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ABSTRACT

Background. Previous reports on the prevalence of chronic kidney disease (CKD) in Asia have suggested important sex
disparities but have been inconsistent in nature. We sought to synthesize available sex-disaggregated CKD prevalence
data in Asia to quantify sex disparities in the region.
Methods. We systematically searched MEDLINE and Embase for observational studies involving ≥500 adults who
reported sex-disaggregated CKD prevalence data in any of the 26 countries in East, Southeast and South Asia. For each
study we calculated the female:male prevalence ratio (PR), with a ratio >1 indicating a higher female prevalence. For
each country, log-transformed PRs were pooled using random effects meta-analysis. These were then combined using a
fixed effects model, weighting by population size, to estimate a pooled PR for each of East, Southeast and South Asia and
Asia overall.
Results. Sex-disaggregated data were available from 171 cohorts, spanning 15 countries and comprising 2 550169
females and 2595 299 males. Most studies (75.4%) came from East Asia (China, Taiwan, Japan and South Korea). Across
Asia, CKD prevalence was higher in females {pooled prevalence 13.0% [95% confidence interval (CI) 11.3–14.9]} compared
with males [pooled prevalence 12.1% (95% CI 10.3–14.1)], with a pooled PR of 1.07 (95% CI 0.99–1.17). Substantial
heterogeneity was observed between countries. The pooled PRs for East, Southeast and South Asia were 1.11 (95% CI
1.02–1.21), 1.09 (0.88–1.36) and 1.03 (0.87–1.22), respectively.
Conclusions. Current evidence suggests considerable between-country and -region heterogeneity in the female:male PR
of CKD. However, there remains a large part of the region where data on sex-specific CKD prevalence are absent or
limited. Country-level assessment of the differential burden of CKD in females and males is needed to define locally
relevant policies that address the needs of both sexes.
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INTRODUCTION

Chronic kidney disease (CKD) is a major cause of morbidity
and mortality worldwide. In 2017, it was estimated that al-
most 700 million individuals worldwide were living with CKD,
with 1.2 million deaths and 35.8 million disability-adjusted
life years (DALYs) directly attributed to the disease [1]. Gener-
ally defined as an estimated glomerular filtration rate (eGFR)
of <60 mL/min/1.72 m2 and/or a urine albumin:creatinine ra-
tio (UACR) ≥30 mg/g (≥3 mg/mmol) [2], CKD is associated with
a wide range of adverse health outcomes. The most prominent
include an increased risk of cardiovascular disease (CVD) and
hypertension; however,mineral and bone disorder, anaemia and
infection are also common in patients nearing kidney failure [3].
Moreover, adverse effects of CKDonhealth-related quality of life,
including for milder CKD stages, have been reported [4–7].

Similar to other major chronic diseases (e.g. diabetes and
coronary heart disease), there is accumulating evidence that fe-
males and males are differentially affected by CKD in terms of
prevalence,disease progression andhealth outcomes [8, 9].How-
ever, research in this area remains limited and there is uncer-
tainty around the magnitude and direction of these differences,
which themselves likely vary by outcome and geographically. In
Asia, the unique aetiological profile of CKD [10–12], togetherwith
the ongoing epidemiological transition [13, 14] and vast sociocul-
tural diversity, makes generalizations of sex- and gender-based
findings from other parts of the world particularly challenging.
Understanding regionally specific sex differences in CKD burden

will be important to informhealth policy andplanning and guide
future research.

The aim of this systematic review and meta-analysis is to
provide a comprehensive assessment of sex differences in CKD
prevalence in Asia, the region projected to experience the great-
est increase in disease burden.

MATERIALS AND METHODS

Search strategy and selection criteria

This systematic review and meta-analysis was performed in ac-
cordance with Meta-Analyses of Observational Studies in Epi-
demiology (MOOSE) guidelines [15].

