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Abstract: Antimony (Sb) is a trace element applied widely in modern industry. A large number of
tailing solid wastes are left and accumulated in the mining area after purifying the precious antimony
from the antimony ores, causing serious pollution to the environment. The major aim of this study
is to investigate the feasibility of utilizing antimony tailing coarse aggregate (ATCA) as a complete
substitute for natural coarse aggregate (NCA) in high-strength concrete. Concrete specimens with
25%, 50%, 75%, and 100% ATCA replacing the NCA in conventional concrete were prepared for
evaluating the performance of ATCA concrete. The investigators find that ATCA concrete has good
workability, and the mechanical properties and long-term behavior (shrinkage and creep) of ATCA
concrete with all replacement levels are superior to those of NCA concrete. The durability indices
of ATCA concrete, such as the frost-resistant, chloride permeability, and resistance to carbonation,
are better than those of NCA concrete. While the alkali activity and cracking sensitivity behavior
of ATCA concrete seem to be decreased, nevertheless, the difference is not significant and can be
neglected. The researchers demonstrate that all of the control indices of ATCA concrete meet the
requirements of the current industry standards of China. Overall, ATCA can be used in concrete to
minimize environmental problems and natural resources depletion.

Keywords: antimony tailing waste rock (ATWR); antimony tailing coarse aggregate (ATCA); natu-
ral coarse aggregate (NCA); construction performance; mechanical property; long-term behavior;
durability performance

1. Introduction

Concrete is one of the most popularly used building and construction materials and
has been widely researched [1–3]. In recent years, the green and sustainable produc-
tion of concrete has received much attention [4–6]. Coarse aggregate (CA), as the largest
component of the concrete mix ratio, has continued to be increased in recent years. There-
fore, a large number of quarries are mined, negatively impacting the environment. The
traditional ways to produce CA are not sustainable. Therefore, researchers are actively
searching for substitutes for aggregates with minimum or no negative impact on the natural
resources [7,8]. Some new eco-friendly concrete, including tailing concrete, recycled aggre-
gate concrete, and waste ceramic aggregate concrete, have been extensively researched and
successfully applied in civil engineering [9].

China is the largest consumer and producer of concrete in the world. Meanwhile,
China has the richest antimony deposits in the world and produces millions of tons of
antimony ore tailing. Since the beginning of the 20th century, China has become the world’s
largest producer of antimony and its compounds [10]. A large number of tailing solid
wastes are accumulated in the mining area after purifying the precious antimony from the
antimony ores. To dispose these solid wastes, it is necessary to build large tailing dams
and take strict isolation measures, which require the use of additional land and cost [11].
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Metal tailing has long been considered a worldwide environmental problem for the
earth and aquatic pollution [12,13]. These solid wastes release harmful elements under
the action of alternation of dry and wet conditions, high and low temperatures, and even
freeze and thaw conditions. These hazard elements enter into the soil and surrounding
rivers via the runoff and infiltration of rainwater [14,15], which not only cause pollution to
the surrounding environment of the mining area but also move to other living areas [16].
In order to deal with these solid waste materials, extensive research has been conducted
around the world, and some treatment methods have been developed. A feasible method
is to utilize the metal tailing in concrete as a partial or complete substitution for aggregate.
In this way, low-cost green concrete is obtained, and meanwhile, harmful substances can
be solidified in the concrete [17,18].

Onuaguluchi and Eren [19,20] investigated the feasibility of using copper tailing as
a partial substitute of cement for mortars material. It was demonstrated that the copper
tailing led to an improvement in mechanical strength, abrasion resistance, and resistance
to chloride penetration. Blessen et al. [21] conducted an experiment on concrete containing
copper tailing as fine aggregate, which indicated that the maximum replacement amount
was 60%. Sharma et al. [22] reported the reuse of copper tailing as a substitute for natural
sand in self-compacting concrete. It was shown that, compared with controlled samples,
even with 100% copper slag reused as a substitute for natural sand, the concrete possessed
a better mechanical strength and absorption properties. Huang et al. [23] utilized copper
tailing in autoclaved aerated concrete and proposed an effective method to decrease the
CO2 emission in the concrete production process.

