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Ischemic stroke is one of the major causes of neurological morbidity and mortality in the
world. Although the management of ischemic stroke has been improved significantly, it
still imposes a huge burden on the health and property. The integrity of the neurovascular
unit (NVU) is closely related with the prognosis of ischemic stroke. Growing evidence
has shown that semaphorins, a family of axon guidance cues, play a pivotal role in
multiple pathophysiological processes in NVU after ischemia, such as regulating the
immune system, angiogenesis, and neuroprotection. Modulating the NVU function via
semaphorin signaling has a potential to develop a novel therapeutic strategy for ischemic
stroke. We, therefore, review recent progresses on the role of semphorin family members
in neurons, glial cells and vasculature after ischemic stroke.
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INTRODUCTION

Ischemic stroke is one of the leading causes resulting in high mortality and substantial loss of
neurological function in the world (Tsai et al., 2013). Ischemic stroke occurs due to disruption
or significant reduction in the blood flow to a brain region, resulting in permanent neurological
deficits or death. Relative to weight, the brain oxygen consumption is very high (accounts for
20–30% of the total oxygen consumption) and needs more ATP through mitochondrial electron
transport chain to maintain cell viability (Dienel and Hertz, 2001; Lin and Powers, 2018). Brain
has no energy reserve, and aerobic glycolysis is the brain’s principal source of ATP (Cunnane
et al., 2020). Therefore, brain is more susceptible to hypoxia. Pathogenic mechanisms following
ischemic stroke including excitotoxicity, oxidative stress, inflammation, and apoptosis (Datta et al.,
2020). Previous studies highlighted ischemia-induced neuronal damage and neuronal protection
has been emphasized during treatment (Wang et al., 2021). Current studies focus on the role
of the neurovascular unit (NVU) in the pathophysiological processes of ischemic stroke (Steliga
et al., 2020). Regulation of the NVU in multiple ways promotes the rehabilitation of neurological
function, such as maintaining blood-brain barrier (BBB) integrity and regulating glial cell activity.
A number of studies confirmed that semaphorins affect the prognosis of ischemic stroke by
regulating NVU (Wei et al., 2015; Hira et al., 2018; Zhou et al., 2018b; Zhao et al., 2021). Increased
evidence indicated that semaphorins regulate cell morphology and physiological function during
the development of cardiovascular, immune, endocrine, respiratory and central nervous systems
(CNS) (Carulli et al., 2021). Moreover, semaphorins play an important role in the pathological
processes of the diseases in these organ systems. In CNS, semaphorins have been shown to be
involved in many diseases, and several semaphorin members have been reported to participate in
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pathogenic process of ischemic stroke (Sawano et al., 2015;
You et al., 2019; MacKeigan et al., 2020). These evidences
point to a role of semaphorins in the regulation of ischemic
stroke. Therefore, semaphorins are considered as a promising
therapeutic tool in ischemic stroke. In this review, we focus on
the role of semaphorins in NVU after ischemic stroke.

THE NEUROVASCULAR UNIT AND
STROKE

Risk factors for ischemic stroke includes age, hypertension,
diabetes, atrial fibrillation, hypercholesterolemia, etc. (Tsai et al.,
2013; Sarikaya et al., 2015). No matter the precipitating event,
the result of ischemic stroke is cerebral cell lacking oxygen
and energy, leading to disturbed cellular metabolism until death
at the molecular level (Sekerdag et al., 2018). The mechanism
for the brain injury caused by ischemia includes excitotoxicity,
oxidative, and nitrative stress, inflammation and apoptosis
(Khoshnam et al., 2017). Multiple types of cells, including
neurons, glial cells, endothelial cells and pericytes, undergo
those pathophysiological process and lead to cell destruction
finally (Hou and MacManus, 2002). Once ischemia occurs,
cells especially neurons are unable to sustain their normal
function due to hypoxia. Then, ischemic brain tissue can
release inflammatory cytokines, increase oxygen radical and
excitatory neurotransmitter production, and disrupt the BBB,
which causes further tissue damage (Khoshnam et al., 2017;
Jiang et al., 2018). Inhibition of those pathophysiological process
can mitigate cell damage (Tao et al., 2020). NVU dysfunction
directly promotes the breakdown of the BBB, and present theory
emphasizes that NVU repair is important to improve functional
recovery, namely neurorepair (Davis et al., 2021; Wang et al.,
2021).

NVU is consisted of neurons, glial cells, endothelial cells,
smooth muscle cells (SMCs), pericytes, and extracellular matrix
(Figure 1A; Iadecola, 2017). Neurons, the core of the NVU,
detect very little changes of nutrients and oxygen, transmit
associated signals to other cells (Banerjee and Bhat, 2007). Glial
cells exert pivotal effects during ischemic stroke. Microglial
cells are rapidly activated after ischemic stroke and release
inflammatory cytokines which activate astrocytes. Astrocytes, by
secreting proinflammatory cytokines, chemokines, and matrix
metalloproteinase 9, communicate simultaneously with both
neurons and blood vessels and then trigger the remodeling
of NVU (Gordon et al., 2008; Lopez-Bayghen and Ortega,
2011). The functional characteristics of astrocytes are altered at
the different stages of ischemic stroke. Astrocytes limit brain
damage in the acute stages and inhibit axon regeneration in
the chronic stages (Xu et al., 2020). Different polarizations of
astrocytes also have different functional characteristics under
pathological conditions (Liu et al., 2020). Endothelial cells
produce vascular active factors to control vascular tone, maintain
vascular permeability and integrity of NVU together with SMCs
and pericytes (Duchemin et al., 2012). Cross talk between cells
in NVU through a complex and delicate network. Integrity
of NVU is highly important to maintain the homeostasis

of brain microenvironment and regulate cerebral blood flow
(Armstead and Raghupathi, 2011).

