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Abstract
Developing a clear understanding of the relationship between cerebral blood flow (CBF)

response and neuronal activity is of significant importance because CBF increase is essen-

tial to the health of neurons, for instance through oxygen supply. This relationship can be

investigated by analyzing multimodal (fMRI, PET, laser Doppler. . .) recordings. However,

the important number of intermediate (non-observable) variables involved in the underlying

neurovascular coupling makes the discovery of mechanisms all the more difficult from the

sole multimodal data. We present a new computational model developed at the population

scale (voxel) with physiologically relevant but simple equations to facilitate the interpretation

of regional multimodal recordings. This model links neuronal activity to regional CBF

dynamics through neuro-glio-vascular coupling. This coupling involves a population of glial

cells called astrocytes via their role in neurotransmitter (glutamate and GABA) recycling

and their impact on neighboring vessels. In epilepsy, neuronal networks generate epilepti-

form discharges, leading to variations in astrocytic and CBF dynamics. In this study, we

took advantage of these large variations in neuronal activity magnitude to test the capacity

of our model to reproduce experimental data. We compared simulations from our model

with isolated epileptiform events, which were obtained in vivo by simultaneous local field

potential and laser Doppler recordings in rats after local bicuculline injection. We showed a

predominant neuronal contribution for low level discharges and a significant astrocytic con-

tribution for higher level discharges. Besides, neuronal contribution to CBF was linear while

astrocytic contribution was nonlinear. Results thus indicate that the relationship between

neuronal activity and CBF magnitudes can be nonlinear for isolated events and that this

nonlinearity is due to astrocytic activity, highlighting the importance of astrocytes in the inter-

pretation of regional recordings.
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Introduction
The dynamics of cerebral blood flow (CBF) changes are an essential element of neuronal envi-
ronment, as they reflect nutriment supplies such as oxygen and glucose. Their link to neuronal
activity, usually called neurovascular coupling, can now be investigated by multimodal record-
ings [1] such as simultaneous Local Field Potential (LFP)-laser Doppler (LD) recordings [2].
However, due to the multiple signaling pathways underlying this coupling, such multimodal
data remain difficult to interpret.

Computational models can provide a key tool to this interpretation. For instance, the well-
known model [3] representing CBF dynamics has been widely studied and used, including for
data interpretation [4, 5]. In this model, CBF increase is driven by one neuronal input. Later, a
number of studies have shown that astrocytes [6] also contribute to CBF increase, in parallel to
a neuronal contribution [7, 8]. Actually, astrocytes have been shown to have a significant
impact on either CBF dynamics [9] or metabolic regulation [10], although this impact cannot
be measured easily. Computational models have the capacity to reveal different (patho-)physi-
ological mechanisms [11] by comprising non-easily observable variables. Some computational
studies have included a link to physiological literature, for instance by modeling neuronal-met-
abolic coupling through glucose and/or oxygen activities [12–16]. Nonetheless, these models
do not account for astrocytes and lack essential details needed for interpreting patho-physio-
logical mechanisms such as neurotransmitter exchanges. Actually, a comprehensive literature
review (S1 File) showed that the cycles of glutamate and GABA (main neurotransmitters of the
central nervous system) lie at the origin of astrocytic contribution to CBF changes. Some
computational models describe pathways including glutamate and GABA transport and/or
astrocytic activity [17–24], however these models deal with exchanges that occur at the cellular
level of the tripartite synapse. Our goal was thus to conceive a new neuro-glio-vascular (NGV)
model, representing the relationship between local neuronal activity (as measured by LFP) and
CBF changes (as measured by LD) and introducing the contribution of astrocytes to CBF
changes. Bimodal LFP-LD recordings (Fig 1) involve interactions between cell populations at

Fig 1. Main neuro-glio-vascular interactions in a voxel and their link to bimodal LFP-LD recordings. Arrows represent the interactions between the five
compartments of the model: the compartments of pyramidal cells and interneurons provide a representation of the neuronal activity as measured by local
field potential (LFP); the astrocytic compartment represents the key role of astrocytes in neurotransmitter (glutamate and GABA) cycling and cerebral blood
flow (CBF) dynamics; the vessel compartment involves the CBF dynamics as measured by laser Doppler (LD); the extracellular space represents
neurotransmitter exchanges between the other compartments.

doi:10.1371/journal.pone.0147292.g001
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the voxel scale (about 3mm3). In the continuity of the pioneer work [25–27] expanded in [28–
30] and introducing astrocytes in their metabolic role, we used a compartmental model (Fig 1)
with an extracellular space to account for neurotransmitter exchanges. Since glutamate and
GABA are primarily released by pyramidal cells and interneurons respectively, we distin-
guished between these two types of neuronal populations in the model.

Comparing a computational model and experimental data allows one to test the limita-
tions of the model and its ability to reproduce physiological phenomena (choice of mathe-
matical descriptions and incorporated variables, resulting complexity, see Materials and
Methods). Simulations from our model were compared with isolated events extracted from
simultaneous (LFP-LD) recordings (Materials and Methods) acquired in the context of epi-
lepsy. More precisely, isolated events called epileptiform discharges occur in LFP signals
after bicuculline injection in the cortex. These discharges elicit CBF events visible on LD
data, the variations of which are sufficiently large to enable the study of the relationship
between the magnitude of the discharges and that of the resulting CBF events. We obtained a
good agreement between the model and the data according to the shape of the responses,
which indicate that the model is able to reproduce epileptic phenomena. Besides, the sets of
parameters found to obtain close simulated and experimental CBF magnitudes suggest that
the relationship between neuronal activity and CBF response is nonlinear for epileptiform
isolated discharges; and that this nonlinearity is due to the contribution of the astrocytes to
CBF magnitude.