We identified relevant studies by searching MEDLINE (from
1946 to 23 January 2020) and Embase (from 1980 to 23
January 2020), using broad keywords and Medical Subject Head-
ings (MeSH) related to kidney function, proteinuria and Asian
countries (Supplementary data, S1 Search Strategy). The same
search was repeated on 24 May 2021 to identify papers pub-
lished since January 2020, ensuring that the final review was
as comprehensive and up-to-date as possible. The persons con-
ducting the search were C.H. and M.J., both of whom are PhD-
level trained epidemiologists. In addition, reference lists of all
included studies were manually searched to identify additional
studies not captured in the online search. Authors of relevant
studies were contacted via e-mail if further information was re-
quired.
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Observational studies involving ≥500 adults (≥18 years of
age), conducted in East, Southeast or South Asia and reporting
sex-disaggregated CKD prevalence data were included. Single-
sex studies were excluded [16].We included studies in which the
primary objective was to assess CKD prevalence or CKD preva-
lence was reported as part of the baseline participant charac-
teristics. If there was overlap in the cohort used across multiple
studies, the one with the broadest inclusion criteria or largest
sample size was used.We excluded reviews, letters to the editor,
case reports and case series and restricted our review to studies
published in English but placed no restriction on language in the
literature search. CKD was defined as eGFR ≥60 mL/min/1.73 m2

with albuminuria [UACR ≥30mg/g (≥3mg/mmol)] or proteinuria
(as defined by the authors) [2] or eGFR <60 mL/min/1.73 m2.

Data extraction and quality assessment

Abstract review, data abstraction and risk of bias assessment
were performed independently by two reviewers (L.B. and A.T.).
Any disagreements were adjudicated by a third reviewer (C.H.
and M.J.). Data from the included studies were extracted using
a standardized data extraction spreadsheet. Extracted informa-
tion included study design, setting, source population and selec-
tion criteria, number of females and number ofmales,mean age,
percentage of people with diabetes, percentage of people with
hypertension, definition of CKD (based on eGFR and albumin-
uria/proteinuria, eGFR only and albuminuria/proteinuria only),
eGFR equation used and sex-specific CKD prevalence.

Risk of bias was assessed using a modified version of the
Newcastle–Ottawa Quality Assessment Scale for cohort stud-
ies [17, 18]. Each study was assessed against five items: rep-
resentativeness of the sample, sample size (<4000 and ≥4000
participants), comparison of patient characteristics between the
CKD cohort and the non-CKD cohort, outcome ascertainment
and reporting of descriptive statistics [mean and standard de-
viation or median and interquartile range (IQR) for continuous
variables and counts and percentages for categorical variables].
For each item on the scale, the study received a score of 0, de-
noting either insufficient information or evidence that the study
did not meet the item requirement, or 1, denoting sufficient in-
formation to indicate a low risk of bias. The scores were then
summed to obtain a final risk score. Studies with a score of 1–2,
3 and 4–5 were classified as having a high, medium and low risk
of bias, respectively.

Data analysis

Primary analysis. For each study, sex-specific prevalence was
calculated as the percentage of females or males identified
as having CKD. The prevalence in females was divided by the
prevalence in males to obtain the female:male prevalence ra-
tio (PR), with a PR >1 indicating a higher prevalence in females.
Prevalence estimates and the corresponding PRs were log-
transformed prior to pooling. For each country, DerSimonian–
Laird random effects models were used to estimate the pooled
sex-specific CKD prevalence estimates and the pooled PR [19].
These country-stratified pooled estimates were then further
meta-analysed using fixed effects models, with weighting by
the country’s population size, to derive pooled estimates for
East Asia, Southeast Asia, South Asia and Asia overall. Popula-
tion estimates for 2019 were obtained from the United Nations
PopulationDivision (https://population.un.org/wpp/DataQuery/,
accessed 22 October 2020).

Subgroup analyses. To examine possible causes of heterogene-
ity (irrespective of country), subgroup analyses were done by
sample size (N < 4000 and N ≥ 4000), percentage of females in
the study cohort (<median of 52.1% and ≥median), mean age
of the study cohort (<65 years and ≥65 years), percentage of in-
dividuals with diabetes (<median of 31.2% and ≥median), per-
centage of individuals with hypertension (<median of 61.8% and
≥median), eGFR equation [Chronic KidneyDisease Epidemiology
Collaboration (CKD-EPI) [20], Modification of Diet in Renal Dis-
ease (MDRD) [21] and other] and risk of bias (low, medium and
high). The Cochran’s Q-statistic for the null hypothesis of ho-
mogeneity was used to assess heterogeneity between the sub-
groups.