Zhao et al. [24] studied different substitute levels of iron ore tailing (IOT) for natural
sand in ultra-high-performance concrete. Test results showed that the mechanical behavior
of concrete with no more than 40% natural sand replaced was nearly the same with the
controlled sample. Shettima et al. [25] evaluated the performance of concrete with different
substitute amount of IOT as natural sand. Test results indicated that IOT had little negative
effect on the construction performance, while mechanical strength was superior to the
control specimen. Lv et al. [26] carried out a series of experiments to investigate the behavior
of dam concrete with IOT as natural aggregate. It was demonstrated that the tailing
aggregate concrete could possess a comparable mechanical behavior and frost-resistant
performance with superior thermal performance. Liu et al. [27] studied the sprayed
concrete containing IOT substituted for the natural sand and suggested the best substitution
was 20%. IOT was also utilized in green engineered cementitious composites [28], metal
tailing porous concrete [29], and steam-cured precast concrete [30]. In addition, tungsten
ore tailing [31], gold ore tailing [32], zinc ore tailing [33], and molybdenum ore tailing [34]
were also reported for reusing in concrete. Wang investigated the feasibility of utilizing
antimony tailing waste rock (ATWR) for a practical project, providing a new way for
utilizing ATWRs [35]. It is demonstrated that all of the quality control indices of antimony
tailing coarse aggregate (ATCA) meet the requirements of the current industry standards
of China.

As mentioned above, although the literature on other metal ore tailing utilizing in
concrete is relatively rich, little investigation on the utilization of antimony ore tailing as
CA has been reported. The goal of this research is to study the feasibility of ATCA as
a complete substitute for natural coarse aggregate (NCA). The workability, mechanical
property, long-term performance, and durability of ATCA concrete and NCA concrete are
studied and compared in the present work.

The rest of this paper is organized as follows. Section 2 introduces the materials and
mix ratio of ATCA concrete. Section 3 describes the workability of fresh ATCA concrete,
such as slump, air content, setting time, and apparent density and so on. Section 4 illustrates
the mechanical property of ATCA concrete, including cubic compressive strength, splitting
tensile strength, prism compressive strength, and elasticity modulus. Section 5 shows the
long-term behavior of ATCA concrete, including drying shrinkage and creep. Section 6
researches the durability performance of ATCA concrete, involving freezing and thawing,
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alkali activity, chloride ion penetration, cracking sensitivity, and carbonation. Finally,
Section 7 concludes the article and gives some recommendations for future work.

2. Materials and Mix Ratio of Concrete
2.1. Materials
2.1.1. Cement

In this investigation, Ordinary Portland cement with a strength class of 42.5, in
accordance with Chinese Standard GB 175-2007 was used [36]. For the cement, the specific
gravity was 3130 kg/m3, the specific surface area was 312 m2/kg, the normal consistency
was 27.7%, and the initial and final setting time was 168 min and 207 min, respectively.
The compressive strength of cement mortar at 3 days, 7 days, and 28 days iwas 26.7 MPa,
38.5 MPa and 52.8 MPa, respectively. The main chemical composition of cement is shown
in Table 1.

Table 1. The main chemical composition of cement (%).

CaO SiO2 Al2O3 Fe2O3 MgO SO3 Cl− Loss

56.1 34.6 0.8 1.1 3.25 2.3 0.024 4.35

2.1.2. Aggregate

The ATWR was obtained by 5-point sampling method in the antimony waste ore
stacking area in Xikuangshan (XKS). The XKS Sb mine, located near Lenshuijiang City,
Hunan Province, China, is the largest Sb mines in the world [37–39]. Due to Sb mining
and smelting processes, a large number of tailing solid wastes are left and accumulated in
the mining area [40,41]. During the field investigation, the authors found that there were
millions of tons of ATWRs in XKS (Figure 1). These ATWRs occupy valuable land resources,
resulting in serious Sb contamination of the local environments [42,43]. The sampled ATWR
was mixed and crushed into ATCA, of which the particle size was 5 mm–20 mm.
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Figure 1. The ATWRs in Xikuangshan (XKS) Sb mine.

2.2. Mix Ratio of Concrete

The concrete mix proportion was determined through multiple trial mixes with the
absolute volume method. Poly-carboxylate superplasticizer was added to concrete with
0.2% by the weight of cementitious materials. Table 2 shows the five batches of mixture
proportions. T0 was the control mix with NCA. While in the other 4 mixes, T25, T50, T75,
T100, the NCA in the samples was substituted by ATCA, with different levels of 25%, 50%,
75%, and 100%, respectively.
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Table 2. Mix ratio of the concrete (unit: kg/m3).