Results

Adaptation of a neural mass model to an animal acute model of epilepsy
The first part of the model concerns neuronal activity as measured by LFP (Fig 1). It is widely
agreed that LFP can be interpreted as the sum of average excitatory and inhibitory post-synap-
tic potentials (EPSPPC and IPSPPC) [31]. Firing rates from pyramidal cells and interneurons
were also crucial variables (FRPC and FRIN) to incorporate into the model as triggers to the
release of glutamate and GABA (Fig 2A). These criteria have already been accounted for at the
level of populations by a variety of neural mass models. We chose the model described in [32,
33]. These models are often used in epilepsy in order to study the deregulation of the excita-
tion/inhibition balance.

In this context, the excitatory input p (Fig 2A) is usually defined as a Gaussian noise to rep-
resent the average density of afferent action potentials. Indeed, a Gaussian noise is able to
induce spontaneous epileptiform discharges, which represent the epileptic activity induced by
the pathology in experimental models where animals become epileptic, for instance after three
weeks in the kainate mouse model [34]. Here, we relied on an acute model of epilepsy, namely
epileptiform discharges elicited after injection of bicuculline (with injection site at 1000–1500
μm) in a healthy cortex (Materials and Methods), together with the effect of the afferent popu-
lations (LFP recorded at about 500 μm). Therefore, we described the input p to the model as a
Gaussian noise with meanmp and standard deviation σp:

pðtÞ ¼ Νðmp; spÞ; ð1Þ

where

mp ¼ mB þ
X

i

Gi½HðtiÞ � Hðti � DÞ� ð2Þ

is the sum of the mean valuemB representing the effect of the afferent populations and a linear
combination representing the effect of bicuculline injection (Fig 2A). In Eq 2, the effect of
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bicuculline injection is the rectangular function lasting Δ = 10 samples (i.e. 8ms at 1250 Hz)
and defined as the difference between the Heaviside function H(ti) at time ti, and its Δ-delayed
version H(ti-Δ). Gains Gi in Eq 2 represent the magnitude of the effect at time ti and thus
decreased over time as the magnitude of the discharges was reduced with bicuculline wash-out.

Fig 2. Modeling and experimental recording of neuronal activity. (A) Variables and relationships of the neural mass model (Table 1 and S1 Table). The
input to the model is the activity coming from afferent populations, together with the injection of bicuculline in order to elicit an epileptic activity. The model
output is the simulated local field potential (LFP). (B) and (C) Model-data comparison between the neural mass model (black) and LFP recording (light gray)
for two isolated discharges. The mean value of p was set tomB = 3.07 and its standard deviation to σp = 0. Magnitudes of the discharges (B) Apeak = 8.14mV
and (C) Apeak = 4.13mVwere obtained with the gain in Eq 2 set to (B)G1 = 965 and (C)G9 = 535.

doi:10.1371/journal.pone.0147292.g002
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The average excitatory post-synaptic potential (from pyramidal cells to pyramidal cells, Fig
2A) was defined as:

d2EPSPPC

dt2
¼ Aa½pðtÞ þ CPC!PC:sigmðCPC!INEPSPINðtÞ; 2e0; rN ; sNÞ�

�2a
dEPSPPC

dt
� a2EPSPPCðtÞ;

ð3Þ

where EPSPIN is the average excitatory post-synaptic potential (from pyramidal cells to inter-
neurons, Fig 2A) of interneurons. The sigmoid function in Eq 3 was defined as:

sigmðx;V ; r; sÞ ¼ V
1þ expðrs� rxÞ ð4Þ

where x is the dummy variable, V the maximum value, s the threshold and r the slope of the sig-
moid (see Table 1 for a description of all the parameters used in the proposed NGVmodel, as
well as the values either used in the literature or modified in the present study).

The average inhibitory post-synaptic potential IPSPPC (from interneurons to pyramidal
cells, Fig 2A) was similarly defined as:

d2IPSPPC

dt2
¼ BbCIN!PCFRINðtÞ � 2b

dIPSPPC

dt
� b2IPSPPCðtÞ; ð5Þ

where FRIN is the firing rate of interneurons, related to their EPSPIN according to the equation:

FRINðtÞ ¼ sigmðCIN!INEPSPINðtÞ; 2e0; rN ; sNÞ ð6Þ

using the sigmoid function from Eq 4. The average excitatory post-synaptic potential EPSPIN
of interneurons depended on the firing rate FRPC of pyramidal cells according to:

d2EPSPIN

dt2
¼ AaFRPCðtÞ � 2a

dEPSPIN

dt
� a2EPSPINðtÞ; ð7Þ

where FRPC was defined as the sigmoid function from Eq 4 applied to the simulated LFP, as fol-
lows:

FRPCðtÞ ¼ sigmðEPSPPCðtÞ � IPSPPCðtÞ; 2e0; rN ; sNÞ: ð8Þ

Comparison between the neural mass model and experimental
interictal-like discharges
Simultaneous LFP-LD data were recorded after bicuculline injection and isolated events were
extracted (Materials and Methods, S1 Fig). We found that the magnitude of the isolated dis-
charges decreased over time, as bicuculline was washed out. For the nine extracted discharges,
this magnitude varied (mean 6.38±1.33, n = 9) from Apeak = 8.14mV (Fig 2B) to Apeak = 4.13
mV (Fig 2C). Parameters of the neural mass part (except for gains Gi), described by Eqs 1–8,
were set to values leading to simulated LFP as close as possible to the experimental discharges
(Materials and Methods, S2 Fig). This was done by visualizing both the simulated and experi-
mental LFP. Indeed, as parameters of the neural mass model are well known (see typical values
and references in Table 1), we thus had a priori information about their effect on the temporal
dynamics of the simulated epileptiform discharges. Note that the obtained parameters values
(Table 1) were included in the typical range of the literature. Values of gains Gi in Eq 2 varied
in order to obtain magnitudes of the simulated LFP reaching exactly the magnitudes Apeak of
the extracted discharges. Due to bicuculline wash-out, the obtained values corresponded to
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Table 1. Parameters values chosen from the experimental literature.