Sensitivity analyses. We performed a series of sensitivity anal-
yses to test the robustness of our findings. First, we removed
studies that had a strong influence on the country-level pooled
PR estimates. These were identified using a combination of stu-
dentized residuals (with an absolute threshold of 2 indicating
an outlier), leave-one-out analyses and diagnostic plots of the
Cook’s distance [22]. Second,meta-analyses were repeated using
only high-risk cohorts, defined as participants selected based on
the presence of diabetes,hypertension, anyCVDor age≥65 years
and using cohorts sampled from non-high-risk populations (e.g.
general population or hospital populations attending an annual
health check). Previous work has shown that diabetes, hyperten-
sion and CVD might progress differently in females compared
with males [23–26]. Given that these conditions are strongly as-
sociated with CKD, it is possible that their differential effects in
females andmales are reflected in sex differences in CKD preva-
lence that are specific to multimorbidity. Analyses were also re-
peated using the largest study from each country [27]. We also
performed sensitivity analyses for different definitions of CKD,
in which we included studies that assessed CKD based on both
eGFR and albuminuria/proteinuria, on eGFR alone and on al-
buminuria/proteinuria alone. For studies that assessed and re-
ported on bothmeasurements, we extracted prevalence data for
each of the measures separately. Finally, analyses were repeated
for advanced CKD [Kidney Disease: Improving Global Outcomes
(KDIGO) Stages 4–5], but were restricted to studies with at least
10 occurrences of advanced CKD events in each of the sexes.

Meta-analyses were performed in R version 4.1.0 (R Founda-
tion for Statistical Computing, Vienna, Austria) using themetafor
package (version 3.0-2) [19], with forestplots generated using the
forestplot package (version 1.10-1) [28] and maps using the sf
(version 1.0-4) [29] and tmap (version 3.3-2) [30] packages.

RESULTS

Search results and characteristics of included studies

Our initial database search identified 7200 studies in January
2020 and a further 4411 in May 2021 (total 11 611), of which 995
articles qualified for full-text review. A further 132 studies were
identified throughmanual searches. In total, 168 studiesmet the
inclusion criteria during full-text review, of which one reported
data from three countries and one from two countries (Figure 1).

Sex-disaggregated CKD prevalence data were available for
15 of the 26 Asian countries, involving 2 550 169 females and
2595 299 males. Most of the studies (75.4%) and participants
(91.2% of females and 89.7% of males) came from East Asia
(China, Taiwan, Japan or South Korea) (Table 1). Thirty-eight per
cent (n = 65) were conducted in high-risk cohorts and 62.0%
(n = 106) involved non-high-risk cohorts. Around a quarter

https://population.un.org/wpp/DataQuery/
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FIGURE 1: Flow diagram of study selection.

(n = 43) of studies defined CKD based on either a reduced eGFR
(<60mL/min/1.73m2) or the presence of albuminuria or protein-
uria; 62.5% (n = 113) of studies defined CKD based on a reduced
eGFR alone and 11.1% (n = 15) based only on the presence of al-
buminuria or proteinuria.Of the 156 studies thatmeasured eGFR
to ascertain CKD status, 51.3% (n = 80) used the MDRD equation,
25.0% (n = 39) used the CKD-EPI equation, 12.8% (n = 20) used
a different equation and 8.3% (n = 13) did not specify the equa-
tion used. The characteristics of individual studies are provided
in Supplementary data, Table S1.

The risk of bias assessment indicated that 89 (52.0%) studies
had a low risk of bias (score of 4–5), 61 (35.7%) had amedium risk
of bias (score of 3) and 21 (12.3%) had a high risk of bias (score of
1–2).

