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Coronaviruses comprise a large group of emergent human and

animal pathogens, including the highly pathogenic SARS-CoV

and MERS-CoV strains that cause significant morbidity and

mortality in infected individuals, especially the elderly. As

emergent viruses may cause episodic outbreaks of disease

over time, human samples are limited. Systems biology and

genetic technologies maximize opportunities for identifying

critical host and viral genetic factors that regulate susceptibility

and virus-induced disease severity. These approaches provide

discovery platforms that highlight and allow targeted

confirmation of critical targets for prophylactics and

therapeutics, especially critical in an outbreak setting. Although

poorly understood, it has long been recognized that host

regulation of virus-associated disease severity is multigenic.

The advent of systems genetic and biology resources provides

new opportunities for deconvoluting the complex genetic

interactions and expression networks that regulate pathogenic

or protective host response patterns following virus infection.

Using SARS-CoV as a model, dynamic transcriptional network

changes and disease-associated phenotypes have been

identified in different genetic backgrounds, leading to the

promise of population-wide discovery of the underpinnings of

Coronavirus pathogenesis.
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Introduction
Severe Acute Respiratory Syndrome Coronavirus (SARS-

CoV) emerged in Guangdong province, China, in 2002,

causing a global epidemic that resulted in about 8000

reported cases and an overall mortality rate of �10% [1].

The virus was initially present in horseshoe bat popu-

lations, and either evolved mutations that allowed tran-

sition to Palm Civets and Raccoon Dogs before emerging
www.sciencedirect.com 
in human populations, or was directly transmitted from

bats to humans and subsequently amplified through

intermediate hosts [2–4]. From there, SARS-CoV rapidly

spread across the globe, with focal outbreaks in China,

Singapore, Vietnam, Taiwan and Canada [1]. More

recently, the antigenically distinct Middle East Respir-

atory Syndrome (MERS-CoV) emerged in 2012 and is still

currently circulating in animal and human populations in

the Middle East, resulting in 184 cases and 80 deaths to

date (http://www.promed.org). MERS-CoV most likely

emerged from circulating bat strains and appears to also

replicate efficiently in camels [5,6]. Both pathogens cause

a respiratory disease, with many severely impacted indi-

viduals transitioning into an acute respiratory distress

syndrome (ARDS) [7–10]. Although the SARS-CoV out-

break was controlled by epidemiological measures, the

recent identification of SARS-like bat-CoVs that can

recognize human angiotensin 1 converting enzyme 2

receptors and replicate efficiently in primate cells docu-

ments the inevitability of a SARS-CoV-like virus re-

emergence event in the near future [11�]. Together, these

data highlight prototypical outbreak concerns for the 21st

century, where increased travel and community pressures

on wildlife areas present numerous opportunities for

novel viral disease emergence followed by rapid spread

worldwide, sometimes within a matter of months [12–14].

Rapid response platforms are clearly needed to maximize

public health preparedness against emerging viruses.

A fundamental problem in dealing with emerging infec-

tious disease control is both the limited accessibility to

and the limited number of biological samples associated

with an expanding epidemic, confounding insights into

susceptibility and mechanistic disease processes which

are critical for rational antiviral and vaccine design strat-

egies. In order to advance our understanding of those

disease processes at work, novel approaches have been

evolved that utilize newly developed state-of-the-art

techniques and technologies. Systems biology [15] uti-

lizes an integration of traditional pathogenesis

approaches, as well as high-throughput molecular profil-

ing, and computational modeling to identify key host

genes and pathways involved in pathogenesis. In a related

way [16], systems genetics integrates molecular profiling

and pathogenesis readouts within genetically complex

populations to identify genes and pathways that contrib-

ute to disease variation across genetically diverse popu-

lations. Integration of both platforms provides

unparalleled power in identifying and studying host

susceptibility networks that contribute to disease out-

comes. The common feature of both discovery platforms

is that they seek to understand viral disease as part of
Current Opinion in Virology 2014, 6:61–69
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complex, interacting systems with multiple genes and

response pathways. While fundamentally different from

standard reductionist strategies, these approaches still

rely on standard genetic, molecular biology, biochemical

and immunologic strategies to validate the role of tar-

geted genes and networks in disease processes. Using

these approaches, there is hope that model systems and

platform approaches can be utilized to identify critical

regulators of disease across genetically diverse human

populations, and to transition these findings into prophy-

lactic and therapeutic drugs.