parameter name
(unit)

physiological description typical value value in this
article

references

A (mV) average magnitude of excitatory post-synaptic potential 3 to 18 3.25 [32, 33, 35–
39]

1/a (ms) average time constant of excitatory post-synaptic potential at the dendrites of pyramidal cells 4.5 to 10 10 [32, 33, 35–
39]

B (mV) average magnitude of inhibitory post-synaptic potential 1 to 50 3 [32, 33, 35–
39]

1/b (ms) average time constant of inhibitory post-synaptic potential at the dendrites of pyramidal cells 20 to 70 400 [32, 33, 35–
39]

e0 (s
-1) magnitude parameter of the neuronal sigmoid function 2.5 2.5 [32, 33, 35–

39]

rN (mV-1) slope of the neuronal sigmoid function 0.45 or 0.56 0.56 [32, 33, 35–
39]

sN (mV) mean firing threshold of the neuronal sigmoid function 6 6 [32, 33, 35–
39]

CPC!IN average number of synaptic contacts in the excitatory feedback loop 0.05 / 135 / 450 135 [32, 33, 35–
39]

CPC!PC average number of synaptic contacts in the excitatory feedback loop 0.05 / 108 / 240 13.5 [32, 33, 35–
39]

CIN!IN average number of synaptic contacts in the inhibitory feedback loop 0.08 / 33.75 /
400

81 [32, 33, 35–
39]

CIN!PC average number of synaptic contacts in the inhibitory feedback loop 0.06 / 33.75 /
280

13.5 [32, 33, 35–
39]

W (μM.s-1) gain coefficient of the glutamate release transfer function - 18.46 (*) [40]

w1 (s
-1) parameter of the glutamate release transfer function - 90 [40]

w2 (s
-1) parameter of the glutamate release transfer function - 33 [40]

Z (μM.s-1) gain coefficient of the GABA release transfer function - 613 (*) [41]

z1 (s
-1) parameter of the GABA release transfer function - 90 [41]

z2 (s
-1) parameter of the GABA release transfer function - 33 [41]

Vmg (μM.s-1) magnitude of the glutamate uptake sigmoid - 5 [42–45]

rg (μM
-1) slope of the glutamate uptake sigmoid - 0.5 [42–45]

sg (μM) threshold of the glutamate uptake sigmoid - 9 [42–45]

Vm1 (μM.s-1) Michaelis-Menten maximum velocity for GAT1 transporters (neurons) 5 [46–49]

Km1 (μM) Michaelis-Menten concentration for GAT1 transporters (neurons) 24 [46–49]

Vm3 (μM.s-1) Michaelis-Menten maximum velocity for GAT3 transporters (astrocytes) 2 [46, 48–50]

Km3 (μM) Michaelis-Menten concentration for GAT3 transporters (astrocytes) 8 [46, 48–50]

Vgme (μM.s-1) rate of glutamate degradation in astrocytes 0.15 to 7.9 0.147 (*) [51–53]

Vgba (μM.s-1) rate of GABA degradation in astrocytes - 1.984 (*) [54]

εn (s
-2) efficacy of the neuronal contribution to the normalized flow dynamics 0.5 to 1 8 to 120 [3]

εa (s
-2) efficacy of the astrocytic contribution to the normalized flow dynamics 0.5 to 1 8 to 120 [3]

τsn (s) time-constant for signal decay of the neuronal contribution to the normalized flow dynamics 0.4 to 0.8 0.4 to 1.9 [3]

τsa (s) time-constant for signal decay of the astrocytic contribution to the normalized flow dynamics 0.4 to 0.8 0.4 to 1.9 [3]

τfn (s
2) time-constant for autoregulatory feedback of the neuronal contribution to the normalized flow

dynamics
0.4 to 0.8 0.7 to 10.3 [3]

τfa (s
2) time-constant for autoregulatory feedback of the astrocytic contribution to the normalized flow

dynamics
0.4 to 0.8 0.7 to 10.3 [3]

Parameter names are used throughout this study in all equations (S1 Table). The physiological description corresponds to the parameter meaning in the

model. The typical value corresponds to the range of values taken from the papers listed in the reference column. Values of the neurotransmitter cycles

were homogenized to the same unit by conversion, by considering that 1 ml of brain corresponds to 930 mg of tissue and 93 mg of proteins.

(*) Values obtained by stationary state (baseline) calculation (S3 File).

doi:10.1371/journal.pone.0147292.t001
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reduced discharge magnitudes: G1 = 965, G2 = 929, G3 = 923, G4 = 810, G5 = 756, G6 = 690, G7

= 707, G8 = 673 and G9 = 535. Using these values, the simulated LFP (in black, Fig 2B and 2C)
matched extremely well the LFP recording (in gray, Fig 2B and 2C). As the gain was the only
modified parameter across simulated discharges, these results can be interpreted as the influ-
ence of bicuculline wash-out on a physiological state (here, the studied rat) depicted by the
other pre-defined parameters. Besides, because the simulated discharges were the input to the
remaining of the sequential model (S2 and S3 Figs), achieving a satisfactory agreement between
the model and the data for the neuronal part of the model was essential in order to ensure a
similar consistency for the subsequent compartments.

A simple model of the neurotransmitter (glutamate and GABA) cycles
Neuro-glial interactions occurring at the glutamatergic and GABAergic synapses [55], i.e.
between the neuronal and astrocytic compartments of the model, involve a variety of processes
called neurotransmitter cycles. A first version of the neurotransmitter cycles [50, 56] was sim-
plified (Fig 3A, S1 File) to glutamate and GABA releases and uptakes. When defining equations
and parameter values, we considered the physiological interactions at the level of synapses and
we converted them to the population scale according to the experimental literature (Table 1).