Brain ischemic injury can stimulate the NVU to activate
inflammatory cells, upregulate adhesion molecules, release
multiple cytokines such as interleukins-1β (IL-1β) and tumor
necrosis factor-α (TNF-α) (Wang et al., 2021). Inflammatory
factor exacerbates cellular damage and death. Inhibition of
inflammatory response can significantly improve the prognosis
of stroke. In addition, astrocytes, one of the most important
components of NVU, can secrete neurotrophic factors that
guide neuronal migration and facilitate neuronal and axonal
regeneration (Xu et al., 2020). Therefore, in-depth study of the
NVU provides potential target for ischemic stroke treatment.

ROLE OF SEMAPHORINS IN ISCHEMIC
STROKE

Semaphorins are a large family of axon guidance cues, which
consist of a sema domain (a specific region of about 500 amino
acids), a plexin-semaphorin-integrin (PSI) domain, and distinct
protein domains (Figure 2; Kolodkin et al., 1993; Lu and Zhu,
2020). Based on the structure and distribution characteristics,
semaphorin family proteins are divided into eight classes (Hu
and Zhu, 2018; Limoni, 2021). Class 1–2 and class 5C are found
in invertebrates, while classes 3–7 are found in vertebrates and
class V is found in virus. In vertebrates, semaphorin 3 and 4
have 7 members, namely A–G; semaphorin 5 has 2 members,
named 5A and 5B; semaphorin 6 has 4 members, named 6A to
6D; semaphorin 7 has only one member (Hu and Zhu, 2018).
In addition, class 1, 4, 5, and 6 are bound to the cell membrane
through a transmembrane domain; class 2, 3, and V can be
secreted; and class 7 is the only glycosylphosphatidylinositol
(GPI)-anchored protein. The structure of semaphorins is shown
in Figure 2. The functions of semaphorins are mediated by their
receptors plexins and neuropilins (Figure 2; Raper, 2000; Nissen
and Tsirka, 2016; Junqueira et al., 2021). Invertebrates have
plexins A and B, and vertebrates have plexins A to D. However,
class 3 mediated signaling requires the binding of both plexins
and neuropilins (Hu and Zhu, 2018). Moreover, other molecules,
such as Otk (transmembrane protein Off-track) and CD27, work
as a part of receptor complex of the semaphorins or directly as
their receptors (Winberg et al., 2001; Xue et al., 2016).

Early studies in neurons revealed that semaphorins play
attractive or repulsive role in axonal growth, regulating the
precise wiring of neural architecture. During the last three
decades, semaphorins have been considered as key regulators of
cell physiological process in different organ systems, especially
in the nervous system, the circulatory system, and the immune
system (Carulli et al., 2021). The major function of semaphorins is
to modulate cytoskeleton motion and cell adhesion, and thereby
affect cell morphology, growth, differentiation, migration and
survival (Nakamura et al., 2000). In addition, a great deal of
progresses has been made in defining the roles of semaphorins
in the regulation of CNS diseases under pathological conditions,
such as ischemic stroke. Emerging evidence suggests that
semaphorins are involved in the development of atherosclerosis
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FIGURE 1 | Regulation and mechanism of semaphorin 3A (Sema3A) in neurovascular unit (NVU) after ischemic stroke. (A) NVU is consisted of neurons, glial cells,
endothelial cells, smooth muscle cells (SMCs), pericytes, and extracellular matrix. The expression of Sema3A in NVU is up-regulated in ischemic stroke. Sema3A
inhibits the NVU function by inducing neuron death, activating the inflammatory response, reducing the function of endothelial cells and pericytes to increase
vascular permeability, and increasing neovascularization. In addition, Sema3A also promotes the differentiation of neural stem cells (NSCs) into neural cells in the
injured cortical tissue. (B) Sema3A is upregulated in ischemic stroke, which recruits Fer and CRMP2 (Collapsin response mediator protein) binding to its receptor
NRP1(neuropilin), inducing neuron death. The cross-talk between Sema3A and Wnt/β-catenin pathways participates in the regeneration process. Sema3A inhibit
axonal growth via increasing inprostaglandin D2 synthase expression and glial scar information in glial cells. Sema3A bind to the NRP2 (neuropilin)/VEGFR1 (vascular
endothelial growth factor receptor) receptor complex and disrupt PP2A (protein phosphatase 2A) interaction with VE (Vascular endothelial)-cadherin, increasing
vascular permeability in endothelial cells.

