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Novel computational model of 
gastrula morphogenesis to identify 
spatial discriminator genes by self-
organizing map (SOM) clustering
Tomoya Mori1,3, Haruka Takaoka2, Junko Yamane1, Cantas Alev1 & Wataru Fujibuchi1

Deciphering the key mechanisms of morphogenesis during embryonic development is crucial to 
understanding the guiding principles of the body plan and promote applications in biomedical research 
fields. Although several computational tissue reconstruction methods using cellular gene expression 
data have been proposed, those methods are insufficient with regard to arranging cells in their 
correct positions in tissues or organs unless spatial information is explicitly provided. Here, we report 
SPRESSO, a new in silico three-dimensional (3D) tissue reconstruction method using stochastic self-
organizing map (stochastic-SOM) clustering, to estimate the spatial domains of cells in tissues or organs 
from only their gene expression profiles. With only five gene sets defined by Gene Ontology (GO), we 
successfully demonstrated the reconstruction of a four-domain structure of mid-gastrula mouse embryo 
(E7.0) with high reproducibility (success rate = 99%). Interestingly, the five GOs contain 20 genes, most 
of which are related to differentiation and morphogenesis, such as activin A receptor and Wnt family 
member genes. Further analysis indicated that Id2 is the most influential gene contributing to the 
reconstruction. SPRESSO may provide novel and better insights on the mechanisms of 3D structure 
formation of living tissues via informative genes playing a role as spatial discriminators.

The reconstruction of three-dimensional (3D) tissues such as organoids and organ-like structures from human 
induced pluripotent stem (iPS) cells1 is one of the most exciting technologies in the field of regenerative medicine. 
Other techniques, such as cell sheets that can be generated by 3D bio-printers, have been developed, and their 
usefulness has been reported2–5. In recent years, technologies capable of observing the state of cells at single-cell 
resolution have been developed6–10, enabling us to capture the cellular heterogeneity within organs and tissues and 
identify known and novel subtypes of individual cells11–14. Particularly, with the launch of the Human Cell Atlas15, 
a worldwide project aiming to catalog all 37 trillion cells in the human body at the single-cell level, single-cell data 
production is expected to be accelerated on an unprecedented scale in the near future.

In recent years, several computational methods to reconstruct 3D tissues by estimating the spatial positions 
of individual cells in tissues with gene expression data obtained by single-cell RNA-seq have been reported16–22. 
These methods may be roughly divided into two types: the landmark approach and the ab initio approach. The 
landmark approach estimates the 3D position of each cell based on gene expression profiles while using the spatial 
information of marker genes obtained by in situ hybridization16–18. Conversely, the ab initio approach assigns each 
cell to 3D space according to the principal component score calculated from gene expression profiles without 
using such spatial reference data19–22. Notably, the landmark approach cannot reconstruct tissue structures from 
de novo gene expression profiles without marker genes that provide spatial information. Thus, although current 
principal component analysis (PCA)-based methods are used for 3D visualization, an ab initio approach that 
does not depend on the spatial information of marker genes obtained by in situ hybridization is promising for 3D 
reconstruction. Previously, we reported a 3D reconstruction method for mouse blastocyst consisting of two cell 
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types that successfully enhances spatial prediction by combining PCA and cell type-specific marker genes coding 
for cell adhesion molecules23,24.

In this study, in order to expand the capability of our preliminary research, we further developed a novel 3D 
reconstruction method using stochastic self-organizing map (stochastic-SOM) clustering, or SPRESSO (SPatial 
REconstruction by Stochastic-SOM), which features gene selections based on Gene Ontology (GO)25,26. We 
applied the method to publicly available gene expression data of mid-gastrula mouse embryo (E7.0) to reproduce 
the embryo’s four domain structure27. The method yielded high success rates and demonstrated a remarkable 
ability to find spatial discriminator genes that contribute to differentiation and tissue morphogenesis.