Sex disparities in CKD prevalence

Reported sex-specific CKD prevalence estimates varied sub-
stantially between the studies (Supplementary data, Table S1).
Across Asia, the pooled prevalence of CKD based on all included
studies was 13.0% [95% confidence interval (CI) 11.3–14.9] in

females and 12.1% (95% CI 10.3–14.1) in males (Figure 2 and Sup-
plementary data, Figure S1). The pooled prevalence of CKD was
higher in females compared with males [PR 1.07 (95% CI 0.99–
1.17)]. There was substantial between-country heterogeneity
(I2 = 87.4%), with the PR ranging from 0.75 (95% CI 0.53–1.08; n
= 1) in Indonesia to 2.73 (95% CI 1.81–4.12; n = 1) in Vietnam.
China and India, the two largest countries in Asia, had a pooled
PR of 1.11 (95% CI 1.02–1.21; n = 46) and 0.91 (95% CI 0.75–1.11;
n = 11), respectively. The strongest evidence for a higher CKD
prevalence in females came from East Asia, with a pooled PR
of 1.11 (95% CI 1.02–1.21), driven by the large population size of
China. In contrast, there was no evidence for a sex difference in
either Southeast Asia [PR 1.09 (95% CI 0.88–1.36)] or South Asia
[PR 0.98 (95% CI 0.85–1.22)].

Subgroup and sensitivity analyses

In subgroup analyses of all studies (i.e. not stratifying by
country), no differences in the pooled PRs were observed for the
subgroups examined, including the different risk of bias cat-
egories (Supplementary data, Figure S2). Overall, results were
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Table 1. Characteristics of included studies, summarized by country and region

Country

Studies, n
(high-risk;

non-high-risk)
Participants, N

(% female)
Females, median

(IQR)
Males, median

(IQR)

People with
diabetes (%),
median (IQR)

People with
hypertension (%),

median (IQR)

Interval of
reported
mean age
(years)

Asia 171 (65; 106)a 5 139 384 (49.6) 1866 (636–6012) 1913 (655–5076) 17.0 (8.6–36.6) 40.4 (26.5–57.8) 35.6–102.8b

East Asia 129 (54; 75) 4 648 661 (50.0) 2123 (647–7141) 2178 (794–7791) 15.3 (8.4–36.1) 43.8 (27.4–58.3) 36.0–102.8b

China 46 (18; 28) 788 307 (45.2) 1865 (780–6144) 1990 (739–5136) 18.4 (9.6–38.6) 48.9 (33.0–63.4) 41.8–102.8
Taiwan 21 (9; 12) 799 479 (50.0) 3075 (647–13 699) 3393 (1142–12 991) 19.5 (8.8–36.9) 38.6 (23.3–59.8) 36.0–74.9
South Korea 18 (7; 11) 1 139 257 (40.8) 5189 (858–16 741) 4353 (1882–13 441) 19.1 (9.3–31.5) 30.0 (21.8–48.8) 41.7–76.0
Japan 44 (20; 24) 1 921 618 (57.6) 1 891 (404–6176) 1686 (620–4132) 13.9 (5.4–34.4) 45.1 (29.9–55.1) 40.0–74.2

Southeast Asia 12 (5; 7) 127 529 (51.9) 1278 (755–2589) 1446 (471–3225) 39.0 (17.7–85.7) 55.0 (35.6–59.9) 48.8–65.9
Indonesia 1 (0; 1) 1496 (63.4) 949 547 Not reported Not reported Not reported
Malaysia 3 (2; 1) 8519 (22.5) 595 (560–697) 471 (419–3118) 40.3 (30.0–70.2) 55.8 (53.4–58.3) 48.8–55.4
Singapore 3 (1; 2) 95 609 (52.1) 1606 (1238–24 469) 3 923 (2184–22 679) 37.6 (27.3–40.2) 56.6 (55.0–69.9) 62.9–65.9
Thailand 4 (2; 2) 13 400 (59.9) 2 158 (1574–2589) 1 446 (1110–1681) 56.3 (12.4–100.0) 42.5 (27.1–63.4) 61.4–61.6
Vietnam 1 (0; 1) 8505 (64.8) 5513 2992 Not reported 30.5 57.2