and thrombus formation (Zhu et al., 2007; Hu and Zhu, 2018).
Semaphorins act as important regulators of neurogenesis, cell
migration, cell apoptosis, vascular morphogenesis, angiogenesis
and immune responses in the pathologic process of ischemic
stroke (Tian et al., 2009; Limoni and Niquille, 2021; Yu et al.,
2021). Semaphorin 3A (Sema3A) and semaphorin 4D (Sema4D)
are important for cell apoptosis, inflammatory response,
neurogenesis and angiogenesis. Semaphorin 3B (Sema3B) can
affect the integrity of neuron dendritic structure. Semaphorin
3E (Sema3E) suppresses the migration capacity of pericytes
toward endothelial cells, increases the vascular permeability,
and damnifies NVU. Semaphorin 4B (Sema4B) serves as an

astrocyte receptor to regulate astrogliosis after ischemic stroke.
Semaphorin 6B (Sema6B) and semaphorin 7A (Sema7A) mainly
involves in angiogenesis and vascular permeability.

SEMAPHORIN 3A

Sema3A was first found in the chicken brain and induced
the collapse and paralysis of neuronal growth cones (Kolodkin
et al., 1993; Luo et al., 1993). It is the prototypical and deeply
understood member of the semaphorin family. Sema3A and
its receptors (neuropilins and plexins) were found to express
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FIGURE 2 | The semaphorin family and the vertebrate semaphorins’ main receptors. The semaphorin family proteins are divided into eight classes, class 1–7 and
class V. Classes 1–2 and class 5C are found in invertebrates, while classes 3–7 are found in vertebrates. Class V is found in virus. Classes 1–7 consist of a large
sema domain and a plexin-sema-integrin (PSI) domain. Classes 2–4 and class 7 contain an immunoglobulin (Ig)-like domain. Class 3 contains a basic domain. Class
4 contains a PDZ (Post-synaptic density-95, disks-large and zonula occludens-1) binding site. Class 5 contains a thrombospondin repeat. Class 7 is
glycosylphosphatidylinositol (GPI)-linked. Neurophilins and plexins are semaphorin 3 receptors. For semaphorin 4, the main receptors are neurophilins and plexinB,
C, D. For semaphorin 5, the main receptors are plexinA and plexinB. PlexinA are the main receptors of semaphorin 6. PlexinC and integrin are the main receptors for
semaphorin 7.

in the nervous system including neurons, microglial cells,
astrocytes, endothelial cells and oligodendrocytes (Takahashi
et al., 1999; Fujita et al., 2001; Hashimoto et al., 2004).
Sema3A binds to its high affinity receptor neuropilins, but the
signal cannot be transmitted effectively. The signal delivery
process simultaneously requires another receptor plexins to form
complex. The complex is responsible for initiating the signal
transduction and leading to growth cone collapse and axon
repulsion (Nakamura et al., 2000). Sema3A is closely associated
with ischemic stroke and affects stroke recovery (Pekcec et al.,
2013). Oxygen-glucose deprivation (OGD) is widely used as an
in vitro model for stroke, showing similarities with the in vivo
models of brain ischemia (Tasca et al., 2015). The expressions of
Sema3A and neuropilin (NRP) -1 in cultured rat cortical neurons
are up-regulated after OGD treatment, which in turn take part
in the neuron apoptosis (He et al., 2018; Yang et al., 2019). In
the middle cerebral artery occlusion (MCAO) model, Fujita et al.
(2001) found that the expression of Sema3A and neuropilins is
temporally upregulated and could not induce neuron death in
the non-infarcted parietal cortex on the lesion side. However, up-
regulated Sema3A and its receptors, lasting for a longer time,
could activate glial cells to induce neuronal death in infarct
lesion (Figure 1A; Fujita et al., 2001). Hypoxia increases oxygen
radical production in neuronal cells (Khoshnam et al., 2017).

Regulating Sema3A expression can decrease OGD-mediated cell
damage by reducing neuronal oxidative stress and apoptosis
(Yang et al., 2021; Zhao et al., 2021). A number of studies have
indicated that the mechanism involved in cerebral ischemia-
induced neuronal death and neurovascular unit damage is
NRP1 (not neuropilin-2, NRP2)/Fer/CRMPs (Collapsin response
mediator protein) pathway (Figure 1B; Aylsworth et al., 2009;
Hou et al., 2009, 2010; Jiang et al., 2010; Whitehead et al.,
2010). CRMP has been identified as an intracellular signaling
mediator for Sema3A (Makihara et al., 2016). In this signaling,
cyclin-dependent kinase 5 (Cdk5) primarily phosphorylates the
residues of Ser522 of CRMP2. Glycogen synthase kinase-3β(GSK-
3β) subsequently phosphorylates the residues of Thr509 and
Thr514 of CRMP2 (Nakamura et al., 2018). Another study
indicated that the nuclear transcription factor E2F1 plays an
important role in modulating neuronal death in response to
cerebral ischemia by enhancing the NRP1 level via binding NRP1
promoter sequence (Jiang et al., 2007). Nonetheless, Beck et al.
(2002) showed that Sema3A, 3C, and 3F appeared to be strongly
downregulated in the infarcted and peri-infarct cortical neurons.
The authors speculated that low level of Sema3 in neurons could
promoted neuronal reorganization in the peri-infarct area and
neurological function recovery following experimental cerebral
ischemia (Beck et al., 2002).
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Neurogenesis plays an important role in producing a full
recovery of the damaged brain after stroke (Xin et al., 2017;
Santopolo et al., 2020; Rahman et al., 2021). It is known that
neural stem cells (NSCs) exist in the subventricular zone of the
lateral ventricle and the dentate gyrus of the hippocampus and
can differentiate into cells including neurons, astrocytes, and
oligodendrocytes (Alvarez-Buylla et al., 2002; Arvidsson et al.,
2002; Taupin and Gage, 2002). NSCs can be activated by diverse
stimuli such as hypoxia (Vecera et al., 2020; Gengatharan et al.,
2021). Recent study showed that Sema3A plays a pivotal role in
promoting the differentiation of NSCs into neural cells in the
injured cortical tissue (Figure 1A). In-depth study has found
that the cross-talk between Sema3A and Wnt/β-catenin pathways
participates in the regeneration process (Figure 1B; Xu et al.,
2018). Another study indicated that Sema3A/NRP1 signaling is
essential for cell differentiation into various essential cell types at
defined target sites (Schwarz et al., 2009).