Results
Domain structure of mid-gastrula mouse embryo and RNA-seq samples.  To reconstruct the 
spatial structure of mid-gastrula mouse embryo (E7.0), we used the gene expression profiles in the cryosec-
tioned embryo laser microdissection study reported by Peng et al.27 (GSE65924) downloaded from GEO (Gene 
Expression Omnibus)28 (Fig. 1). The gene expression profiles for each of the eleven frozen sections were separated 
into four regions (anterior, posterior, left, and right), for which a total of 41 samples are available (the most distal 
section has no right or left samples, and there is one low-expression sample). Each sample is composed of a small 
number of cells (approximately 20 cells per sample) and no single-cell data. The read counts of 23,361 genes by 
RNA-seq of the 41 samples were normalized by FPKM (fragments per kilobase of transcript per million mapped 
reads). Peng et al. have already reported that the 41 samples can be grouped into four spatial domains (D1: ante-
rior, D2: lateral-distal, D3: lateral-proximal, and D4: posterior) by hierarchical clustering based on differentially 
expressed genes (DEGs) and PCA27. Thus, our 3D reconstruction problem was formulated by the four-domain 
prediction of the 41 samples, of which 9, 11, 10, and 11 were attributed to D1, D2, D3, and D4, respectively.

3D reconstruction with stochastic-SOM clustering.  We estimated the 3D positions of the gene expres-
sion samples of mid-gastrula mouse embryo using stochastic-SOM clustering. SOM is an unsupervised learning 
method proposed by Kohonen, which projects high-dimensional data onto a limited number of output classes 
or units, so that the units with similar sample vectors are located close together on a mapping layer that mimics 
the brain cortex29. As far as we know, there is no method that applies SOM to in silico 3D reconstruction based 
on gene expression data. Although the output layer of SOM is often a two-dimensional (2D) plane, we used a 3D 

Figure 1.  Overview of the 3D reconstruction method of mid-gastrula mouse embryo using stochastic-SOM 
clustering. The gene expression data of mid-gastrula mouse embryo published by Peng et al.27 were downloaded 
from GEO (accession number: GSE65924) and used as input data for our 3D reconstruction method. The 
expression data consisted of 41 samples with 23,361 genes. After filtering out low-expression genes, we used 
5,585 genes as the input data. We generated candidate spatial discriminator gene sets according to GOs. We 
evaluated all the reconstructed structures from stochastic-SOM clustering in terms of success rate and total 
variance. Finally, we projected the samples to the paraboloid to reproduce the embryo structure.
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cube composed of two units in each of the three axes (eight units in total) as an output layer in order to reproduce 
the domain structure of the embryo (Figs 1 and S1). However, because the number of units on the mapping layer 
was extremely small in our model, the learning often converged to local minima in early steps, and domain sep-
aration of the gene samples often became incomplete. Thus, we used the newly developed stochastic-SOM clus-
tering, which gradually converges by introducing a random variable to its neighborhood function (see Methods). 
The results indicate that stochastic-SOM clustering dramatically improves the balance of divergence and con-
vergence of learning, which is called the cooling schedule in other combinatorial optimization methods such as 
simulated annealing (Supplementary Fig. S2).

In our 3D reconstruction evaluation, we calculated the success rate and the variance of the reconstruction 
results. The success rate indicates topological reproducibility and is defined by how frequently the gravity centers 
of the clustered samples derived from the four domains correctly reproduce topological relationships by 100 iter-
ations with different initial coordinates of the samples. Variance is defined by the sample variance of the 3D coor-
dinates of the clustered samples around the gravity center of each domain and indicates the clustering precision. 
We determined the average of the variances of the four domains to calculate the total variance.

3D reconstruction by PCA and GO-based gene sets.  After filtering 23,361 genes, Peng et al.27 per-
formed a clustering of samples based on 158 genes with the top or bottom loading values in the first and second 
principal components calculated by PCA. Thus, we first performed 3D reconstruction using these 158 genes. 
Unexpectedly, however, the success rate of the domain topology was only 1%. This result indicates that the genes 
selected by the PCA are insufficient to properly reproduce the topological relationships of the four domains. We 
also performed 3D reconstruction analysis using the 1,887 differentially expressed genes reported by Peng et 
al. and the above 23,361 entire gene set, but the success rates were 0% in both cases. Therefore, in order to find 
the effective gene sets for 3D reconstruction, a comprehensive reconstruction experiment was performed using 
17,940 GO gene sets, and the success rate and the total variance were computed for each gene set (Fig. 1). We 
selected mouse-specific 6,778 GOs (October 17, 2018) with appropriate gene size (1,000 genes or less, and at least 
three mouse genes after low-expression filtering) out of the 17,940 GOs to exclude too large or too small GOs. 
Among the 6,778 GOs tested, GO:0060412 (ventricular septum morphogenesis) showed the highest success rate, 
84% (Figs 2a and S3a).