We started from Fig 4 from [40] giving the extracellular concentration of glutamate in
response to a single action potential (impulse response). The shape of this response (Fig 3B),
with very different rise time and decay time, led us to introduce the bi-exponential function
described in [39, 57]. In order to adapt the model to the population scale, we applied this

Fig 3. Modeling of the glutamate and GABA cycles according to the experimental literature. (A) Main physiological principles of glutamate and GABA
cycles are glutamate and GABA releases by pyramidal cells and interneurons respectively, glutamate uptake by astrocytes and GABA uptake by both
neurons and astrocytes (S1 File). (B) The glutamate release (solid line) from Eq 9 matches the experimental impulse response (circles) depicted in Fig 4 in
[40] for the parameter set {W = 0.59,w1 = 90,w2 = 33}. (C) Comparison between the simulated glutamate uptake from Eq 11 and Michaelis-Menten
representations {VM, KM} obtained from the experimental literature and converted to the same unit (Table 1). The Michaelis-Menten representations are
numbered according to the experimental literature with 1: {VM = 9.5, KM = 91} for [42]; 2a: {VM = 4.2, KM = 18.6}, 2b: {VM = 4.8, KM = 37}, 2c: {VM = 2, KM = 16}
for [44]; 4a: {VM = 6.8, KM = 18.9}, 4b: {VM = 1.5, KM = 54.9} for [45]. Setting parameters of Eq 11 to {Vmg = 5, rg = 0.5, sg = 9} led to a sigmoid function (solid
line), which was close to the experimental measures for the usual physiological values of extracellular glutamate concentration (below 10 μM). (D)
Comparison between Michaelis-Menten responses of the GABA uptake from Eqs 15 and 16 with {Vm1 = 5, Km1 = 24} for GAT1 transport (neurons, in gray)
and {Vm1 = 2, Km1 = 8} for GAT3 transport (astrocytes, in black).

doi:10.1371/journal.pone.0147292.g003
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Fig 4. Temporal simulations of the NVGmodel. (A) Simulated LFP for discharges number 1 (with the
highest level) and number 9 (with the lowest level) separated by 105 s reproduced bicuculline wash-out as a
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function to the firing rate FRPC to define the glutamate release GluN!E as follows:

d2GluN!E

dt2
¼ Ww1exp w2

lnðw1=w2Þ
w1 � w2

� �
FRPCðtÞ � ðw1 þ w2Þ

dGluN!E

dt
� w1w2GluN!EðtÞ: ð9Þ

The dynamics of GABA release by interneurons found in the experimental literature look
like a bi-exponential function [58–60] with a variety of dynamic constants [41]. We thus chose
the bi-exponential function [61] applied to the firing rate FRIN for the GABA release GABAN!E

equation, as follows:

d2GABAN!E

dt2
¼ Zz1exp z2

lnðz1=z2Þ
z1 � z2

� �
FRINðtÞ � ðz1 þ z2Þ

dGABAN!E

dt
� z1z2GABAN!EðtÞ: ð10Þ

Our NGV model considered glutamate uptake from both neurons and astrocytes (Fig 3A).
Astrocytes demonstrate a sensing capacity to probe the extracellular space, i.e. glutamate
uptake by astrocytes is activated when a given level of extracellular glutamate concentration is
reached. Moreover, glutamate uptake by astrocytes presents a saturation effect. In order to take
these mechanisms into account, we chose to represent the glutamate uptake GluE!A by astro-
cytes with the sigmoid function of Eq 4:

GluE!AðtÞ ¼ sigmðGluEðtÞ;Vmg ; rg ; sgÞ: ð11Þ

Glutamate reuptake by neurons being typically 10% [62] to 20% [63] of the total glutamate
concentration taken from the extracellular space, we simply defined glutamate reuptake by
neurons GluE!N as follows:

GluE!NðtÞ ¼
M

1�M
GluE!AðtÞ ð12Þ

whereM corresponds to the fraction of glutamate reabsorbed by neurons. For simplification
purposes, we setM = 0 in this study. The variation in the extracellular concentration of gluta-
mate was defined as the difference between the release rate of Eq 9 and the uptake rate of Eqs
11 and 12, given by:

dGluE

dt
¼ GluN!EðtÞ � GluE!AðtÞ � GluE!NðtÞ: ð13Þ

Complex mechanisms occur into the astrocytic compartment (S1 File). As a first approxi-
mation, we considered that the consumption rate Vgme of glutamate into the astrocytes was
constant. This led to the astrocytic glutamate concentration GluA defined as follows:

dGluA

dt
¼ GluE!AðtÞ � Vgme: ð14Þ

As opposed to glutamate uptake, which is mainly achieved by astrocytes, GABA uptake is
mainly due to reuptake by interneurons [64]. We kept the Michaelis-Menten representation
(Table 1) used in the experimental literature to model GABA uptakes, whereas a sigmoid func-
tion was used to model glutamate uptake, which is a more significant process acting on CBF
dynamics [50]. Actually, GABA transport and metabolism seem to involve less complex

function of time. (B) Temporal simulation of the resulting extracellular concentration of glutamateGluEwas in
a good agreement with the temporal dynamics of experimental recordings with a glutamate probe such as
those found in Fig 2 in [67]. (C) The resulting extracellular GABA concentrationGABAE had a slower
dynamics thanGluE.

doi:10.1371/journal.pone.0147292.g004
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processes than those of glutamate [46, 65]. Therefore, the neuronal and astrocytic GABA
uptakes were, respectively:

GABAE!NðtÞ ¼
Vm1

Km1 þ GABAEðtÞ
GABAEðtÞ ð15Þ

and

GABAE!AðtÞ ¼
Vm3

Km3 þ GABAEðtÞ
GABAEðtÞ ð16Þ

where GABAE is the extracellular GABA concentration and {Vm1, Km1, Vm3, Km3} are the
Michaelis-Menten parameters (Table 1). In this type of representation, the parameter Vm

defines a saturation phenomenon (maximum rate) and the parameter Km (Michaelis-Menten
constant) defines the curve slope for increased values of the extracellular concentration. We
described the variation of GABAE by the difference between the release rate of Eq 10 and the
uptake rates of Eqs 15 and 16, which led to the following equation:

dGABAE

dt
¼ GABAN!EðtÞ � GABAE!AðtÞ � GABAE!NðtÞ: ð17Þ

In the same way as for glutamate degradation into the astrocytic compartment, a constant
rate Vgba was considered for GABA degradation, so that the astrocytic GABA concentration
was simply given by:

dGABAA

dt
¼ GABAE!AðtÞ � Vgba: ð18Þ

Comparison between the modeled neurotransmitter cycles and the
experimental literature
We did not have access to experimental data linked to these cycles, such as recordings with glu-
tamate probes [66, 67]. The parameter values for the neurotransmitter cycle part of the model
(Eqs 9–18) were thus chosen in the experimental range found in the experimental literature
(Fig 3 and Table 1). For model-data comparison regarding glutamate release, we manually
tuned parameters {W, w1, w2} of Eq 9 as close as possible (solid line in Fig 3B) to the experi-
mental impulse response of an action potential (dotted line in Fig 3B) of [40]. In order to adapt
the model from the synaptic scale of an action potential to the population scale of the firing
rate FRPC, we kept the values of w1 and w2 that ensured physiological rise and decay times and
we modified the magnitudeW of the response according to the stationary state of the model
(S3 File). The same methodology was followed to set the parameters {Z, z1, z2} of GABA release
in Eq 10 (Table 1). We chose the sigmoid function of Eq 11 to represent glutamate uptake by
astrocytes although experimental studies are usually based on Michaelis-Menten representa-
tion. As a consequence, we had to manually tune parameters {Vmg, rg, sg} so that the resulting
sigmoid was as close as possible to the different Michaelis-Menten experimental curves (Fig
3C). We thus adapted the parameters of the sigmoid in order to obtain, for typical values of
GluE (range 0–10 μM) in our study, both the same level of saturation and the same slope as for
the Michaelis-Menten curves. GABA uptake parameters {Vm1, Km1} of the neuronal contribu-
tion of Eq 15 correspond to mGAT1 for mice and GAT1 for rats/humans (S1 File). Similarly,
GABA uptake parameters {Vm3, Km3} of the astrocytic contribution of Eq 16 correspond to
mGAT4 for mice and GAT3 for rats/humans (S1 File). After unit conversion (Table 1), we
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chose the values {Vm1 = 5, Km1 = 24, Vm3 = 2, Km3 = 8} leading to a more important uptake for
GAT1 than for GAT3 (Fig 3D) as depicted in the literature (Table 1, S1 File).

Simulations of the neurotransmitter cycles agree with the
phenomenological literature
With pre-defined parameters for the neurotransmitter cycle part of the model, we were able to
obtain the simulated temporal dynamics of the extracellular concentrations GluE and GABAE

(Fig 4B and 4C) for the highest and lowest level isolated discharges (Fig 4A) separated by 105 s.
The obtained dynamics of GluE (Fig 4B) were in good agreement with the experimental lit-

erature such as the dynamics depicted in Fig 2 in [67]. The dynamics of the extracellular
GABA concentration GABAE (Fig 4C) were more difficult to compare with the experimental
literature because GABAE is usually indirectly measured by inhibitory postsynaptic currents
and there exists a wide variety of shapes and magnitdes of the responses [41]. The obtained
GABAE dynamics were slower than those of glutamate transport, which was consistent with
the literature [68].

A new representation of CBF changes: introducing both neuronal and
astrocytic contributions
GluE and GABAE uptakes by astrocytes contribute to a local increase in CBF (a phenomenon
referred to as functional hyperemia) via a variety of vasoactive mediators (see [8, 69–71] for
good reviews on the different mediators that could be involved). This increase is achieved
through different mechanisms (S2 File). Interestingly, these mechanisms correspond to a slow
indirect contribution of astrocytes and a rapid direct contribution of neurons [8, 72–74], repre-
sented in a parallel manner in our model (Fig 5A).

To our knowledge, only one experimental demonstration [7] has concluded that when iso-
flurane concentration varied from high to low, astrocytic calcium response (to visual stimuli)
was reduced by 77±14%, compared with a 16±8% reduction for neuronal calcium response.
Therefore, we considered that CBF dynamics, linked to calcium dynamics, could be approxi-
mately explained by a 80% contribution of astrocytes (fA) and a 20% contribution of neurons
(fN), which led to the equation:

finðtÞ ¼
FinðtÞ
F0

¼ 0:8fAðtÞ þ 0:2fNðtÞ; ð19Þ

where {fN, fA, fin} are variables normalized to the flow baseline F0, and Fin is the cerebral blood
flow rate entering the voxel. In order to represent the neuronal contribution fN, corresponding
to fast and direct increase by synaptic projections through dinoprostone (PGE2, cyclooxygen-
ase (COX-2), and nitric oxyde (NO) (S2 File), we chose the well-known model of [3] described
by the equation:

d2fN
dt2

¼ εn½EPSPPCðtÞ=normu1 � 1� � 1

tsn

dfN
dt

� fNðtÞ � 1

tfn
; ð20Þ

where normu1 is the baseline value of EPSPPC. Likewise, we described the astrocytic contribu-
tion fA to the flow dynamics, representing a slow activity via cascades of mediators (including
glutamate and GABA) such as NO and epoxyeicosatrienoic acids (EETs), by the equation:

d2fA
dt2

¼ εa½ðGluE!AðtÞ þ GABAE!AðtÞÞ=normu2 � 1� � 1

tsa

dfA
dt

� fAðtÞ � 1

tfa
; ð21Þ
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where normu2 is the baseline value of the uptakes. In practice, normu1 and normu2 were com-
puted on a slot of 30 s (initial value 1), setting the input characteristics to σp = 0 and Gi = 0 (see
S1 Table for baseline values and S3 File for more details on the stationary state calculations).
With these ultimate equations, the entire neuro-glio-vascular model (S3 Fig) is described by a
system of ordinary differential equations (S1 Table).

