
METHOD ARTICLE

 Sustainable data analysis with Snakemake [version 2;

peer review: 2 approved]

Felix Mölder 1,2, Kim Philipp Jablonski 3,4, Brice Letcher 5, Michael B. Hall 5,
Christopher H. Tomkins-Tinch 6,7, Vanessa Sochat 8, Jan Forster1,9,
Soohyun Lee 10, Sven O. Twardziok11, Alexander Kanitz 12,13, Andreas Wilm14,
Manuel Holtgrewe11,15, Sven Rahmann16, Sven Nahnsen17, Johannes Köster 1,18

1Algorithms for reproducible bioinformatics, Genome Informatics, Institute of Human Genetics, University Hospital Essen, University
of Duisburg-Essen, Essen, Germany
2Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
3Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
4Swiss Institute of Bioinformatics (SIB), Basel, Switzerland
5EMBL-EBI, Hinxton, UK
6Broad Institute of MIT and Harvard, Cambridge, USA
7Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, USA
8Stanford University Research Computing Center, Stanford University, Stanford, USA
9German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
10Biomedical Informatics, Harvard Medical School, Harvard University, Boston, USA
11Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin
Institute of Health (BIH), Center for Digital Health, Berlin, Germany
12Biozentrum, University of Basel, Basel, Switzerland
13SIB Swiss Institute of Bioinformatics / ELIXIR Switzerland, Lausanne, Switzerland
14Microsoft Singapore, Singapore, Singapore
15CUBI – Core Unit Bioinformatics, Berlin Institute of Health, Berlin, Germany
16Genome Informatics, Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
17Quantitative Biology Center (QBiC), University of Tübingen, Tübingen, Germany
18Medical Oncology, Harvard Medical School, Harvard University, Boston, USA

First published: 18 Jan 2021, 10:33
https://doi.org/10.12688/f1000research.29032.1
Latest published: 19 Apr 2021, 10:33
https://doi.org/10.12688/f1000research.29032.2

v2

Abstract
Data analysis often entails a multitude of heterogeneous steps, from
the application of various command line tools to the usage of
scripting languages like R or Python for the generation of plots and
tables. It is widely recognized that data analyses should ideally be
conducted in a reproducible way. Reproducibility enables technical
validation and regeneration of results on the original or even new
data. However, reproducibility alone is by no means sufficient to
deliver an analysis that is of lasting impact (i.e., sustainable) for the
field, or even just one research group. We postulate that it is equally
important to ensure adaptability and transparency. The former
describes the ability to modify the analysis to answer extended or
slightly different research questions. The latter describes the ability to

Open Peer Review

Reviewer Status

Invited Reviewers

1 2

version 2

(revision)
19 Apr 2021

report

version 1
18 Jan 2021 report report

Michael Reich , University of California, 1.

Page 1 of 28

F1000Research 2021, 10:33 Last updated: 11 MAY 2021

https://f1000research.com/articles/10-33/v2
https://orcid.org/0000-0002-3976-9701
https://orcid.org/0000-0002-4166-4343
https://orcid.org/0000-0002-8921-6005
https://orcid.org/0000-0003-3683-6208
https://orcid.org/0000-0002-9114-6421
https://orcid.org/0000-0002-4387-3819
https://orcid.org/0000-0002-3594-6213
https://orcid.org/0000-0002-3468-0652
https://orcid.org/0000-0001-9818-9320
https://doi.org/10.12688/f1000research.29032.1
https://doi.org/10.12688/f1000research.29032.2
https://f1000research.com/articles/10-33/v2
jar:file:/work/f1000research/webapps/ROOT/WEB-INF/lib/service-1.0-SNAPSHOT.jar!/com/f1000research/service/export/pdf/#
https://f1000research.com/articles/10-33/v1
jar:file:/work/f1000research/webapps/ROOT/WEB-INF/lib/service-1.0-SNAPSHOT.jar!/com/f1000research/service/export/pdf/#
jar:file:/work/f1000research/webapps/ROOT/WEB-INF/lib/service-1.0-SNAPSHOT.jar!/com/f1000research/service/export/pdf/#
https://orcid.org/0000-0003-4735-5514
http://crossmark.crossref.org/dialog/?doi=10.12688/f1000research.29032.2&domain=pdf&date_stamp=2021-04-19