Glial cells were originally described as structural support in
maintaining biological integrity. Accumulating evidence shows
that glial cells act as a double-edged sword in the pathophysiology
processes of various diseases including stroke (Abe et al., 2020).
In the acute stage of ischemic stroke, glial cells activation
could remove metabolic waste and produce anti-inflammatory
cytokines and growth factors (Wanrooy et al., 2021). In the
chronic stage of stroke, axonal regeneration is related to better
prognosis. Activation of glial cells and glial scar formation create
major inhibitory environments for axonal outgrowth in the
peri-infarct area (Qin et al., 2019; Zhu et al., 2021). Astrocytes
are involved in various pathophysiological processes in central
nervous system (CNS), including homeostasis maintenance,
synapse formation, structural support, cerebral blood flow
regulation and BBB formation (Jha et al., 2018). Sema3A/NRP
signal pathway can activate glial cells to exert phagocytosis
which induces neuron apoptosis and participates in glial scar
formation in ischemic stroke (Kaneko et al., 2006; Hou et al.,
2008; Hira et al., 2018). Further study showed that MCAO rats
treated with Sema3A inhibitor showed a significant improvement
in motor function compared with the vehicle-treated rats. In
addition, activation of astrocytes was suppressed by Sema3A
inhibitor treatment. These results indicate that inhibition of
Sema3A in the peri-infarct area suppresses activated astrocytes
(Figure 1A; Hira et al., 2018). The underlying mechanism
of axonal outgrowth is related to axonal GSK-3β expression
and astrocyte-derived exosomes with prostaglandin D2 synthase
expression (Figure 1B). In addition, Increasing IL-1β, released
by microglial cells in ischemia, induces microvascular injury
through the release of Sema3A from adjacent neurons and it can
be reversed by knockdown of Sema3A (Rivera et al., 2013).

Vascular permeability disruption occurs during cerebral
ischemia resulting in neuronal damage and prolonged loss of
brain functions (Hou et al., 2015; Bernardo-Castro et al., 2020).
Endothelial cells were damaged firstly in the ischemic region,
which resulted in vascular permeability of damaged BBB and
caused severe inflammation (Krueger et al., 2015; Ko et al.,
2020). Sema3A acts as a potent inducer of vascular permeability
via activation of NRP1 (Figure 1A; Acevedo et al., 2008).
The expressions of Sema3A and NRP1 in endothelial cells

after OGD treatment were up-regulated (Yang et al., 2019).
However, vascular endothelial cell death was not apparent,
which was associated with the increased generation of vascular
endothelial growth factor (VEGF) after ischemia. VEGF/NRP
signals promote angiogenesis in endothelial cells (Beck et al.,
2002). As we know, NRP1 is a common receptor for the
Sema3A and VEGF. The observations suggest that vascular
NRP1 preferentially confers VEGF164 signals, while axonal NRP1
preferentially transmits Sema3A signals (Vieira et al., 2007). Hou
et al. (2015) revealed that Sema3A bound to the NRP2/VEGFR1
receptor complex caused disorganization of F-actin stress fiber
bundles and increased endothelial monolayer permeability,
which contributes to ischemic brain damage (Figure 1B). VE
(vascular endothelial)-cadherin expression is crucial for vascular
permeability (Gavard, 2009; Treps and Gavard, 2017). Le Guelte
et al. (2012) reported that Sema3A inhibits the serine protein
phosphatase 2A (PP2A) activity and disrupts PP2A interaction
with VE-cadherin, increasing vascular permeability (Figure 1B).
Studies have shown that endothelial cells actively participate
in synaptic plasticity in specific functional domains of brain
to control some functions such as neurogenesis (Giacobini
et al., 2014). Wu et al. (2019) found that Sema3A inhibited
VSMC proliferation and migration by increasing the NRP1-
plexinA1 complex and decreasing the NRP1- platelet-derived
growth factors receptor (PDGFR)-β complex, thus inhibiting
phosphorylation of PDGFR-β.