3D reconstruction by combinations of GO gene sets.  To increase the success rate, we further tested 
the reconstructions by combining all pairs of GO:0060412 and each of the other 6,777 GOs. As a result, 22 pairs 
exceeded the 84% success rate of GO:0060412, with the highest being 95% (Table 1, Figs 2b, and S3c). We further 
tested all combinations of GO:0060412 with two other GOs selected from the above 22 GOs (22C2 = 231 combina-
tions) and found five combinations that had success rates exceeding 95%, the highest being 97% (Supplementary 
Table S1). Furthermore, when we reconstructed four or five GO combinations of GO:0060412 with the 
other 22 GOs (22C3 = 1,540 and 22C4 = 7,315 combinations, respectively), the highest success rate of 99% was 
observed for five GOs {GO:0060412, GO:0005021, GO:2000392 (or GO:2000394), GO:0031994, GO:0070986} 
(Supplementary Tables S2 and S3), where the gene sets of GO:2000392 and GO:2000394 were identical. 
Surprisingly, although the proposed method is based on unsupervised clustering, the GOs related to morpho-
genesis, such as ventricular septum morphogenesis (GO:0060412), regulation of lamellipodium morphogene-
sis (GO:2000392 or GO:2000394), and left/right axis specification (GO:0070986), were included to reproduce  

Figure 2.  Success rate and total variance of GOs and their combinations. The horizontal and vertical axes show 
the success rate and total variance, respectively. Each dot indicates a feature gene set selected by GO. (a) 6,778 
GOs were selected from 17,940 GOs to which the mouse genes belong according to the following two criteria: 
(i) the number of included genes is less than or equal to 1,000, and (ii) three or more genes from 5,585 genes 
are contained. GO:0060412 (ventricular septum morphogenesis) shows the highest success rate, 84%. (b) The 
results of all pairs of GO:0060412 and the other 6,777 GOs. The success rates of 22 pairs are equal to or higher 
than 85%, and the highest is 95%.
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the 99% success rate. This result suggests that functional gene sets contributing to 3D tissue organization may 
enhance the frequencies of the reconstructions of the desired tissues. Note that there were no combinations of 
six GOs (22C5 = 26,334) that exceeded the 99% success rate (Supplementary Table S4). The total number of genes 
found in the minimum five GOs with the highest success rate (99%) was 20, and many of them were recognized 
as candidate genes involved in morphogenesis and differentiation, such as activin A receptor, Wnt, frizzled, 
Notch ligand, and so on (Supplementary Table S5). We further tested whether we can increase the success rate by 
removing genes one by one or combinations from the minimum five GO gene set. We eventually attained 100% 
success rate by removing two genes, Arl13b and Smad7 (Supplementary Table S6). The final set of 18 genes to 
reproduce the 100% success rate is shown in Table 2.

Visual inspection of 3D reconstruction and correlation heat map of domain gene expres-
sions.  When we inspected the final clusters of samples by our similarity-based visualization method, we found 
samples from D1 and D4 in diagonal locations, and those from D2 and D3 in up-and-down relationships, con-
sistent with the actual domain structure (Fig. 3). Further, when we inspected domain correlations based on the 
gravity centers of the gene expressions in the four domains, we found that D1, D2, and D3 were closely clustered, 
and only D4 showed a gene expression pattern different from the other three domains.