Description
ATCA Proportion

T0 T25 T50 T75 T100

Cement 485 485 485 485 485
NCA 1047 785.3 523.5 261.8 0
ATCA 0 261.8 523.5 785.3 1047

Manufactured sand 758 758 758 758 758
Water 160 160 160 160 160

Superplasticizer 5.8 5.8 5.8 5.8 5.8

3. The Workability of Fresh Concrete
3.1. Experiment Methodology

The workability of fresh concrete is a key factor in assessing whether it can be applied
to construction projects. CA is the largest component of the concrete mix ratio, playing an
important role as the skeleton. The shape and particle size of CA will affect the construction
performance of concrete. The slump, air content, setting time, and apparent density was
tested based on the Chinese Standard GB/T 50080-2016 [44]. The workability of fresh
concrete is illustrated and assessed in the following subsection.

3.2. Results and Discussion

The workability of fresh concrete, such as the slump, setting time, air content, and
apparent density, is listed in Table 3. It is demonstrated that all indexes meet specification
requirements [44–46]. The apparent density of ATCA concrete was slightly higher than that
of NCA concrete, and the value was only 1%. Other indices decrease with the increasing
replacement amount of ATCA. Nevertheless, it was explicitly found that the difference in
workability between ATCA and NCA concrete was very small. It can be inferred that the
influence of CA on concrete construction performance was negligible.

Table 3. The test results of fresh concrete.

Series
Slump (mm) Air Content (%) Setting Time (min) Apparent Density

(kg/m3)0 h 1 h 0 h 1 h Initial Final

T0 198 187 3.8 2.9 398 570 2445
T25 195 183 3.7 2.8 389 565 2451
T50 192 182 3.7 2.7 380 556 2461
T75 188 179 3.4 2.7 372 547 2468
T100 185 175 3.3 2.6 365 540 2475

4. Mechanical Property Experiments
4.1. Specimen Design

It is important to understand the development of strength, especially at the early
age of concrete structures [47,48]. The mechanical properties, such as cubic compressive
strength, splitting tensile strength, prism compressive strength, and elasticity modulus,
were conducted to investigate the ATCA as a complete substitute for NCA in high strength
concrete in this study. The early age and long-term mechanical properties were tested at the
curing age of 3, 7, 28, 90, and 180 days. The test methods were based on Chinese Standard
GB/T 50081-2019 [49]. The dimensions of the specimens used for the experimental study
are listed in Table 4.
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Table 4. Dimensions of the concrete specimens for mechanical property experiments.

No. Experiments Sample Shape Sample Size (mm)

1 Cubic compressive strength Cube 150 × 150 × 150
2 Splitting tensile strength Cube 150 × 150 × 150
3 Prism compressive strength Prism 150 × 150 × 300
4 Elasticity modulus Prism 150 × 150 × 300

4.2. Results and Discussion
4.2.1. Compressive Strength of Cubic Sample

As illustrated in Figure 2, it can be seen that the difference is very small during the
first 3 days. However, the measured values of compressive strength of T25, T50, T75, T100
at the 28th day were 58.9 MPa, 61.5 MPa, 63.5 MPa, and 64.5 MPa, which were 102%, 108%,
110%, and 112% of the controlled sample (T0), respectively. Moreover, when the curing age
was 180 days, the results of compressive strength of T25, T50, T75, T100 were 102%, 107%,
110%, and 116% of the controlled sample, respectively. Therefore, it can be considered that
the compressive strength of ATCA concrete at all replacement levels was superior to that of
the NCA concrete at all curing ages. Furthermore, the compressive strength of the concrete
increases with the increasing replacement level of ATCA.
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Figure 2. The test results of compressive strength of cubic sample.