Systems biology approaches
Over the past decade, a series of important technological

advances, genome wide molecular screening platforms

and computational strategies have emerged that provide

new opportunities for rapid response against newly emer-

ging viral disease threats, globally. The paradigm of these

systems biology approaches [15,17] is that (Figure 1) a

model system or systems (e.g. tissue culture model, in
vivo animal model, or even human challenge model and

vaccine studies) are perturbed, in our case by viral chal-

lenge, preferably resulting in a spectra of disease seve-

rities (e.g., lethal vs sub-lethal) to maximize contrast for

downstream data mining and modeling. Over a time

course, multiple global measures of the system’s perform-

ance are taken in response to infection, including high-

throughput molecular measures (transcriptome, pro-

teome, metabolome, etc.), as well as a variety of virologic,

immunologic and pathologic measures (e.g. weight loss,

respiratory function, inflammatory response, mortality

and histopathological damage). A variety of computation

methodologies ([18,19,20��,21�] and reviewed more fully

in [22]) and network approaches are then used to de novo
identify regulatory networks, with these networks and

their kinetic responses then being correlated to different

disease outcomes in the system. Following these initial

descriptions, there are a series of continuing cycles of

testing and perturbations (host gene knockout, virus

mutant or therapeutic intervention) designed to further

validate and then refine the model and to elucidate the

mechanistic underpinnings of the systems’ performance

as a function of infection and disease severity.

Modeling algorithms are rapidly evolving in response to

the emergence of these complex and comprehensive

systems wide datasets and are beyond the focus of this

review (but see [22] for more information); however,

many of these approaches de novo assemble the networks,

independent of annotated pathways or interactions. By

allowing this de novo assembly within the context of

infection, new relationships between genes (or the break-

ing of previously annotated relationships) emerge that

allow for the identification of critical subnetworks. Such a

method was recently successfully used to identify critical

components of SARS-CoV induced pathogenesis follow-

ing infection of mice [20��]. A de novo assembled network
Current Opinion in Virology 2014, 6:61–69 
approach was used to identify Serpine1 and other members

of the Urokinase pathway as high priority candidates in

regulating severe disease outcomes following lethal vs sub-

lethal infections. Subsequent study of Serpine1 knockouts

as well as knockouts from other pathway members con-

firmed a protective role for these Urokinase pathway

members in regulating severe SARS-CoV disease out-

comes. Illustrating the power of these de novo compu-

tational algorithms, it seems unlikely that this pathway

would have been otherwise implicated in SARS-CoV in-

fection. These approaches can become even more power-

ful by integrating analyses across multiple large-scale

datasets. Gibbs et al. [19] were able to further refine these

approaches by independently assembling transcriptional

and proteomic networks and then cross-contrasting these

two network types. This method was able to clarify net-

work membership and connections, as well as enhance the

relationship between these joint networks and aspects of

SARS-induced lung pathology. In addition, such

approaches also resulted in highly prioritized list of reg-

ulators with conserved behavior for SARS-CoV and influ-

enza A viruses (IAV) via a combined analyses, which

provide valuable candidates for downstream experimental

validations and therapeutic intervention [21�].

Iterative rounds of perturbation are another key com-

ponent of the systems biology paradigm. These iterative

perturbations are utilized in order to refine and re-evalu-

ate networks when key members of these networks are

modified. While perturbations are typically thought of as

host perturbations, in some cases they can also be viral

perturbations. In this way, SARS-CoV ORF6 [23] was

identified as a key inhibitor of multiple antiviral cell

intrinsic host genetic responses by blocking the import

of targeted clusters of transcription factors into the

nucleus during infection and thereby reprogramming host

response networks following infection. Chromosome

immunoprecipitation studies further validated the role

of ORF6 expression in the nuclear import and DNA

binding of select transcription factors, and loss of

ORF6 attenuated virus pathogenesis. In a parallel

example, the SARS-CoV E protein is a known virulence

determinant [24]. Using systems biology, E protein was

found to suppress the expression of 25 stress related

proteins and specifically down-regulated the inositol-

requiring enzyme 1 (IRE-1) signaling pathway of

unfolded protein responses. In the absence of E protein,

an increase in stress responses and the reduction of

inflammation likely contributed to the attenuation of

rSARS-CoV-DE, validating the systems wide predictions.

In other cases, contrasting SARS-CoV with immune

stimulatory molecules (e.g. interferon stimulation) or

different pathogens can be used for cross-comparison.