Pericytes are tightly connected to endothelial cells and
distributed at discontinuous intervals in vascular basement
membrane to maintain local microvessel characteristics (Hess
et al., 2019). In CNS, pericytes contribute to the formation of the
blood-brain barrier, and act as sensors of hypoxia and mediate
precise responses to protect the vulnerable neurons (Dore-Duffy
et al., 2005; Yang et al., 2017). Pericytes play a pivotal role
in NVU injury in ischemic stroke (Duz et al., 2007). Casazza
et al. (2011) found that Sema3A reduces the number of pericyte-
coated vessels in tumor blood vessels, which correlated with
endothelial cell survival. In ischemic stroke, pericytes respond
to ischemia promptly and are involved in various pathological
and repair processes. We conjectured that a connection between
Sema3A and pericyte dysfunction which leads to the progression
of vascular diseases such as stroke (Figure 1).

SEMAPHORIN 3B

Sema3B, another secreted member of the semaphorins, regulates
axonal extension. Neuron dendritic structure in the motor
cortex is associated with signal transmission of motor function
and cell interaction. Ischemic stroke can damage dendritic
structure, such as dendritic spine density, and induce motor
deficits (Hartle et al., 2010; Huang et al., 2018). Dendritic spines
contain different signaling molecules and machinery required for
synaptic transmission and plasticity. Damaged dendritic spines
cause cell-cell interaction dysfunction in NVU (Taylor et al.,
2015). The L1 family Close Homolog of L1 (CHL1) is important
for proper development of cortical networks (Pratte et al., 2003).
Mohan et al. (2019) found that CHL1 was colocalized with
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Sema3B in pyramidal neurons and formed a complex with
Sema3B receptor NRP2 and plexinA4. Treatment with Sema3B-
Fc decreased spine density but did not induce spine retraction in
CHL1-null neurons. This result indicated that CHL1 decreased
spine density of cortical pyramidal neurons via stimulation by
Sema3B (Mohan et al., 2019). CRMP not only plays a key role
in axon guidance, but also regulates dendritic morphogenesis.
A study showed that Sema3A signaling also regulated dendritic
spine density via both CRMP1 and CRMP2 (Makihara et al.,
2016). Another study found that dendritic spine density was
decreased in cortical pyramidal neurons treated with semaphorin
3F (Sema3F) (Mohan et al., 2018). Thus, multiple semaphorin
members can affect the integrity of neuron dendritic structure
caused by ischemic stroke.

SEMAPHORIN 3E

Sema3E, an 85- to 90-kDa protein, was defined in tumor
cells to play a role in angiogenesis (Hu and Zhu, 2018). At
present, Sema3E and its receptors are thought to be closely
related to stroke prognosis. Studies indicated that Sema3E
and its receptor PlexinD1 inhibit cortical and striatal neurons
development (Ding et al., 2011; Oh and Gu, 2013). In a
rat transient middle cerebral artery occlusion model, Sema3E
protein was increased in the penumbra area (Zhou et al.,
2018a; Yu et al., 2021). Immunofluorescence study indicated
that Sema3E staining is mainly colocalized with neurons and
that the receptor PlexinD1 is expressed in endothelial cells in
NVU. However, Inhibiting Sema3E signaling improves cerebral
perfusion, functional outcome and survival after operation.
On the other hand, Sema3E suppresses the migration capacity
of pericytes toward endothelial cells, increases the vascular
permeability, and damages NVU (Krueger et al., 2015; Zhou
et al., 2018a). Mechanistically, Sema3E decreased dynamic delta-
like 4 expression via inhibiting Ras-related C3 botulinum toxin
substrate 1-induced c-Jun N-terminal kinase phosphorylation
(Zhou et al., 2019).

In addition, the characteristics of atherosclerotic plaques are
closely related to the development of ischemic stroke. However,
upregulated Sema3E promotes plaque development by increasing
macrophage migration and promoting macrophage retention
and chronic inflammation (Wanschel et al., 2013). Therefore,
Sema3E negatively regulates vascular permeability, inducing
NVU damage, and inhibiting Sema3E signaling is a novel
therapeutic strategy for ischemic stroke.

SEMAPHORIN 4D

Sema4D, as a classic member of the semaphorin family and
negative regulator of axon guidance, also regulates inflammation
and angiogenesis by interacting with astrocytes, endothelial cells,
and pericytes through its receptors plexins or CD72 (Figure 3A;
Hu and Zhu, 2018). Sema4D was the first semaphorin that was
determined to regulate inflammatory and immune response.
Immune system functions rely on the interactions between

leukocytes and endothelial cells via various adhesion molecules
(Heemskerk et al., 2014). Furthermore, Sema4D works not only
as a directional cue for endothelial cells migration, but also
increases the expression of VEGF or angiopoietins to regulate
angiogenesis (Conrotto et al., 2005). We could conclude that
both the pathophysiological and neurovascular repair processes
of ischemic stroke are strongly associated with the integrity
of the NVU and that further investigations into Sema4D
treatment targeted at the NVU could expand the therapies against
deleterious outcomes following ischemic stroke.