South Asia 30 (6; 24) 363 194 (43.4) 1 055 (625–2430) 1 243 (557–3136) 14.0 (7.5–21.6) 31.2 (16.7–41.6) 35.6–67.5
Bangladesh 4 (3; 1) 222 591 (43.6) 728 (586–24 377) 690 (573–31 529) 61.2 (41.8–80.6) 58.4 (37.5–79.2) 47.0–56.7
India 11 (1; 10) 37 549 (48.6) 1154 (942–1982) 1112 (849–2662) 8.6 (6.1–17.6) 31.2 (16.7–33.6) 35.6–51.0
Nepal 1 (0; 1) 20 811 (61.5) 12 792 8019 Not reported Not reported 39.0
Pakistan 3 (1; 2) 5183 (52.3) 796 (606–1148) 1374 (822–1499) 19.0 (18.6–20.2) 72.1 (58.1–86.0) 51.5–56.7
Sri Lanka 2 (1; 1) 6949 (54.8) 1 904 (1224–2584) 1571 (911–2230) 20.6 (11.8–29.3) 52.6 (28.8–76.3) 62.9
Iran 9 (0; 9) 70 111 (32.8) 760 (503–5840) 1399 (481–4223) 13.7 (9.4–14.0) 25.8 (17.2–38.0) 39.8–67.5

aIn total, 168 studies met our inclusion criteria, with 1 of these reporting data from three countries and 1 from two countries. The total number of data points is
therefore 171.
bThe highest mean age of 102.8 years is from a study that specifically recruited individuals ≥100 years.

largely consistent in sensitivity analyses in which influential
outliers were removed from the country-level meta-analysis
[pooled PR for Asia 1.06 (95% CI 0.99–1.14); Supplementary data,
Figure S3], as well as those in which studies were restricted to ei-
ther non-high-risk or high-risk population cohorts [pooled PRs
for Asia 1.06 (95% CI 0.96–1.17) and 1.04 (95% CI 0.96–1.13), re-
spectively; Supplementary data, Figures S4–S7]. There were no-
table differences in the pooled PR for Asia when only the largest
study from each country was used [pooled PR 1.16 (95% CI 1.10–
1.22)]. At the country and subregional levels, the robustness of
our findings to the specific study inclusion criteria (i.e. non-
high-risk or high-risk cohorts) varied between countries or sub-
regions. Estimates were particularly variable in countries and re-
gions where the evidence base was limited.

In analyses involving studies in which CKD was defined ac-
cording to both eGFR and albuminuria/proteinuria (n = 43; 11
countries), the pooled PR was 0.91 (95% CI 0.81–1.03). The pooled
PR for reduced kidney function (eGFR <60 mL/min/1.732) was
1.21 (95% CI 1.03–1.44; n = 140 from 15 countries), while for al-
buminuria/proteinuria, it was 0.94 (95% CI 0.82–1.07; n = 39 from
10 countries) (Supplementary data, Figures S8–S13).

When restricted to the nine countries where sex-
disaggregated prevalence data for advanced CKD (KDIGO
stages 4–5) were available, the pooled PR for advanced CKD for
Asia was 1.04 (95% CI 0.72–1.48; Supplementary data, Figure
S14). Once again, heterogeneity between countries was observed
(I2 = 81.7%). The pooled PRs for East Asia, Southeast Asia and
South Asia were 1.17 (95% CI 0.82–1.66), 1.03 (95% CI 0.67–1.60)
and 0.89 (95% CI 0.45–1.78), respectively.

DISCUSSION

In a pooled analysis of 171 cohorts, comprising 2 550169 females
and 2595299 males from 15 Asian countries, the overall preva-
lence of CKD in the region was 1.07 (95% CI 0.99–1.17) times
higher in females compared with males, but with considerable

variation between countries. Of note, China and India,which ac-
count for 61% of the Asian population, showed contrasting sex
differences; in China, the prevalence of CKD was higher in fe-
males,while in India a similar prevalence between the sexeswas
observed. Collectively these findings highlight the need formore
widespread sex-disaggregated data collection and CKD burden
estimation in Asia and targeted CKDdetection andmanagement
approaches that consider the local differences in the sex-specific
burden of CKD.

Our finding that the prevalence of CKD is overall higher
in females compared with males is consistent with previous
systematic reviews [27, 31, 32]. In 2016, a meta-analysis of 51
studies reporting sex-specific CKD prevalence found a mean
prevalence of CKD of 14.6% in females and 12.8% in males,
corresponding to a female:male PR of 1.14 [31]. More recently,
the 2017 Global Burden of Disease (GBD) Study reported that
the global age-standardized prevalence of CKD was 1.29 (95%
CI 1.28–1.30) times higher in females than in males [33]. How-
ever, the global scope of these analyses comes at the cost of
granularity, potentially masking any geographic variation in
the observed sex differences. The only study to examine sex-
specific CKD prevalence at a country level did not report any
measures of uncertainty in the observed differences [32]. Our
review addresses these two important limitations and provides
the most comprehensive, up-to-date review of sex differences
in CKD prevalence across Asia.