In this way, Danesh et al. [25] were able to show that

in contrast to a strict interferon response in a ferret model

of SARS-CoV infection, a wider variety of cell migratory

and inflammatory genes were induced.
www.sciencedirect.com
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Figure 1

(a) (b)

(c)
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The Systems Biology Paradigm. Systems Biology focuses on an iterative cycle of experiments. In model system (a) mouse is infected. (b)

Measurements of molecular (e.g. whole transcriptome, proteome) and disease related phenotypes (histopathology and flow cytometry) are taken at

multiple timepoints and contrasted with mock infected animals. (c) Transcriptional (or proteomic) data are assembled into networks of interacting and

coexpressed transcripts. These networks are then correlated back to specific disease pathologies. These data are then fed into new sets of

experiments where key members of networks (e.g. the blue gene central to the network) are then disrupted to alter pathologic outcomes in a predicted

manner.
Population-wide variation in coronavirus
responses
Population-wide variation in disease responses is known

to occur for many pathogens, and there was notable

variability within the disease severity and clinical out-

comes after SARS-CoV and MERS-CoV infections, most

notably in the elderly population. For SARS-CoV, sys-

tems approaches were used to differentiate resolution

from fatality in a patient cohort [26]. This study showed

that although initial immune responses were fairly

uniform, fatal cases of SARS-CoV infection exhibited

aberrant interferon stimulation, persistent chemokine

responses and disregulated adaptive immune networks.

Similarly, MERS-CoV infections have mostly clustered in

men, and those with underlying medical conditions,
www.sciencedirect.com 
although this may represent a gender difference in acces-

sibility to health care in the Middle East [9]. However, as

is often the case with heterogeneous human populations,

while clear trends can be observed in disease responses, it

is unclear whether those observed differentiating patho-

logic/response classes are due to underlying genetic vari-

ation within the population, or due to other factors, such

as environmental factors, demography or exposure

histories. For example, SARS-CoV exhibited a �10%

mortality throughout the outbreak, but this mortality rate

rose to �50% in the aged population [1,12]. A mouse

model of this phenomenon suggested a genetic link, in

that increased disease severity correlates with aberrant

PGD(2) expression that impairs respiratory DC migration

and associated reduced T cell responses [27].
Current Opinion in Virology 2014, 6:61–69
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However, in the human population, the extent to which

this disease variation is due to genetic versus non-

genetic causes remains unclear. It is clear from studies

following the SARS-CoV outbreak that host genetic

variants do have significant associations with variant

immune phenotypes following SARS-CoV infection,

although the clinical relevance of these polymorphisms

and their connections to pathologic outcomes are less

understood [28–31]. More generally, it is well accepted

that host genetic variants play key roles in onset,

severity and resolution of viral infection (reviewed in

[32]). Despite the presence of several well-known and

highly penetrant susceptibility genes of large effect

(e.g. CCR5 and HIV [33], FUT2 in norovirus and

perhaps rotavirus infections [34,35]), there is an increas-

ing awareness that responses to viral pathogens are

likely regulated by complex interactions involving

multiple variant genes and their corresponding expres-

sion networks that are activated following infection

[36]. However, identification of these polymorphic

genes and their associated pathways and outcomes is

confounded by the large controlled cohorts typically

needed to detect moderate to small effect alleles in

association studies [37]. Therefore, novel approaches

are needed to aid in the discovery of those polymorphic

networks which contribute to viral pathogenesis in the

cases of emerging pathogens with limited human

samples

Systems genetics approaches
While genome wide association studies within human

populations can provide powerful insight into disease

responses, both the absence of large human cohorts to

conduct such association studies, and the difficulty in

transitioning such associations into mechanisms of patho-

logic or protective outcomes provide roadblocks for direct

human studies. In answer to such needs, systems genetics

approaches utilize genetically diverse experimental

models to recapitulate the population-wide variation seen

across the human population and attempt to disentangle

complex traits, such as immune responses [38,39]. Specifi-

cally, by integrating not only pathologic and high-

throughput molecular data, but also explicit information

on the genetic composition of the experimental popu-

lation, systems genetics seeks to identify genes and path-

ways of polymorphic genes that directly contribute to

variation in responses to infection across genetically

diverse populations, as well as for to further disentangle

the underlying molecular signatures and pathways associ-

ated with various disease outcomes (Figure 2). Further-

more, by explicitly contrasting the high-throughput

molecular and phenotypic data across unique genetic

backgrounds, robust virus-response signatures can be

identified across host genetic backgrounds, attaining a

better resolution of the dynamic and host regulatory

responses that act in host-genetic background specific

manners during infection.
Current Opinion in Virology 2014, 6:61–69 
The field of viral pathogenesis has long used a limited