Model-data comparison between the CBF part of the model and the LD
recording corresponding to the discharges
To explore the capacity of the model to represent epileptic phenomena, we decided to manu-
ally tune (S2 Fig) the resulting simulations of the total inflow fin to reproduce the isolated
laser Doppler recordings, as we assumed fin to be directly related to these recordings (no
observation equation). Isolated LD events were extracted together with the isolated dis-
charges from the continuous (LFP-LD) dataset (Materials and Methods, S1 Fig). As the laser
Doppler recording was very noisy, we first filtered the isolated events and defined their local
baseline in the trough before the principal peak. This allowed us to compare the normalized

Fig 5. Modeling cerebral blood flow (CBF) dynamics. (A) CBF dynamics represented by the variable Fin consist of a neuronal contribution and an
astrocytic contribution. (B) Model-data comparison was assessed by the relative error |Fpeak,simu—Fpeak,expe|/Fpeak,expe, where Fpeak,simu is the CBFmagnitude
collected on the simulations and Fpeak,expe is the CBFmagnitude collected on the laser Doppler recording (Materials and Methods). This relative error (in %,
coded in grayscale with black for lower values and white for higher values) was represented as a function of the magnitude Apeak of the extracted discharges
and the parameter set leading to the magnitude Fpeak,simu. (C) Same as (B) for time tpeak of the main peak (Materials and Methods).

doi:10.1371/journal.pone.0147292.g005
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variable fin with the normalized isolated events. The difficulty to define a baseline value for
the CBF led us to assume a standard shape for CBF events i.e. with neither initial dip nor
post-stimulus undershoot. Actually, we were only interested in the magnitude of the main
peak, not in the entire shape of the CBF dynamics, because we sought to study its relationship
to the magnitude of the epileptiform discharges. We thus manually tuned the parameters {εn,
τsn, τfn, εa, τsa, τfa} describing the neuronal and astrocytic flow contributions fN and fA of Eqs
20 and 21 in order to obtain a magnitude of fin as close as possible to that of the isolated and
filtered laser Doppler recordings. For the highest and lowest level discharges, we obtained
five parameters sets (configurations) matching well the extracted LD recordings. Obtained
sets of parameters were S1: {εn = 35, τsn = 1.3, τfn = 6.0, εa = 8, τsa = 1.6, τfa = 10.3}, S2: {εn =
35, τsn = 1.2, τfn = 5.8, εa = 31, τsa = 1.3, τfa = 3.0}, S3: {εn = 35, τsn = 1.2, τfn = 5.8, εa = 60, τsa
= 0.8, τfa = 0.7}, S4:{εn = 22, τsn = 1.6, τfn = 10.3, εa = 44, τsa = 0.4, τfa = 0.7} and S5:{εn = 12,
τsn = 1.0, τfn = 4.0, εa = 120, τsa = 1.9, τfa = 3.5}. Other configurations may lead to a good
agreement between the simulations and the experimental flow events. Nevertheless, we did
not analyze identification and uniqueness problems in the present study because as a first
step, this model-data comparison was aimed at studying the capacity of the model to repro-
duce a single example of experimental data.

The different sets of parameters contributing to CBF magnitude depend
on the discharge magnitude
So as to explore quantitatively this model-data comparison, we collected (Materials and Meth-
ods, S1 Fig) the magnitude values Fpeak,simu of the simulated variable fin and compared them
with the magnitude values Fpeak,expe of the LD recordings, for each one of the nine events and for
each one of the five parameter sets (Fig 5B). We found that the sets that best matched (i.e. the
relative error was nearly zero) the experimental recordings were {S4, S5} for the highest level dis-
charges and {S1, S2, S3} for the lowest level discharges. Likewise, we collected the instants of the
flow peaks, called tpeak,simu for the simulated flow fin and tpeak,expe for the LD recordings, respec-
tively (Materials and Methods, S1 Fig). We also found a dependence between the adaptation of
the parameter sets to Fpeak,expe and the magnitude Apeak of the discharges (Fig 5C).

Nonlinear relationship between CBF magnitude and epileptiform
discharge magnitude in isolated events
Parameter sets correspond to the values of parameters {εn, τsn, τfn, εa, τsa, τfa} of Eqs 20 and 21
representing both the neuronal and astrocytic contributions fN and fA to the total inflow. In
order to quantify the balance between the neuronal and astrocytic contributions to fin, without
doing any specific study on these contributions, we defined an index Q based on the second-
order differential equations describing fN and fA respectively (Materials and Methods).
Depending on the parameter values, each set put more or less emphasis on either the neuronal
contribution or the astrocytic contribution to fin, with Q>1 for emphasis on neuronal contribu-
tion and Q<1 for emphasis on astrocytic contribution, respectively. We obtained Q = {3.86,
2.56, 2.15, 0.46, 0.41} for the five sets of parameters {S1, S2, S3, S4, S5}, respectively. We therefore
conclude that sets {S1, S2, S3} put more emphasis on neuronal contribution and that sets {S4, S5}
put more emphasis on astrocytic contribution. Consequently, this indicates that neuronal con-
figurations {S1, S2, S3} bore a close resemblance to the experimental LD recordings as the dis-
charge magnitude Apeak was reduced. On the contrary, astrocytic configurations {S4, S5}
seemed to better approximate the experimental recordings as Apeak increased. In physiological
terms, it seems that for a low level discharge, the neuronal impact on the vessels is sufficient to
elicit a flow response. However, when the discharge is high enough, astrocytic mechanisms are
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yet in action and lead to a more significant contribution of astrocytes to the flow. Interestingly,
neuronal contribution was linear whereas astrocytic contribution was nonlinear (due to non-
linear uptake mechanisms). As a consequence, the relationship between neuronal activity (epi-
leptiform discharges) and CBF dynamics (magnitude and timing of LD recordings) seems
nonlinear for sufficiently high level discharges.