4.2.2. Splitting Tensile Strength of Cubic Sample

The tensile strength of concrete is a vital factor in evaluating the crack resistance of
structures [50]. The splitting tensile strength of the cubic sample was tested simultaneously
with the compressive strength. The results are shown in Figure 3. The measured values
of splitting tensile strength of T25, T50, T75, T100 at 28 days are 3.92 MPa, 4.01 MPa,
4.11 MPa, and 4.17 MPa, which were 101%, 103%, 106%, and 107% of the controlled sample,
respectively. At 180 days, the tested results of splitting tensile strength of T25, T50, T75,
T100 were 103%, 106% 108%, and 110% of the control. The development tendency of
splitting tensile strength was consistent with the compressive strength of ATCA concrete.
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Figure 3. The test result of splitting tensile strength.

4.2.3. Compressive Strength and Compressive Elastic Modulus of Prism Specimens

The test result of prism compressive strength and elastic modulus for NCA concrete
and ATCA concrete are shown in Figure 4. The values of prism compressive strength of
T25, T50, T75, T100 at 28 days were 44.6 MPa, 45.8 MPa, 47.4 MPa, and 48.5 MPa. The
percentage increase of prism compressive strength, compared with the control sample,
for T25, T50, T75, and T100 was 2%, 4%, 8%, and 10%, respectively. While for the age
of 180 days, the percentage increase for T25, T50, T75, and T100 was 3%, 6%, 10%, and
13%, respectively.
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Figure 4. The test result of prism compressive strength and elastic modulus: (a) compressive strength;
(b) compressive elastic modulus.

As can be seen, from Figure 4b, the tested results of compressive elastic modulus of
T25, T50, T75, and T100 at 28 days were 3.88 × 104 MPa, 3.94 × 104 MPa, 4.04 × 104 MPa,
and 4.11 × 104 MPa, respectively. Compared with T0, the percentage increase was 3%,
4%, 7%, and 9%, respectively. While for the long-term elastic modulus, when the curing
age was 180 days, the percentage increase was 3%, 6%, 9%, and 11%, respectively. Since
compressive strength is an adequate index for mechanical properties, a close relationship
exists between compressive strength and elastic modulus of ATAC concrete.
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In this section, the mechanical behaviors such as cube compressive strength, splitting
tensile strength, prism compressive strength, and elastic modulus of all the samples were
tested simultaneously. The results show that the mechanical behavior of ATCA concrete
with all replacement levels were superior to NCA concrete. Furthermore, at a certain
curing age, the mechanical behavior of concrete containing ATCA is enhanced with the
increased replacement level. This might be due to the superior mechanical property of
ATCA, and better bond between cement and ATCA for the irregular surface. In related
research, Shettima et al. [25] reported a similar trend when IOT was reused as an aggregate.
They observed that the compressive strength and elastic modulus were superior to the
control sample (conventional concrete without IOT) at all levels of replacement. It was
demonstrated that the ATCA as a complete substitution for NCA possesses perfect physical
and mechanical properties. In order to further study the feasibility of ATCA for concrete,
the long-term performance was studied in the next section.

5. Long-Term Behavior Experiments
5.1. Specimen Design

The shrinkage of concrete is one of the main causes of structural cracking [51]. The
CA can restrain the shrinkage of concrete [52,53]. Creep is one of the important indices
for the long-term performance of concrete. While there appears to be little research on the
creep behavior of tailing concrete. The creep performance of ATCA concrete will provide
some references for future research.

The drying shrinkage and creep were tested simultaneously in the laboratory with
constant temperature and humidity based on the Chinese Standard GB/T 50082-2009 [54].
The dimensions of the specimens used for the experimental study are listed in Table 5.

Table 5. Dimensions of the concrete specimens for shrinkage and creep.

No. Experiments Sample Shape Sample Size (mm)

1 Shrinkage Prism 100 × 100 × 515
2 Creep Prism 100 × 100 × 400

5.2. Results and Discussion
5.2.1. Drying Shrinkage

The test results of drying shrinkage are shown in Figure 5. Throughout the period of
the experiment, the shrinkage of concrete with all replacement levels of ATCA was less
than that of the controlled sample. At an early age, the shrinkage strains of all samples
were almost the same. However, at the curing age of 180 days, the shrinkage strains of T25,
T50, T75, and T100 were, respectively, 301 × 10−6, 309 × 10−6, 315 × 10−6, 318 × 10−6,
and 329 × 10−6, which were, respectively, 3%, 4%, 6%, and 9% less than those of the
controlled sample.