It is generally purported that, for any given age, the preva-
lence of milder forms of CKD (KDIGO Stages 1–3) is higher in
females, while the opposite is true for kidney failure (KDIGO
Stage 5) [8, 27, 32, 34]. However, existing studies are limited
by their reliance on kidney replacement therapy registry data,
which in part reflect system-level access to care or personal
preferences around care rather than the burden of the dis-
ease itself [35]. In the present study, which predominantly in-
cluded studies that actively measured kidney function, the
prevalence of CKD Stages 4–5 for Asia was similar between
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FIGURE 2: Sex-specific CKDprevalence estimates and female:male PR,pooled by country (estimated using randomeffectsmeta-analysis) and by region (estimated using
fixed effects meta-analysis of country-stratified pooled estimates). For the fixed effects meta-analysis, country-level estimates were weighted by country population
size.

the sexes [pooled PR 1.04 (95% CI 0.72–1.48)]. Given that this
is based on data from only 27 studies across the region, it
is possible that we had insufficient power to detect a differ-
ence in prevalence between the sexes. It is interesting, how-
ever, that in all countries where data were available, the pooled
female:male PR indicated either no sex difference or a higher
female prevalence. Countries where there was evidence of a
higher female prevalence of advanced CKD were Japan [PR 1.24
(95% CI 1.07–1.45), n = 7], Singapore [PR 1.16 (95% CI 1.05–1.27),
n = 1], Bangladesh [PR 1.48 (95% CI 1.45–1.52), n = 1] and Iran [PR
1.97 (95% CI 1.09–3.56), n = 1]. Where the female-specific preva-
lence of advanced stages of CKD is higher, this may be explained
by differential survival rates between females andmales; at each
level of kidney function, the CKDmortality rate has been shown
to be higher in men [33]. However, gendered factors such as
adherence to guideline-recommended medications, receipt of
evidence-based care and social norms around access to care
may also play a role. Nevertheless, it raises important questions
around the need for gender-sensitive CKD research and health
planning in the region.

For instance, the extent to which women are disproportion-
ately burdened by CKD may be particularly heightened in coun-
tries with high out-of-pocket medical costs, compounded by
lower lifetime earnings and longer life expectancy inwomen rel-
ative to men [36]. It is also important to consider that women
with CKD have a higher risk of pre-term delivery and intrauter-
ine growth restriction (IUGR), resulting in infants being born
with a low birthweight and/or who are small for their gesta-
tional age [37]. This has implications for the burden of CKD and
other non-communicable diseases in future generations, with
evidence that both low birthweight and being small for ges-

tational age increase the long-term risk of kidney failure, hy-
pertension and diabetes [38–40]. Increasing awareness of CKD
among women of child-bearing age and early detection of CKD
should therefore be a priority. For women already living with
CKD, efforts are needed to improve treatment rates and out-
comes, which have been previously shown to be suboptimal
among women compared with men [41]. Furthermore, a better
understanding of the sex-specific mortality rate associated with
CKD in Asian populations is needed to ensure that the needs
of both women and men are appropriately addressed. Across
the region, sex-disaggregated data collection, analysis and
reporting should be embedded in CKD monitoring and surveil-
lance systems as they are being developed.

Reasons for the observed sex differences are likely manifold.
Several recent reviews on the role of sex and gender in CKD
have highlighted a complex interplay of biological, behavioural,
cultural and socio-economic factors that may contribute to ob-
served disparities [8, 9, 34].While the data used in this study can-
not shed light on why sex differences may occur, we can specu-
late that the observed differences are the result of interactions
between diverse factors, including both gendered factors related
to health-related behaviours and access to care and biological
factors influencing progression of disease and the underlying
pathophysiological processes involved. For instance, while not
statistically significant, the suggestion of a higher female:male
PR in studies with a higher percentage of participants with dia-
betes or hypertension provides support for the hypothesis that
the effect of these conditions on the risk of CKD might vary be-
tween the sexes, as has been observed for a range of vascular
diseases. Among women, pregnancy-induced hypertension or
gestational diabetes leading to a higher risk of hypertension and
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CVD post-pregnancy, and in turn CKD,may also play a role. Local
investigations into the reasons underpinning the sex differences
are needed.