Microglial-released proinflammatory and cytotoxic factors
induced secondary brain damage after ischemia, and Sema4D
inhibited LPS-induced microglial cells activation and migration
(Toguchi et al., 2009). After ischemic stroke, the initial
inflammatory response is mediated by the activation and
recruitment of microglial cells, and inhibition of glial cells
activation alleviates brain damage by ischemia (Li and Barres,
2018; Qin et al., 2019). The nitric oxide (NO) which is produced
by the ischemia activated inducible nitric oxide synthase (iNOS),
affecting cell survival by changing the functions of caspases
and metalloproteases (Abdul-Muneer et al., 2013). Sema4D
upregulates NO production by inducing IFN-β expression in
microglial cells in the ischemic cortex (Sawano et al., 2019;
Tsuchihashi et al., 2020). In ameboid microglial cells, L-arginine
is metabolized by iNOS to synthesize NO through Sema4D-
RhoA-MAPK/ERK signal (Figure 3B; Bijian et al., 2005; Okuno
et al., 2010; Sawano et al., 2015). Decreased Sema4D expression
enhances activated-ramified microglial cells proliferation which
suppresses neuronal apoptosis in ischemic brain (Sawano
et al., 2015). The study also indicated that Sema4D promoted
cytotoxic activation of microglial cells in the peri-ischemic
cortex (Sawano et al., 2015). Mechanistically, Sema4D/PlexinB1
signaling promotes an inflammatory response in pericytes and
microglial cells and increases BBB permeability via regulating
pericytes function after stroke (Zhou et al., 2018b).

Oligodendrocytes, the myelinating cells of the CNS, are
involved in the recovery of neurological function by promoting
the myelination of the damaged white matter (Poyhonen et al.,
2019). A clinical study indicated that patients with SAO
had significantly higher white matter hyperintensity compared
with other stroke subtypes (Giese et al., 2020). Sema4D
was expressed selectively by myelinating oligodendrocytes in
the CNS white matter and upregulated after spinal cord
lesion (Moreau-Fauvarque et al., 2003). Inhibition of Sema4D
expression promotes oligodendrocytes recovery after cerebral
ischemia/reperfusion injury in mice (Figure 3B; Wada et al.,
2016).

Sema4D is expressed in endothelial cells and monocytes,
and involved in endothelial-monocyte interaction, influencing
migration and cytokines production (Luque et al., 2015).
Under hypoxia, Sema4D expression was upregulated in
microvascular endothelial cells. Overexpression of Sema4D
significantly increases angiogenesis and inhibits neuron axon
myelination (Zhang et al., 2014). Intraplaque neovascularization
is important sites where leukocytes and macrophage infiltrate
into atherosclerotic plaques and exacerbate atherosclerosis
(Perrotta et al., 2021). Unstable atherosclerosis plaques are
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FIGURE 3 | Regulation and mechanism of semaphorin 4D (Sema4D) in NVU after ischemic stroke. (A) The expression of Sema4D in NVU is up-regulated in
ischemic stroke. Sema4D inhibits the NVU function by upregulating nitric oxide (NO) production in ameboid microglial cells, enhancing proliferation of
activated-ramified microglial cells, promoting an inflammatory response in pericytes and endothelial cells, increasing vascular permeability and neovascularization. In
addition, Sema4D increases neuronal myelination to protect the NVU. (B) Sema4D/Plexin-B1 promotes angiogenesis in endothelial cells via RhoA activation.
Sema4D participate in the inhibition of axonal regeneration of oligodendrocytes, inhibiting remyelination. Sema4D/PlexinB1-RhoA-ERK signaling activate inducible
nitric oxide synthase (iNOS), upregulating NO production in glial cells.

prone to rupture and induce thrombus formation, leading
to ischemic stroke (Moreno, 2001). Inhibition expression of
Sema4D reduces intimal neovascularization and plaque growth
(Zhu et al., 2009; Yukawa et al., 2010). Mechanistically, Sema4D
binding to plexinB1 on endothelial cells to guide endothelial cell
migration induces intimal growth and angiogenesis (Figure 3B;
Conrotto et al., 2005; Zhou et al., 2014). Furthermore, Sema4D
also participates in endothelial-platelet interaction, increases
endothelial cell permeability, and improves atherogenesis and
thrombus formation (Conrotto et al., 2005; Zhu et al., 2007).

SEMAPHORIN 4B

Sema4B has been identified to be expressed in astrocytes of
cortex and involved in the activation of astrocytes in brain

injury. Astrocytes undergo dramatic changes in morphology,
proliferation and gene expression after an ischemic insult
(Choudhury and Ding, 2016). Sema4B significantly inhibited
interleukin-4 production in response to various stimuli
(Nakagawa et al., 2011). A study indicated that Interleukin-4
improves long-term neurological outcomes after stroke by
reducing inflammation in the core and activated astrocytes
in the penumbra (Xiong et al., 2011). Another study found
that immunomodulation with IL-4 is a promising approach to
promote long-term functional recovery after stroke through M2
phenotype induction in microglia/macrophages (Liu et al., 2016).
Interaction between activated microglia and astrocytes plays an
important role in the process of neuroinflammation after stroke
(Liu et al., 2020). Mechanistically, damaged cortex activates
astrocytes by phosphorylating the residues of Ser825 of Sema4B
(Ben-Gigi et al., 2015). We can speculate that Sema4B serves as
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an astrocyte receptor may regulate astrogliosis after ischemic
stroke. In-depth study of Sema4B may provide potential target
for ischemic stroke treatment.