5.2.2. Creep

The creep tests of concrete specimens with loading ages of 7 days and 28 days were
conducted, and the creep coefficients were used to denote the creep performance. The test
results are shown in Figure 6. It can be observed from the figure that the creep of concrete
with all replacement levels of ATCA was less than the controlled sample. At an early age,
the creep coefficients of all samples were almost the same. However, at the curing age of
180 days, the creep coefficients of T25, T50, T75, and T100 loaded at the age of 7 days were
respectively 1.99, 1.93, 1.91, and 1.85, which were respectively 3%, 6%, 7%, 10% less than
the controlled sample. Furthermore, the creep coefficients decreased with the increase of
the loading age.
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Figure 5. Comparison of drying shrinkage.
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Figure 6. Comparison of creep: (a) creep for concrete loaded at the age of 7 days; (b) creep for concrete loaded at the age of
28 days.

In this section, the drying shrinkage and creep of all the samples were tested at the
same time. The results showed the drying shrinkage and creep of ATCA concrete with
all replacement levels were superior to those of the controlled sample. Furthermore, the
drying shrinkage and creep of ATCA concrete decreased with the increased replacement
level of ATCA. The factor for lower drying shrinkage and creep of ATCA concrete could be
attributed to the higher compressive strength of ATCA, and better bond between cement
and ATCA. To further study the feasibility of ATCA for concrete, the durability behavior is
discussed in the next section.
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6. Durability Performance Experiments
6.1. Specimen Design

Durability is the most critical factor affecting the life cycle of concrete structures. Some
indices such as freezing and thawing, carbonation, and chloride ion penetration have
been investigated in the related studies. Since there may be some impurities in the tailing
aggregates, the cracking sensitivity and alkali activity should be paid attention to as well.
In this section, the durability performance such as freezing and thawing, alkali activity,
chloride ion penetration, cracking sensitivity, and carbonation was studied systematically.
The dimensions of the specimens used for the experimental study are listed in Table 6.

Table 6. Dimensions of the concrete specimens for durability performance experiments.

No. Experiments Sample Shape Sample Size (mm)

1 Frost-resistant performance Prism 100 × 100 × 400
2 Alkali activity Prism 25 × 25 × 280
3 Chloride permeability Cylinder Ø100 × 50
4 Cracking sensitivity Plate 800 × 600 × 100
5 Carbonation Cube 100 × 100 × 100

6.2. Results and Discussion
6.2.1. Frost-Resistant Performance

The frost resistance ability of concrete is expressed by surface peeling and relative
dynamic modulus of elasticity, which is measured by the ultrasonic method [55]. The test
result can help to determine the durability of concrete under extreme low-temperature
conditions. The results of freeze-thaw test are shown in Figure 7. The frost-resistant
performance of all samples meets the index of F300. After 300 cycles of freeze-thaw, the
results of mass loss of T0, T25, T50, T75, and T100 were, respectively, 2.07%, 2.02%, 1.99%,
1.92%, and 1.90%, which were far lower than 5% required by the code. The values of
relative dynamic elastic modulus of T0, T25, T50, T75, and T100 were, respectively, 80.1%,
81.9%, 83.7, 84.9%, and 85.8%, which were far higher than 60% required by the code. It can
be seen from the test results that the frost-resistant performance of concrete with ATCA was
slightly better. The factor for better frost-resistant performance of ATCA concrete resulted
from the superior water absorption and firmness of ATCA [35].
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Figure 7. Comparison of frost-resistant performance: (a) the test result of mass loss; (b) the test result of relative dynamic
elastic modulus.
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6.2.2. Alkali Activity

Under complex conditions, certain minerals in the aggregate could react chemically
with the alkali (K2O, Na2O) in the concrete, causing expansion, crack, or even damage in
concrete. In order to evaluate the alkali-silicic acid reaction of ATCA aggregates, the alkali
activity experiment was conducted. For 14 days, all samples were placed in the NaOH
solution, of which the concentration was 1 mol/L, and the temperature was (80 ± 2) ◦C.
The length of the sample was measured, by which the expansion rate of length was
calculated, and the alkali activity of aggregate was evaluated.