Discussion
In this study, we developed SPRESSO, an ab initio 3D reconstruction method based on stochastic-SOM clus-
tering, to arrange individual samples in a 2 × 2 × 2 cubic structure using their gene expression profiles without 
any landmark genes. In the computational experiment where we applied our method to the gene expression 
data of mid-gastrula mouse embryo (E7.0), the embryo’s domain structure was reproduced with a 99% success 
rate when spatial discriminator gene sets were selected by combinatorial GO optimizations, but not by PCA. 
Surprisingly, when further optimization by gene deletion was carried out, the total number of genes found in the 
minimum five GOs with 100% success rate was 18, and many of them were recognized as differentiation- and 
morphogenesis-related genes (Table 2).

To investigate which genes are the most influential spatial discriminators, we removed each of the 18 genes 
with 100% success rate to see the reductions of the success rate (Supplementary Table S7). Interestingly, when Id2 
(inhibitor of DNA binding 2) was removed, the success rate was dramatically reduced to 37%. Even when Id2 was 
replaced with Cxcl12, which has the highest Pearson correlation coefficient (=0.698) with Id2, the success rate 
remained low at 39%. According to the Web page of Jackson Laboratory, Id2 knockout mice (Id2tm1Mias) exhibit 
phenotypic changes including “reduced body weight” and “a high degree of homozygous lethality” (https://www.
jax.org/strain/028954), indicating that Id2 is a vital gene. Furthermore, when Id2 was removed with the other 17 
genes as pairs, the success rate was further decreased in 12 of the 17 genes (Supplementary Table S8). The most 

Success rate (%)
Total 
variance GO Term

84 (single GO) 0.124 GO:0060412 ventricular septum morphogenesis

85 0.110 GO:0005021 vascular endothelial growth factor-activated receptor activity

85 0.122 GO:1905456 regulation of lymphoid progenitor cell differentiation

85 0.128 GO:0031117 positive regulation of microtubule depolymerization

85 0.137 GO:0005381 iron ion transmembrane transporter activity

87 0.122 GO:0070986 left/right axis specification

87 0.130 GO:0044117 growth of symbiont in host

87 0.130 GO:0044130 negative regulation of growth of symbiont in host

87 0.130 GO:0044146 negative regulation of growth of symbiont involved in interaction with host

87 0.135 GO:0030169 low-density lipoprotein particle binding

88 0.129 GO:0072079 nephron tubule formation

89 0.141 GO:0003214 cardiac left ventricle morphogenesis

90 0.110 GO:2000392 regulation of lamellipodium morphogenesis

90 0.110 GO:2000394 positive regulation of lamellipodium morphogenesis

90 0.127 GO:0002830 positive regulation of type 2 immune response

90 0.127 GO:0045630 positive regulation of T-helper 2 cell differentiation

91 0.126 GO:0010899 regulation of phosphatidylcholine catabolic process

92 0.121 GO:0042827 platelet dense granule

92 0.132 GO:0048681 negative regulation of axon regeneration

93 0.106 GO:0034707 chloride channel complex

93 0.122 GO:1905564 positive regulation of vascular endothelial cell proliferation

95 0.120 GO:0046716 muscle cell cellular homeostasis

95 0.121 GO:0031994 insulin-like growth factor I binding

Table 1.  22 GOs showing success rates of reconstruction equal to or higher than 85% when combined with 
GO:0060412.
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influential gene pair was Id2 with Nrp2 (neuropilin 2), which yielded only 7% success rate when removed. Thus, 
Id2 and Nrp2 may be considered strong spatial discriminator genes that contribute to the arrangement of the 
3D positions of samples in the mid-gastrula embryo structure. ID proteins function as positive regulators of cell 
proliferation and negative regulators of cell differentiation30. According to iTranscriptome27,31 (http://www.picb.
ac.cn/hanlab/itranscriptome), there is a gene expression gradient of Id2 from the anterior proximal side to the 
posterior distal side of the mid-gastrula embryo (Supplementary Fig. S4). Therefore, we conclude that Id2 may 
provide strong spatial information for both the anterior-posterior and proximal-distal axes, which leads to a 63% 
reduction of the success rate even by the removal of a single gene. The Nrp2 gene encodes a transmembrane recep-
tor protein that binds to secreted semaphorin 3C and 3F proteins and interacts with vascular endothelial growth 
factor (VEGF). The Nrp2 gene is involved in early embryonic and cardiovascular development, axon guidance, 
and tumorigenesis32–35. The gene expression gradient pattern of Nrp2 is very similar to that of Id2; Nrp2 shows 
high expression in the anterior proximal region. However, Nrp2 also shows relatively higher expression levels 
than Id2 in the posterior proximal region, and the expressed samples are mostly observed in the proximal region 
(Supplementary Fig. S4).