We observed significant between-country heterogeneity in
the pooled female:male PRs, which may be attributable to sev-
eral factors. First, the availability of data varied across the region
and we found that pooled estimates for countries with limited
data (e.g. Singapore) were generally less robust against the types
of cohorts (high-risk, non-high-risk or both) used in the meta-
analysis. In contrast, for pooled analyses where a large number
of studies were available (e.g. Asia overall or in China), decisions
about which types of cohorts to include did not markedly affect
the pooled PR. It is possible, therefore, that the absence of a sex
difference in some countries or subregions is simply the result
of there being insufficient data to detect a difference.

Second, formulae used to estimate GFR varied between
studies, the most common one being the MDRD equation
[n = 80 (51.3%) studies that measured eGFR]. While the MDRD
equation can yield higher prevalence estimates compared with
the CKD-EPI equation (the current gold standard) [35], our
subgroup analysis of studies using different eGFR equations
showedno difference in the pooled PRs.However, it remains pos-
sible that differences in the performance of eGFR formulae in
different country settings may have contributed to the observed
between-country heterogeneity. Validation studies conducted in
community-based populations with appropriate age and ethnic
diversity are needed to assess the impact of different GFR esti-
mation methods on sex-specific CKD prevalence in this region.

Third, both the MDRD and CKD-EPI equations include sex as
a variable [34] and assume that, for a given serum creatinine
level, kidney function will be lower in females compared with
males. This has led some to argue that the ascertainment of CKD
based on these equations may overestimate CKD prevalence in
females compared with males, particularly in the intermediate
stages [8, 31]. Indeed, this might explain in part the higher fe-
male:male PR that was observed for studies that reported on the
prevalence of a reduced eGFR in our sensitivity analyses [PR 1.21
(95% CI 1.03–1.44) compared with PR 0.94 (95% CI 0.82–1.07) in
studies that only assessed urine protein] and could account for
some of the heterogeneity in results between countries. For ex-
ample, in Thailand, where the pooled PR was 1.14 (95% CI 1.04–
1.26), three of the four included studies defined CKD based only
on eGFR and the fourth assessed albuminuria aswell. In compar-
ison, only 2 of the 11 studies from India defined CKD using only
eGFR, 8 assessed both measures and 1 assessed only albumin-
uria; the pooled PR estimatewas 0.91 (95%CI 0.75–1.11).However,
it is worth noting that between-country heterogeneity remained
high even in analyses that only included the prevalence of a re-
duced eGFR (I2 = 90.0%) and that considerably fewer studies de-
fined CKD using only albuminuria/proteinuria assessments (n =
39).

Limitations of our meta-analysis are inherent to the use of
published data.Datawere limited, or even absent, for a large part
of the region, with only 42 studies available outside of East Asia.
No data on sex-specific CKD prevalence were available for 11
countries: Afghanistan, Bhutan, Brunei, Cambodia, Democratic
People’s Republic of Korea, Laos, Maldives, Mongolia, Myanmar,
the Philippines and Timor-Leste. There was also extensive het-
erogeneity between studies in terms of their sampling method-
ology and eligibility criteria, definition of CKD, assays used and
study period. Nevertheless, most studies were found to have a
low or medium risk of bias. In addition, few studies fully staged
CKD based on both eGFR and albuminuria categories, as rec-
ommended by the KDIGO CKD guidelines [2], precluding the
assessment of sex differences in each of the separate stages.

Finally, the exclusion of articles published in languages other
than English may have led to some important studies being
missed.

In conclusion, our findings highlight the need for ongoing
country-level assessment of sex differences in CKD prevalence
such that locally relevant policies can be developed that address
the needs of both females and males. As the global capacity for
CKD surveillance is strengthened over the next 5–10 years, it will
be important for sex- and gender-disaggregated data collection
and reporting to be embedded within monitoring programmes
as they are being developed.
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