SEMAPHORIN 6A

Semaphorin 6A (Sema6A) regulates axon repulsion and
attraction. Sema6A increases tumor angiogenesis via VEGF
signaling in vascular endothelial cells (Segarra et al., 2012).
Previous studies showed Sema6A was upregulated and
improved functional recovery during the recovery phase
in cortical ischemia (Kruger et al., 2006; Rogalewski et al.,
2010). Good prognosis after stroke is partly associated with
neurogenesis and changes in dendritic and synaptic morphology
(Keyvani and Schallert, 2002; Santopolo et al., 2020). Like
Sema3A, Sema6A also plays an important role in cortical
neuronal networks rewiring after ischemia (Rogalewski et al.,
2010). A study by Hatanaka et al. (2019) also indicated that
Sema6A/plexinA2/A4 signaling regulates migration of superficial
layer cortical neurons. Previous study showed that Sema6A
mutant mice have corticospinal tract (CST) defect (Okada
et al., 2019). Ischemic stroke is often accompanied by CST
damage, however, whether Sema6A repairs the damaged CST has
not been reported.

SEMAPHORIN 6B

Human Sema6B is highly expressed in human brain and regulates
tumor growth (Correa et al., 2001). Accumulating evidence has
been reported that peroxisome proliferator-activated receptor
alpha activation modulates vascular integrity and function. It
also modulates oxidative stress, blood-brain barrier dysfunction,
and neuroinflammation to improve functional recovery from
stroke (Boese et al., 2020). Proliferator-activated receptor alpha
activation inhibits Sema6B expression and reverses Sema6B
induced neuronal cell damage in the CNS (Collet et al., 2004;
Inoue et al., 2016). It was reported that sema6B-plexinA4 signal
promoted tumor angiogenesis by regulating VEGF-induced
VEGFR-2 phosphorylation in endothelial cells (Kigel et al.,
2011). We therefore speculate that proliferator-activated receptor
alpha modulates the function of endothelial cells via sema6B-
plexinA4 signal after ischemic stroke. However, the role of
Sema6B in cerebrovascular disease has not been demonstrated
using animal models.

SEMAPHORIN 7A

Sema7A, like other semaphorins, positively modulates axon
guidance (Pasterkamp et al., 2003). Sema7A is expressed in a
variety of neuronal cell types and in glial cells, and involved
in multiple processes in the CNS, for example, acting as
a potential immune and neuroregenerative target (Gutierrez-
Franco et al., 2017; Jongbloets et al., 2017). Inflammatory
responses are aroused by oxidative stress, necrotic cells, and
impaired brain tissue (Amantea et al., 2009). Our previous studies

indicated that Sema7A expression and its mediated inflammatory
immune response in endothelial cells and monocytes participates
in the development of atherosclerosis (Hu et al., 2018a,b).
Subsequently, we conducted a study to investigate the association
of serum Sema7A with atherothrombotic stroke and showed
that elevated level of Sema7A is independently associated
with atherothrombotic stroke (You et al., 2019). Oxidative
stress induces injury of endothelial cells and neurons, and
plays an important role in ischemic stroke. Oxidative stress
significantly upregulates Sema7A and its receptor β1 integrin
level, and activates inflammatory responses in endothelial cells
(Song et al., 2021). Hypoxia and disruption of the BBB
are the pathophysiological features of ischemic stroke, which
significantly contribute to neuroinflammation and subsequent
neurological disorders. During endothelial cell hypoxia, hypoxia-
inducible factor-1α (HIF-1α) binds the Sema7A promoter
hypoxia-responsive element to regulate inflammatory cell

TABLE 1 | Main roles of semaphorins in neurovascular unit (NVU) after stroke.

Semaphorins Cells Roles References

Sema3A Neuron Neuron apoptosis, oxygen
radical production,
neurogenesis and cortical
neuronal networks rewiring.

He et al., 2018;
Xu et al., 2018;

Yang et al.,
2021; Zhao
et al., 2021

Glia Astrocytes activation, glial
scar formation

Hou et al.,
2008

Vasculature Endothelial migration and
death, VSMC proliferation
and migration,
angiogenesis, vascular
permeability

Beck et al.,
2002; Acevedo

et al., 2008;
Giacobini et al.,

2014

Sema3B Neuron Neuron dendritic structure Mohan et al.,
2019

Sema3E Vasculature Pericytes ability, vascular
permeability

Krueger et al.,
2015; Zhou
et al., 2018a

Sema4B Glia Activation of astrocytes. Ben-Gigi et al.,
2015

Sema4D Glia The activation and
recruitment of microglial
cells, inflammatory
response, myelination of
neuron,

Toguchi et al.,
2009; Wada

et al., 2016; Li
and Barres,

2018

Vasculature Regulate
endothelial-monocyte
interaction, endothelial
migration,
neovascularization.