When we scrutinized other genes in the best 18 gene set to determine which ones decrease the success rate 
most when removed with Id2, we found that the top five genes were Nrp2, Fzd1, Hes1, Enpp2, and Acvr1 in this 
order (Supplementary Table S8). Fzd1 is a member of frizzled gene family encoding 7-transmembrane domain 
proteins, which act as receptors for WNT signaling proteins and are involved in embryonic development36,37. 
HES1 (hairy and enhancer of split-1) is a bHLH transcription factor involved in cell proliferation and differentia-
tion during embryogenesis38–40. Enpp2 (ectonucleotide pyrophosphatase/phosphodiesterase 2) is reported in the 
context of neural development, and its deletion leads to embryonic lethality at an early stage41,42. ACVR1 (activin 
A receptor, type I) protein is part of the bone morphogenic protein (BMP) pathway and involved in the develop-
ment and repair of the skeletal system43–45. ACVR1 is also reported in the context of gastrulation and expressed 
along the entire axis of the primitive streak46. Expectedly, all of the top five genes are involved in development, 
differentiation, cell proliferation, or morphogenesis. According to iTranscriptome, the expressions of all five genes 
are biased to some regions, such as proximal, anterior, posterior, or combinations of these three, indicating that 
they are informative genes that play the role of spatial discriminators.

In the SPRESSO analysis, an exhaustive search of all combinations of genes up to some particular gene set size, 
such as 18, is too computationally expensive (we estimate ~1043 years on our cluster machine with 296 cores). 
Therefore, we performed a limited but promising approach to produce suboptimal combinations of genes through 
GOs. To confirm the validity of our method, we performed the following two computational tests: (i) First, we 
generated 6,778 groups of genes with the same size distribution of the 6,778 GOs by random shuffling the gene 
pairs one million times, and then ran the stochastic-SOM clustering and performed the same series of analysis. 
Interestingly, the highest success rate was 89% with the best 2 GOs, leaving as few as six genes (Egr1, Junb, Lag3, 
M1ap, Nefl, and Sirt7), and the success rate did not increase after removing genes. When we scrutinized the total 
variances, we found drastic changes, i.e., the distribution of the total variances significantly shifted to higher 
values, and the total variance by the above six genes was 0.164 while that of the original data was only 0.10 (Figs 3 
and S3b,d). Thus, GOs are meaningful for selecting gene sets that give not only high success rates but also low 
total variances, while randomized GO data may happen to give high success rates but are inferior in total vari-
ances to the original GO data. (ii) Second, we searched for a smaller gene set that can produce a high success rate 
by starting with each of all 5,585 genes contained in the 6,778 GOs and adding genes one by one to the gene set of 
the highest success rates until we found a gene set of 100% success rate. As a result, 10 combinations of four genes 

Gene Official full name

Acvr1 activin A receptor, type 1

Cited2 Cbp/p300-interacting transactivator, with Glu/Asp-rich carboxy-terminal domain, 2