The experimental results are shown in Figure 8. After the 14-day immersion in alkali
solution, there was no crack, swell, colloid overflow, or other undesirable phenomena. It
was explicitly found that the expansion rate was stable at 10 days. The expansion rates of
T0, T25, T50, T75, and T100 were 0.71‰, 0.73‰, 0.77‰, 0.79‰, and 0.80‰, respectively,
which were all less than 1‰ of the standard required. The alkali activity of samples
seemed to increase with the substitution amount of ATCA. However, the difference was
not significant and can be neglected.
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6.2.3. Chloride Permeability

It is well known that chloride migrates with moisture in concrete [56,57], and it
is important to monitor chloride permeability and moisture level in a concrete struc-
ture [58,59]. In this research, the chloride permeability of concrete was determined by
the electric flux method illustrated as Figure 9. The results of the measured electric
flux of T0, T25, T50, T75, and T100 were 869 coulombs, 862 coulombs, 853 coulombs,
843 coulombs, and 832 coulombs after 28 days of curing, respectively. The difference in chlo-
ride permeability of concrete was not significant. Based on the code, if the passed charge
was above 4000 coulombs, chloride ion penetrability was high penetrability (grade I),
2000–4000 coulombs was moderate penetrability (grade II), 1000–2000 coulombs were low
penetrability (grade III), and 100–1000 coulombs was very low penetrability (grade IV).
According to the evaluation index, the chloride permeability of all samples was very low
(grade IV).
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6.2.4. Cracking Sensitivity

High-strength concrete structures are more prone to cracking [60], and cracks in con-
crete enable water migration [61]. Therefore, crack sensitivity and detection have received
much attention [62,63]. In this research, the cracking sensitivity of concrete specimens
at an early age was tested with the plate method (Figure 10). The values of measured
cracking area per unit area of T0, T25, T50, T75, and T100 concrete were 239 mm2/m2,
243 mm2/m2, 248 mm2/m2, 250 mm2/m2, and 256 mm2/m2, respectively. As per the code,
if the measured cracking area per unit area was above 1000 mm2/m2, the cracking sensitiv-
ity of concrete was classified as grade L-I, 700–1000 mm2/m2 was classified as grade L-II,
400–700 mm2/m2 was classified as grade L-III, 100–400 mm2/m2 was classified as grade
L-IV and less than 100 mm2/m2 was classified as grade L-V. According to the evaluation
index, the cracking sensitivities of all samples were very good (grade L-IV).
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6.2.5. Carbonation Depth

The test result of carbonation depth is shown in Figure 11. The measured values of
carbonation depth of T25, T50, T75, and T100 were 5.30 mm, 5.61 mm, 5.82 mm, 6.03 mm,
and 6.15 mm, which were 6%, 10%, 14%, 16% less than that of the controlled sample. As
per the code, if the carbonation depth was above 30 mm, concrete resistance to carbonation
was classified as grade I, 20–30 mm was classified as grade II, 10–20 mm was classified
as grade III, 0.1–10 mm was classified as grade IV and less than 0.1 mm was classified as
grade V. According to the evaluation index, the resistance abilities to carbonation of all
samples were very good (grade IV). Furthermore, with the increase of substitution level,
the ability of resistance to carbonation was enhanced.
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7. Conclusions

Based on the systematical studying of the performance of antimony tailing coarse
aggregate (ATCA) concrete and the comparison with natural coarse aggregate (NCA)
concrete, the researchers have the following main conclusions:

(1) ATCA as a complete substitution for NCA in concrete possesses good workability,
which is nearly the same as NCA concrete.

(2) ATCA as a complete substitution for NCA in concrete possesses perfect physical
and mechanical properties. The cubic compressive strength, cubic splitting tensile
strength, prism compressive strength, and elastic modulus of ATCA concrete with all
replacement levels is superior to that of NCA concrete.

(3) The drying shrinkage and creep of ATCA concrete decrease with the increased re-
placement level of ATCA. Furthermore, the drying shrinkage and creep of ATCA
concrete with all replacement levels are superior to the controlled sample.

(4) The ability of resistance to carbonation, the frost-resistant, and the chloride permeabil-
ity performance of ATCA concrete are enhanced. While the alkali activity and cracking
sensitivity behavior of the samples with ATCA seem to be decreased. Nevertheless,
the difference is not significant and can be neglected.

(5) It is found that all of the control indices meet the requirements of the current industry
standards of China. The utilization of ATCA as a complete substitute for NCA in
high-strength concrete has very important environmental and economic benefits.
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