 The low number of
patients and the relatively high mortality rate do not support the
use of this agent against COVID-19. However, larger studies are
needed in order to provide more solid data.

Niclosamide

Niclosamide (2′,5-dichloro-4′-nitrosalicylanilide) is another
FDA approved drug with anticestodal activity that was
discovered in 1958. It has an in vitro antiviral effect against
a broad range of viruses such as SARS-CoV-1,97 ,98 MERS-CoV,99

Zika virus, Japanese encephalitis virus, HIV, HCV and human
adenovirus.100 ,101 The broad antiviral activity of niclosamide is
attributed to its ability to neutralize endo-lysosomal pH and
interfere with pH-dependent membrane fusion, which is an
essential step in viral entry mechanisms. The antiviral effect
of niclosamide should be further assessed in vitro before any
consideration of clinical utility could be made.

Discussion

The current COVID-19 pandemic has strained national and
international resources. The research community has produced
a vast amount of new research. However, efforts were at times
fragmented and the methodology of many clinical trials that were
performed was of low quality. Several months into the outbreak,
the number of large, well-conducted RCTs that have been pub-
lished is still small, despite the millions of infected people world-
wide. The only antiviral drug with proven benefit, remdesivir, has
been shown to shorten symptom duration in a large RCT that
included >1000 patients. A non-significant trend towards lower
mortality rates has been observed in this trial although absolute
risk reduction was small in the standard of infectious diseases.
Remdesivir is therefore only modestly effective, and the search
for more active anti-SARS-CoV-2 continues.6

We included in this review several antiparasitic agents that
have been shown to have some in vitro or in vivo antiviral activ-
ities. We elaborated on drug activity against different viruses,

including the new SARS-CoV-2 and its suggested mechanisms of
action (Tables 2 and 3).

Most drugs in Table 2 were shown to reduce the viral replica-
tion stage by affecting cellular organelles. However, intensive in
vitro/in vivo studies are required to establish the detailed mecha-
nism of action of these agents against viruses, particularly against
SARS-CoV-2. Combination therapies of drugs with effects on the
various stages of the viral life cycle should be also considered.

The limitations of this review are those of the studies them-
selves. In vitro studies have used very different methodologies,
and at least some were authored by researchers with potential
conflict of interests. Some clinical studies were limited to small
cohorts that were prone to selection bias, i.e. inclusion of patients
with relatively good prognosis. The rate of publication of well-
conducted RCTs, as mentioned before, has been disappointedly
slow, and recent studies have been retracted from major journals
due to methodological or ethical issues.

The only antiparasitic agent that has been included in major
RCTs is HCQ. Although initial observational trials suggested
benefit of HCQ, larger high-quality trials provide ample evidence
that HCQ should not be used neither for treatment nor for
prevention of COVID-19. Its inclusion in clinical trials using
differing protocols is ethical as no excess mortality was shown in
the Solidarity trials.10 We call for the continuation of pre-clinical
research of existing compounds with potential antiviral effect
against SARS-COV-2. However, as in vitro results and virologic
tests often correlate poorly with actual efficacy, we argue that
drugs should be introduced into widespread clinical use only
after being rigorously tested in RCTs. Such a search may prove
beneficial in this pandemic, or in future outbreaks yet to come.
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