Coro1b coronin, actin binding protein 1B

Dll1 delta like canonical Notch ligand 1

Enpp2 ectonucleotide pyrophosphatase/phosphodiesterase 2

Fgfrl1 fibroblast growth factor receptor-like 1

Flt1 FMS-like tyrosine kinase 1

Fzd1 frizzled class receptor 1

Hes1 hes family bHLH transcription factor 1

Id2 inhibitor of DNA binding 2

Igfbp3 insulin-like growth factor binding protein 3

Igfbp4 insulin-like growth factor binding protein 4

Itga6 integrin alpha 6

Nrp2 neuropilin 2

Pdgfra platelet derived growth factor receptor, alpha polypeptide

Rreb1 ras responsive element binding protein 1

Slit3 slit guidance ligand 3

Wnt5a wingless-type MMTV integration site family, member 5A

Table 2.  Final set of 18 genes derived from the five GOs reproducing 100% success rate.
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(Tnfrsf1a, Nefl, Myb, and one of 2210016L21Rik, 2900055J20Rik, AA465934, Gm19710, Htra3, Katna1, Pan2, 
Siah1a, Tnnc2, or Uba1) showed 100% success rates. However, these gene sets, similar to the gene-randomized 
GO test, showed total variances as high as 0.18–0.20, indicating that the direct gene combinatorial method with 
smaller gene sets tends to find local optimal solutions with higher variances. It should be noted that these genes 
have no strong relationships with early embryonic development or morphogenesis.

Another major concern of our method is whether it can reproduce similar results against noise. To investi-
gate the robustness and sensitivity to noise, we added Gaussian noise to each of the best 18 genes with the same 
standard deviation by 1–10% of the whole data and examined the 3D structure reproducibility by SPRESSO 
(Supplementary Fig. S5). As a result, the data with 1%, 2%, and 5% noise levels produced success rates as high 

Figure 3.  Visualization of reconstructed models from gene expression profiles of mouse embryo samples. 
Reconstructed mouse embryo models and heatmaps of the domain correlation for different gene sets are shown. 
When only the feature gene set, GO:0060412, was used, the success rate was 84%. However, when four optimal 
GOs were added and Arl13b and Smad7 genes were removed, the success rates increased to 99% and 100%, 
respectively, and the total variances became smaller than that of GO:0060412 only. The visualization distance 
from the centroids of the output units to each sample reflects the similarity (Euclidean norm) between the 
centroids and the sample vectors. In the domain correlations, D4 shows a distinct gene expression pattern from 
the other three domains.
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as 94.9%, 91.3%, and 80.3%, respectively, with total variances as low as 0.10–0.11. However, the data with 10% 
noise produced only 65.8% success rate, with a higher total variance of 0.12. Thus, we conclude that our method 
is robust and reproducible with conventional noise levels, such as <5%, in the data. Furthermore, we investigated 
GO gene set size dependencies (Supplementary Fig. S3e–h). The results indicate that the gene size of the GOs is 
not an important factor for a higher success rate, but the signal-to-noise ratio (SNR) might be. In other words, 
as the total number of genes increases, the fraction of non-spatial discriminator genes in the gene set may also 
increase, which will cause noise in the SOM clustering process and thus reduce the success rate.

Our method is intended not only to find influential spatial discriminator genes but also to computationally 
reproduce tissue 3D structures from a large amount of single-cell transcriptome data, in which positional infor-
mation in the original tissue structure was lost in the single-cell analysis. To effectively reproduce the original 
tissue structure, however, one first needs to identify spatial discriminator gene sets, which may be unique to each 
tissue type, with at least one learning data set consisting of gene expression data and domain positions of cells 
for each tissue type of interest. The positional information will be quite useful to annotate cell types as well as 
to estimate cellular functions. It should be emphasized that our method is not only an improvement of existing 
methods, but also a novel ab initio 3D tissue reconstruction approach. Self-organization is a well-known princi-
ple that has been studied in developmental biology for many years. Although the reasons why stochastic-SOM 
clustering can contribute to reproducing the 3D domain structures of early mouse embryo remain unknown and 
are still under investigation, we speculate that some kind of domain-to-domain similarities, such as hierarchical 
gradients of morphogens or other structure contributor gene expressions, might be important factors that influ-
ence the spatial relationships of cell types47,48. Further investigations of the spatial discriminator genes obtained 
by our method are warranted to enhance our understanding of 3D structure organization models based on the 
coordinated gene expressions of living tissues in the future.

Finally, there is a limitation of this SOM approach; it may not be usable for other distinct or exclusive samples 
that show totally different gene expression patterns. For those cases, different mechanisms of interactions (e.g., 
ligand-receptor interactions) must be added to the constraints of the SOM clustering. For more complex struc-
tures, it is further necessary to change the implementation of the SOM structure model. We are currently devel-
oping an alternative method based on interaction models, which may recapitulate complicated structures more 
easily and with more domains from various kinds of tissues or organs than the current cubic structure model.