Discussion
We proposed a new computational model developed at the scale of populations corresponding
to multimodal acquisitions such as sEEG-fMRI. The model represents the forward signaling
chain from neuronal activity to CBF changes, involving neurotransmitter (glutamate and
GABA) cycles via the astrocytes. Particular efforts were done to achieve simple equations while
describing the main physiological principles found in the literature.

We present a comparison of the model with bimodal (simultaneous LFP and laser Doppler)
data acquired in the context of epilepsy. This sequential model-data comparison showed a
good agreement of the model with the LFP recordings on isolated epileptiform discharges. This
was obtained by manually tuning the neuronal parameters to patho-physiological values. We
collected from the experimental literature a physiological range for the parameters of the gluta-
mate and GABA cycles. Although we did not study in details the capacities and limitations of
our model concerning these cycles, we showed its ability to reproduce typical dynamics of the
extracellular concentrations of glutamate and GABA when elicited by neuronal events. We
reproduced the laser Doppler recordings corresponding to the same isolated events with differ-
ent sets of parameters. Although this comparison showed a limitation of our model in terms of
identification of the whole CBF dynamics, it nevertheless provided mechanistic insights about
the relationship between magnitudes of the neuronal activity and that of CBF. In particular, we
showed that this relationship was due to neuronal contribution for low level neuronal events
and to astrocytic contribution for higher level ones. Although it has been recently shown that
the large majority of astrocytes responded with a calcium elevation to ictal but not interictal
discharges [75], we found that an astrocytic contribution was already present when the interic-
tal discharge was sufficiently important. Since astrocytic contribution to CBF increase is non-
linear, this result implies that the relationship between neuronal activity and CBF can be
nonlinear, at least as far as sufficiently high level events are considered. A study of the balance
between the dynamics of the neuronal and astrocytic contributions, respectively, by comparing
our NGV model with data such as recordings in [7], would allow us to go further in the under-
standing of the sources of CBF changes.

More generally, understanding the neuro-glio-vascular coupling that exists between neu-
rons, glial cells and vessels remains a difficult issue, given the number of metabolite interactions
and the complexity of these interactions. Consequently, many studies may be considered start-
ing from the existing model to understand other relationships, or expanding/modifying this
model in order to take other mechanisms into account. For instance, we will be able to study
the impact of discharge frequency on the nonlinear relationship between LFP and CBF, which
could be directly linked to the extracellular concentration of neurotransmitters. More generally
speaking, as the model includes a simple version of the glutamate and GABA cycles, we could
further study the role of astrocytes in the excitation/inhibition balance. Indeed, this balance is
important in a number of pathologies such as epilepsy. Under neuronal hyperactivity, apart
from a massive release of neurotransmitters, a high level of metabolism activity (via a large
potassium increase) is also induced in astrocytes. A longer-term perspective of this work is
thus an extension of the model to metabolic mechanisms such as oxygen supply, which are also
directly linked to astrocytic activity and CBF changes.
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Materials and Methods
All experimental protocols were approved by The Ethical Committee for Animal Experimenta-
tion of Marseille (approval number 30–03102012). The experimental protocol was performed
in vivo on one Wistar-Han rat under general anesthesia (initially anesthetized with 5% and
maintained under 2% isoflurane in 1 l/min of O2) delivered as a constant stream. The animal
was euthanized by uretan injection during anesthesia.

Simultaneous (LFP-LD) recordings in vivo
The animal was equipped with one tungsten electrode and one Doppler electrode, located
above the somatosensory cortex. LFP were recorded by sharpened tungsten electrodes lowered
to 500 μm into the cortex, close to the bicuculline injection site. CBF was recorded by a laser
Doppler system (Perimed Periflux System 5000, Stockholm, Sweden; 0.03 s time constant, 780
nm laser). To measure CBF as locally as possible, we used a needle probe (Perimed probe 411)
with a small separation (0.15mm) between emitting and collecting light fibers [2]. To elicit epi-
leptic discharges, bicuculline methochloride (2.5mM, Abcam, UK) was infused at a rate of 200
nl/min during 5min (1 μl total infusion) using a 5 μlmicrosyringe (Hamilton, 75RN neuro
syringe) mounted to a micropump at a depth between 1000 and 1500 μm targeting the cortical
layers III to VI. Epileptic discharges appeared about 7 s after the onset of the infusion.

Extracted isolated events and chosen characteristics used for model-
data comparison
The continuous (LFP-LD) data set is composed of isolated interictal-like discharges and burst
discharges for LFP recordings, together with the simultaneous LD recordings corresponding to
the CBF variations. We decided to compare the nonlinear model with the isolated events
extracted from this continuous data set. To this end, we defined an isolated event as an interic-
tal-like discharge on the LFP recording, i.e. an event which was sufficiently apart from the pre-
vious and following ones so that the corresponding LD variation had enough time to return to
its (local) baseline.

Isolated discharges were extracted directly from the continuous dataset (no post-processing)
and the magnitudes Apeak of their peak (S1 Fig) were collected manually. Note that the DC
component of the LFP recording was hardware-filtered. LD recordings were first filtered with
the Matlab1 (The Mathworks, Inc.) eegfilt function (1500 points) with a cutoff frequency of
0.5Hz in order to obtain a smoothed version of the CBF temporal dynamics (S1 Fig). The CBF
characteristics, collected from this smoothed version of the LD recording, were its magnitude
Fpeak and its duration Flong relative to the baseline (about 3mV). We obtained nine isolated
events with Flong varying from 22.2 s to 36.4 s, which were typical durations for the CBF to
return to its baseline. We observed decreasing values of Apeak as the bicuculline local concentra-
tion was washed out over time.