Conrotto et al.,
2005; Zhang
et al., 2014;

Perrotta et al.,
2021

Sema6A Neuron Cortical neuronal networks
rewiring

Rogalewski
et al., 2010

Sema6B Vasculature Vascular integrity Collet et al.,
2004; Inoue
et al., 2016

Sema7A Vasculature Activates inflammatory
responses in endothelial
cells, vascular permeability

Morote-Garcia
et al., 2012; Hu
et al., 2018b;
Song et al.,

2021
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migration and leukocyte extravasation from the vascular space
(Morote-Garcia et al., 2012).

OTHER MEMBERS OF SEMAPHORIN
FAMILY

In addition to the members of semaphorin family described
above, other semaphorins may be involved in the process of
ischemic stroke as well although there was no report so far.
Semaphorin 3C (Sema3C) and semaphorin 3D (Sema3D) play
an important role in tumor development by regulating cell
proliferation, migration, invasion, and angiogenesis processes
(Valiulyte et al., 2019). FR-Sema3C is a point mutated form
of Sema3C that is resistant to cleavage by furin like pro-
protein convertases, which functions as an anti-angiogenic factor
by inhibiting VEGF expression in endothelial cells (Toledano
et al., 2016). In the developing cortex, interaction between
matrix metalloproteinase-3 and Sema3C participated in the
growth of axons and dendrites (Gonthier et al., 2007). Sema3D,
like Sema3E, is capable of inhibiting endothelial cell motility,
migration, and tube formation (Aghajanian et al., 2014; Taku
et al., 2016). These evidence leads us to conjecture that Sema3C
and Sema3D may be associated with vascular permeability and
migration of neurons. Semaphorin 3F (Sema3F) modulates the
morphology and function of synapses in the adult hippocampus.
Mice lacking Sema3F are prone to seizures, suggesting that
Sema3F is essential for the normal function of hippocampal
circuits (Sahay et al., 2005). Semaphorin 3G (Sema3G) is secreted
by the vascular system in the CNS and essential for the control
of neural circuit stability and cognitive functions (Carulli et al.,
2021). But there has been no direct evidence that Sema3F and
Sema3G are associated with ischemic stroke.

Semaphorin 4A (Sema4A), like Sema4D, is immunomodulatory
molecules in the immune cells. Sema4A binds to NRP-1 and
promotes T cell activation and inflammation. In kidney ischemia
reperfusion injury model, Sema4A alleviates inflammatory
reaction by promoting the stability and function of regulatory
T cells (Xu et al., 2021). Regulatory T cells are closely related to
the pathogenesis of ischemic stroke. Semaphorin 4C (Sema4C)
and semaphorin 4G (Sema4G), which are widely expressed in the
developing nervous system, promote macrophage recruitment,
angiogenesis and inflammatory reaction (Maier et al., 2011).
Hence, semaphorin 4 may affect the development of brain
ischemia reperfusion injury.

Semaphorin 5 has unique thrombospondin repeats as
extracelluar domains. It’s well-known that semaphorin 5A

(Sema5A) and its receptors play an important role in the
invasion and metastasis of tumor cells by promoting angiogenesis
(Sadanandam et al., 2010; Purohit et al., 2014). A study
indicated that Sema5A was correlated with Th1 polarization,
which increased the production of inflammatory cytokines
(Lyu et al., 2015). A Th1-type response is neurotoxic and
contributes to the poor outcome of stroke (Korhonen et al.,
2015). Semaphorin 5B (Sema5B), as a repulsive guidance cue
in the formation of the internal capsule, is expressed in
the region of the cortex and subcortex (Lett et al., 2009).
Sema5B also suppresses endothelial cell proliferation, migration
and sprouting, and plays an important role in the regulation
of neovascularization (Grundmann et al., 2013). The above
evidence implies thatSema5A and Sema5B may contribute to the
progression of vascular diseases such as stroke.

PERSPECTIVES

Semaphorins are a large and diverse family of proteins involved
in different physiological and pathological processes. Emerging
evidence indicates that semaphorins not only regulate the
shape and motility of neurons, but also relates with glial cell
activity, blood-brain barrier (BBB) permeability, angiogenesis
and inflammation/immune response in ischemic stroke. In this
review, we summarized the role of semaphorins in NVU after
stroke. Sema3A, a deeply understood member of the semaphorin
family, mainly regulates the functions of neurons, glial cells,
vascular system in the NVU. Sema4D and Sema7A signaling
mainly participates in inflammatory response in pericytes and
microglial cells after stroke. Like Sema3A, Sema3E and Sema4D
can bind to their receptors directly on endothelial cells or affects
VEGF expression to regulate neovascularization. The major roles
of semaphorins in NVU after stroke are list in Table 1. Although
there are limitations on the regulation the NVU function through
a single semaphorin family member and its signaling pathway to
improve functional recovery after ischemic stroke, coordination
of the roles of different semaphorin members in the NVU and the
successful clinical translational investigation could be potential
approaches in prevention and treatment of ischemic stroke.
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