Methods
Preparation of candidate spatial discriminator gene sets.  To extract spatial discriminator genes con-
taining information crucial for reconstructing a 3D tissue structure from all 23,361 mouse genes, we removed 
low-expression genes as follows. We initially extracted 5,585 genes with FPKM values greater than 1 in at least 
two of all 41 samples and variance of log10 (FPKM + 1) across the 41 samples greater than 0.05 for the discrim-
inator gene set selection. Regarding the spatial discriminator gene set obtained by PCA by Peng et al.27, genes 
with the top and bottom 40 loading values from the first and second principal components, respectively, were 
used (a total of 158 unique genes). We also selected 6,778 GO gene sets from all 17,940 mouse GOs (October 17, 
2018) on the basis of two criteria: (i) the number of included genes is less than or equal to 1,000, and (ii) three or 
more genes from the aforementioned 5,585 genes are contained. Although the GO gene data set was extracted 
by the R/Bioconductor package “biomaRt” (Ensembl Release 94), information of the descendant GO genes was 
not included in the data set. Thus, the “GO.db” package was used to obtain all offspring GO gene sets to build 
complete GO gene data sets.

Stochastic self-organizing map (stochastic-SOM) clustering.  Before presenting stochastic-SOM 
clustering, we briefly review the general SOM clustering algorithm, which is based on the unsupervised learn-
ing proposed by Kohonen29. The general SOM projects high-dimensional data onto a limited number of output 
classes or units, so that different units with similar centroid vectors are located close together on a mapping layer 
that mimics the brain cortex. Let the p-dimensional sample vectors j (j = 1, 2, …, n) given as input be xj = (xj1, xj2, 
…, xjp). The 2D space of the output layer is composed of k units, and weight vector mi = (mi1, mi2, …, mip) (i = 1, 2, 
…, k) is allocated to each unit. We initially calculate the Euclidean distance between input sample j and all units i, 
and find that unit c is the best matching unit (BMU) with the highest similarity, according to Eq. (1):
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where hci(t) is called a neighborhood function and is determined by the distance from unit c and constrains how 
much mi(t) receives the learning influence of xj when it is being updated. α(t) and σ(t) are the learning rate and 
function, respectively, that define the radius of the neighboring region. rc and ri are position vectors in the output 
layers of units c and i. The SOM algorithm repeats updates of mi until learning step t reaches the number of learn-
ing times T given in advance for all input samples j. In the general SOM, the result varies depending on the order 
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in which sample j is input, so that a batch-learning SOM has been proposed so that the input order does not affect 
the result. In the batch-learning SOM, each learning step is executed by Eqs (4) and (5):

= −
∈ 

‖ ‖x mc t t( ) arg min { ( ) }
(4)j

i k
j i

{1, , }

+ =
∑

∑
.

=

=

m
x

t
h t

h t
( 1)

( )

( ) (5)
i

j
n

c t i j

j
n

c t i

1 ( )

1 ( )

j

j

In the developed method, we implement a 3D batch-learning SOM in which the output layer is extended from 
2D to 3D space. The output layer has a structure of a 3D cube composed of a total of eight units in which two units 
are assigned to each of the x-, y-, and z-axes (Supplementary Fig. S1a). This assumes that the mid-gastrula mouse 
embryo structure consists of four parts (anterior, posterior, left, and right) on the xy-plane and two parts (proxi-
mal and distal) on the z-axis (Supplementary Figs S1b and S6a). Although the weight vectors of BMUs and their 
adjacent units are updated according to neighborhood function hci(t) in the normal learning step, we introduce 
the constraint in which the diagonal units on the xy-plane are not updated, because actual mid-gastrula mouse 
embryo has a hollow structure in the middle of the body and the diagonal units are not spatially connected.