A simple but physiologically-relevant model
We proceeded by incorporating a number of intermediate variables and the main pathways
involved in NGV coupling, from the physiological literature [46]. In order to reduce the subse-
quent identification problems and the global model complexity in terms of the resulting num-
ber of differential equations, a refinement work was done at the same time for both the
selection of physiological variables and the selection of the pathways to be taken into account,
from the cellular to the mesoscopic level. Likewise, we defined mathematically each relation-
ship with the objective to obtain equations as simple as possible, while keeping their
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physiological meaning. If appropriate equations existed in the literature, then they were used
directly. Otherwise, we adapted existing equations or defined new ones.

Methodology for model-data comparison
The goal of model-data comparison was to study the capacity of the model to reproduce the
extracted isolated events. The objective was to find at least one set of parameter values leading
to simulated variables with a magnitude as close as possible to that of the corresponding
recordings. The simulated variables LFP and fin are located at the extreme sides of the (neural
mass, glutamate and GABA cycles and sum) chain that constitutes the model (S2 Fig). In prac-
tice, we took advantage of the forward property of this chain, from neuronal activity to CBF
changes [76], to conduct the comparison in a sequential manner (Materials and Methods and
S2 Fig) from parameters of the input noise p of Eqs 1 and 2 to parameters of the neuronal and
astrocytic contributions of Eqs 20 and 21. We chose the parameter values of the model in order
to reproduce on the one hand, the dynamics observed in the simultaneous data for the
observed (neuronal and vascular) parts of the model; on the other hand, the experimental liter-
ature for the intermediate non-observed (neurotransmitters cycles) part of the model.

Definition of ratio Q
We defined the ratio Q according to the following considerations. The neuronal and astrocytic
contributions to the total inflow fin, fN, and fA respectively, are given by the equations:

d2 fN
dt2

¼ εnu1ðtÞ �
1

tsn

dfN
dt

� fNðtÞ � 1

tfn

d2 fA
dt2

¼ εau2ðtÞ �
1

tsa

dfA
dt

� fAðtÞ � 1

tfa

;

8>>><
>>>:

where u1 and u2 are the inputs defined in Eqs 20 and 21. For these second-order systems, the
magnitudes of the impulse responses are directly linked to the efficacy parameters εn and εa.
Likewise, the durations of their responses are related to the quantities τfn/τsn

2 and τfa/τsa
2.

Therefore, the quantities Sneu = εn.τfn/τsn
2 and Sast = εa. τfa/τsa

2 describe quantitatively the
importance of the responses fN and fA on fin, respectively. The ratio Q = Sneu/Sast thus gives an
idea of the impact of the neuronal contribution fN on the total inflow fin, compared with the
astrocytic contribution fA.

Supporting Information
S1 Dataset. Simultaneously recorded (LFP-LD) isolated events used in this study. For each
extracted event i, time samples are denoted by ti, LFP samples by lfpi and laser Doppler sam-
ples by fi.
(MAT)

S1 Fig. Example of an isolated event extracted from the simultaneous (LFP-LD) recordings.
(A) The chosen characteristic collected on the LFP recording (in gray) was its peak magnitude
Apeak from baseline (dashed line). (B) The chosen characteristics collected on a smoothed ver-
sion (in black, see Materials and Methods) of the direct LD recording (in gray) were its peak
magnitude Fpeak from the (local) baseline, its duration Flong, and the time tpeak of the peak.
(TIFF)

S2 Fig. Model-data comparison between the forward NGVmodel and isolated events from
simultaneous (LFP-LD) recordings. Isolated discharges were used to manually tune the
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neural mass part of the model and the input p; the experimental literature was used to set the
parameters of the glutamate and GABA cycles with physiologically-relevant values; the
smoothed versions (in black) of the isolated LD data (in gray) corresponding to the isolated
discharges were used to manually tune the CBF part of the model leading to the output fin. The
symbol S corresponds to the sum of Eq 19.
(TIFF)

S3 Fig. Proposed neuro-glio-vascular (NGV) model and its link to multimodal recordings.
Dynamical variables are encapsulated in squares (S1 Table). The model input is a noise p repre-
senting the influence of the environment (average density of afferent action potentials and
bicuculline injection). Electrophysiological relationships (dotted lines) between the pyramidal
cells compartment and the interneurons compartment lead to the neuronal activity measured
by local field potential (LFP). Glutamate and GABA neurotransmitters are released in the
extracellular space and recycled (solid lines) by both neuronal and astrocytes compartments.
These activities lead to the cerebral blood flow (CBF) dynamics (dotted-dashed lines) repre-
sented in the vascular compartment and measured by laser Doppler (LD).
(TIFF)

S1 File. Physiological literature leads to a simple version of the glutamate and GABA cycles.

(DOC)

S2 File. Neuronal and astrocytic contributions to CBF changes explained by the physiologi-
cal literature.
(DOC)

S3 File. Stationary state calculations and deduced parameters.
(DOC)

S1 Table. Ordinary differential equations (ODE) describing the proposed neuro-glio-vas-
cular model. State variables are specified, together with their initial value (stationary state).
Parameter description and values are given in S1 Table. (°) Chosen from [54]. (°°) Chosen to be
the average in the range 2070–2630 μMmentioned in [77]. (�) Values obtained by stationary
state (baseline) calculation (S3 File). Input is p(t) of Eqs 1 and 2. The integration of this ODE
system by numerical methods such as Runge-Kutta 4 leads to the simulation of the output of
the model, the total cerebral blood inflow given by fin (t) = 0.8fA(t)+0.2fN(t).
(DOC)
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