number of mouse strains for in vivo pathogenesis studies

[40,41]. These lines (e.g. C57Bl/6J or Balb/cJ) have

played critical roles in the development of animal models

and reagents that are useful for the study of host

responses; however, they do not recapitulate the genetic

variation present within the outbred human population,

which is critical to disease responses. Recently, newly

developed mouse resources were explicitly designed for

systems genetics analysis as well as better capturing the

genetic variation seen within human populations. Specifi-

cally the Collaborative Cross (CC) [42] recombinant

inbred panel and Diversity Outbred (DO) [43] population

are novel mouse resources which combine the utility of

experimental mouse models with the genetic variability

critical to contrasting experimental models with human

responses. The CC and DO are complimentary resources

(Figure 3) with levels of natural genetic variation roughly

consistent with common variants segregating across the

human population (�107 single nucleotide polymorph-

isms and �106 small insertion/deletions), and character-

ized by relatively uniform distributions of variation across

the genome. The large number of CC lines, and the

continual generation of novel genomes of DO mice give

rise to an incredibly large number of combinations of

genetic variants across those genomes. These attributes

are critical for first, mapping of genetic variants associated

with infectious outcomes, second, creating novel genetic

background with which to study transcriptional and regu-

latory networks, third, describing new models of virus

diseases and pathologies, and fourth, accurate modeling

of the human population’s genetic composition while

maintaining experimentally tractable systems [44].

Importantly for systems genetics approaches, the CC

and the DO not only facilitate initial discovery, but by

allowing for the generation of new crosses and animals

with similar allele frequencies but in new combinations,

they also allow for the validation of the role of specific

polymorphic genes and further mechanistic study

(Figure 3).

Systems genetics approaches have been used extensively

in studying the responses to influenza [44–46,47��]. Over-

all, these studies have found that multiple host poly-

morphisms contribute to differential disease outcomes

following influenza infection, that some of these poly-

morphisms act in virus strain-specific manners, and that

different subsets of transcripts associate with specific

disease responses following these infections. Further-

more, by integrating these systems genetics approaches

throughout multiple timepoints, Nedelko et al. [47��]
were able to show that polymorphisms worked at specific

points throughout the infection process, pointing to

further complexity in the role of genetic regulation under-

lying differential disease outcomes. Together, these stu-

dies highlight the incredible power and precision that

systems genetics approaches can provide, especially when
www.sciencedirect.com
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Figure 2
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Systems Genetics integrates systems biology and genetic complexity. Here sets of genetically well-defined yet distinct mouse strains (a) are

challenged with a pathogen and a variety (b) of disease and molecular phenotypes are collected. Integration of genetic variants within this population

and disease phenotypes (c) can identify host genome regions containing polymorphisms controlling disease phenotypes (QTL mapping), and

contrasting the expression profiles of individuals with variant polymorphisms at this loci can identify those groups of transcripts that are up-regulated

(orange) or down-regulated (purple) due to polymorphisms at this genome location, highlighting mechanisms of virus induced pathology. Furthermore,

by contrasting in a strain-specific manner all of those transcripts that are differentially expressed during infection (d), specific transcriptional subsets

can be associated with variant disease outcomes. Here each of the three mouse strains have a pool of differentially expressed transcripts (colored

circles) following infection. Therefore, the union of red, blue and green describes those transcripts commonly differentially regulated across all

genotypes in response to infection. Similarly, the intersection of red and blue transcripts (excluding green transcripts) describes those transcripts

differentially regulated in genotypes with severe lung pathologies.
blended with systems biology and computational

modeling.

Systems approaches have classically used traditional tran-

scriptome profiling, such as microarray and mRNA seq.

However, there is increasing evidence that non-coding

RNAs play roles in regulating immune responses [48,49],

and can have direct impact on viral infection [50].

Relevant to Coronavirus pathogenesis, two studies of

contrasting IAV and SARS-CoV induced long [51] and
www.sciencedirect.com 
small [52] non-coding RNAs were recently conducted

within a subset of the founder animals of the CC, focusing

on founder lines from the three genetically distant sub-

species of Mus musculus, which have distinct responses to

both SARS-CoV and IAV infection. Both of these studies

found that there were pervasive changes in the expression

levels of these noncoding transcripts during infections.

Importantly for systems genetics approaches, they

showed that these two pathogens led to differential

regulation of these noncoding RNAs and that the levels
Current Opinion in Virology 2014, 6:61–69
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Figure 3
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Platforms for Systems genetics discovery and validation. Traditionally, classical inbred strains such as C57BL/6J (a) have been used for systems

biology approaches. These classical systems have utilized (b) gene knockouts or (c) the introduction of functional changing mutations as perturbation/

validation systems. The Collaborative Cross (CC) and DO (DO) populations were derived from a set of eight genetically diverse founders whose

genomes are represented by the following colors (d): A/J (yellow), C57BL/6J (gray), 129s1/SvImJ (pink), NOD/ShiLtJ (dk. blue), NZO/HILtJ (lt. blue),

CAST/EiJ (green), PWK/PhJ (red), and WSB/EiJ (purple). CC lines (e) have inbred genomes that are mosaics of these eight founders (with the founder

contributions keeping the color coding of D). CC lines have well-characterized genomes and being inbred are an infinitely reproducible population.