In the general SOM, if the number of units in the output layer is extremely small, the learning often converges 
to local minima in early steps (Supplementary Fig. S2a). Therefore, by introducing a random variable to neighbor-
hood function hci(t) at time t, we achieve stochastic-SOM clustering, which makes the learning process converge 
gradually (Supplementary Fig. S2b). The neighborhood function of the stochastic-SOM clustering is shown as 
equation (6):

α
σ

=




−

. ⋅ − 




r rh t t
t

( ) ( )exp rnd[0 5, 1)
2 ( )

,
(6)

ci
c i

2

2

where rnd [0.5, 1) is a function that generates a uniform random value between 0.5 and less than 1.0. For each 
set of different input genes, we perform 100 trials of reconstructions starting from different initial weight vec-
tors because the clustering result of SOM is affected by the initial parameters of the map. In this computational 
experiment, the initial values of neighborhood region σ and learning rate α of the map are set to 0.6 and 1.0, 
respectively, and the random seed is changed from 0 to 99. Stochastic-SOM clustering is implemented using 
programming language Python with “Pandas” and “NumPy” packages for manipulation of the gene expression 
data and matrix calculation.

Visualization of 3D reconstructed mid-gastrula mouse embryo structure.  We visualized the 
mid-gastrula mouse embryo structure by projecting samples on a paraboloid based on position information 
estimated by stochastic-SOM clustering (Fig. 1). Here, we devised a similarity-based visualization that consid-
ers similarity between the weight vector of each unit and the sample coordinates as the projecting position (see 
Supplementary Information).

Success rate and variance.  Evaluation of the reconstructed models was carried out by comparing the top-
ological relationships of the gravity centers of the four domains, D1 to D4, of the reconstructed model with the 
domain topology of the actual mid-gastrula mouse embryo structure. We first assigned D1 to D4 to units with the 
SOM clustering results using the gravity centers (xDi, yDi, zDi) (i = 1, 2, 3, 4) of samples from the original domains. 
An evaluation value, s, which indicates whether the four domains are correctly arranged or not, was obtained by 
the following calculations (Steps 1 to 5) (Supplementary Fig. S6):

(Step 1) s′←0
(Step 2) s′←s′ + 1 if D1 and D4 are positioned diagonally on the xy-plane
(Step 3) s′←s′ + 1 if D2 and D3 are adjacent in the z-axis
(Step 4) s′←s′ + 1 if Di (i ∈ {1, 4}) and Dj (j ∈ {2, 3}) are adjacent on the xy-plane
(Step 5) s ← 1 if s′ is equal to 4C2, otherwise, s ← 0.

That is, s becomes 1 if and only if the relative positions of the expression domains are equivalent to that of an 
actual embryo’s domain structure for all pairs of domains. Through 100 iterations, we compute the “success rate” 
of each input feature gene by equation (7):

∑=
=

Success rate
T

s1 ,
(7)t

T

t
1

where T is the number of iterations, and st is score s at the t-th iteration.
In addition to the success rate, we introduced another criterion, “total variance,” which is defined by equation 

(8). Total variance indicates the degree of convergence of the samples for each domain:

∑∑= ⋅ + +
= =

( )Total variance
T D

v v v1 1
3

,
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D

t t t
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where D is the number of domains, and vtix
, vtiy

, and vtiz
 are the unbiased variance of the sample positions of 

domain i at the t-th iteration for the x-, y-, and z-axes, respectively.

Domain correlation.  The correlations of the four domains are computed by using the gravity centers of sam-
ples belonging to individual domains. The computation is done by the “cor” function of R standard library, and 
the heatmaps in Fig. 3 are drawn by the “heatmap.2” function of the “gplots” package and “rich.colors” function 
of “RColorBrewer” on R.

Data Availability
The mid-gastrula mouse embryo gene expression data used in this study were published by Peng et al.27 and are depos-
ited in NCBI GEO under accession number GSE65924 (Supplementary file: GSE65924_E1.gene.expression.txt.gz).

Code Availability
The proposed methods including the feature gene selection, the 3D reconstruction using stochastic-SOM clus-
tering, and visualization, are implemented in R and Python and are available at http://github.com/tmorikuicr/
spresso.
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