Similarly (f) the Diversity Outbred (DO) is a completely outbred population of animals derived from the same eight founder strains. While this population

is not reproducible, the genetic architecture of the population can be reproduced. In these ways, both the CC and DO facilitate systems genetics

approaches. The CC and DO, by virtue of the large number of unique genomes, can be used (f) to create a variety of validation crosses, or sets of lines

with unique genetic combinations for further mechanistic study of polymorphisms of interest. Here, a panel of CC lines is being used to contrast the

PWK/PhJ (red) and 129S1/SvImJ (pink) alleles at Locus 1, while simultaneously being used to contrast A/J (yellow) and WSB/EiJ (purple) alleles at

Locus 2.
of differential expression for these noncoding RNAs vary

depending on host genetic background. This work high-

lights that unique interactions between specific viral

infections and host genetic variation drive differential

disease outcomes, and through the use of systems

genetics approaches, host responses and the critical path-

ways causing various pathologic outcomes can be defined.
Current Opinion in Virology 2014, 6:61–69 
With a growing appreciation for the overall roles of

noncoding RNAs in regulating immune responses and

pathogenesis [53], as well as evidence that polymorph-

isms within noncoding RNAs can directly impact patho-

logic outcomes during infection, such as clearance of

Hepatitis B infection [54], the investigation and detection

of noncoding RNAs in future systems genetics
www.sciencedirect.com
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approaches will provide a rich investigative environment

for investigating how host genetic variation shapes

immune responses and pathologic outcomes.

Future prospects
As illustrated throughout this study, the integration of

systems approaches in traditional studies on viral patho-

genesis provides immensely powerful tools with which to

identify the host factors critical for pathologic or protec-

tive outcomes following viral infections in experimental

systems. A key challenge for the field is to transition

targets generated by systems approaches into thera-

peutics and prophylactics. Recently this has been seen

for both MERS-CoV [55��], and H7N9 avian influenza

[56], using cell culture models. In both cases, application

of systems approaches and contrasting infections (MERS-

CoV and SARS-CoV; H7N9 and H3N2 influenza) were

used to identify pathways differentially regulated be-

tween related pathogens, and then this information was

applied to select and test potential antiviral compounds

which were able to inhibit both the target and related

virus in the case of Coronaviruses [55��], or just the

specific H7N9 target virus but not the related H3N2

virus [56]. Future approaches in these veins, and transi-

tioning such results to in vivo systems genetic platforms

such as the CC will further improve our capacity to

combat conventional and new viral diseases of the future.

A longstanding divide in the scientific community has

been bridging the gap between experimental systems and

human populations. Indeed, some commonalities exist

between murine and human immune responses [57,58],

such as the role of IFITM3 in both human and mouse

responses to influenza [58]. However, there are other

studies highlighting discordance between humans and

mice [59]. While systems approaches identify key genes,

both their focus on pathways and systemic responses, and

the explicit integration of genetic variation will allow for

more robust descriptions of how pathogens cause variant

disease responses within and across species. These results

will increase the likelihood that, while individual genes

might not be key regulators of disease across species,

there will be commonly identified pathways regulating

disease that can be identified in experimental models and

transitioned into human systems. In support of this hope,

Mitchell [21�] was able to show common transcriptional

signatures between human cells and mice following

highly pathogenic flu and SARS infections. Similarly,

Sims [23] found conserved signals between immortalized

Calu3 cells and primary airway epithelial cultures.

Furthermore, systems based approaches studying influ-

enza vaccine responses within humans were able to

identify the CaMKIV kinase pathway as critical for these

responses, and this molecule was validated in murine

knockout systems [57]. The further advancement and

refinement of such approaches in experimental systems,

combined with state-of-the-art experimental approaches
www.sciencedirect.com 
such as gene editing [60], as well as molecular profiling

and disease data gathered from human cohorts [61], hold

keys for transitioning bench-top findings to clinical

results. Given the expanding nature of viral emergences,

due to increased connectivity and ease of travel, the

continuing refinement and further development of sys-

tems approaches combined with the advanced methodo-

logical approaches being developed should provide novel

avenues with which to quickly address the added com-

plexity of host genetic variation in combatting emerging

pathogens.
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