Corresponding author: Johannes Köster (johannes.koester@uni-due.de)
Author roles: Mölder F: Methodology, Software, Writing – Review & Editing; Jablonski KP: Methodology, Software, Writing – Review &
Editing; Letcher B: Methodology, Software, Writing – Review & Editing; Hall MB: Methodology, Software; Tomkins-Tinch CH:
Methodology, Software, Writing – Review & Editing; Sochat V: Methodology, Software, Writing – Review & Editing; Forster J:
Methodology, Software; Lee S: Methodology, Software; Twardziok SO: Methodology, Software; Kanitz A: Methodology, Software; Wilm
A: Methodology, Software, Writing – Review & Editing; Holtgrewe M: Methodology, Software; Rahmann S: Supervision, Writing – Review
& Editing; Nahnsen S: Conceptualization; Köster J: Conceptualization, Data Curation, Formal Analysis, Funding Acquisition, Investigation,
Methodology, Project Administration, Resources, Software, Supervision, Validation, Visualization, Writing – Original Draft Preparation,
Writing – Review & Editing
Competing interests: No competing interests were disclosed.
Grant information: This work was supported by the Netherlands Organisation for Scientific Research (NWO) (VENI grant
016.Veni.173.076, Johannes Köster), the German Research Foundation (SFB 876, Johannes Köster and Sven Rahmann), the United States
National Science Foundation Graduate Research Fellowship Program (NSF-GRFP) (Grant No. 1745303, Christopher Tomkins-Tinch), and
Google LLC (Vanessa Sochat and Johannes Köster).
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Copyright: © 2021 Mölder F et al. This is an open access article distributed under the terms of the Creative Commons Attribution License
, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
How to cite this article: Mölder F, Jablonski KP, Letcher B et al. Sustainable data analysis with Snakemake [version 2; peer review: 2
approved] F1000Research 2021, 10:33 https://doi.org/10.12688/f1000research.29032.2
First published: 18 Jan 2021, 10:33 https://doi.org/10.12688/f1000research.29032.1

understand the analysis in order to judge whether it is not only
technically, but methodologically valid.
Here, we analyze the properties needed for a data analysis to become
reproducible, adaptable, and transparent. We show how the popular
workflow management system Snakemake can be used to guarantee
this, and how it enables an ergonomic, combined, unified
representation of all steps involved in data analysis, ranging from raw
data processing, to quality control and fine-grained, interactive
exploration and plotting of final results.

Keywords
data analysis, workflow management, sustainability, reproducibility,
transparency, adaptability, scalability

San Diego, San Diego, USA

Caroline C. Friedel , LMU Munich, Munich,

Germany

2.

Any reports and responses or comments on the

article can be found at the end of the article.

Page 2 of 28

F1000Research 2021, 10:33 Last updated: 11 MAY 2021

mailto:johannes.koester@uni-due.de
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.12688/f1000research.29032.2
https://doi.org/10.12688/f1000research.29032.1
https://orcid.org/0000-0003-3569-4877

1 Introduction
Despite the ubiquity of data analysis across scientific disci-
plines, it is a challenge to ensure in silico reproducibility1–3.
By automating the analysis process, workflow management
systems can help to achieve such reproducibility. Consequently,
a “Cambrian explosion” of diverse scientific workflow manage-
ment systems is in process; some are already in use by many
and evolving, and countless others are emerging and being
published (see https://github.com/pditommaso/awesome-pipeline).
Existing systems can be partitioned into five niches which we
will describe below, with highlighted examples of each.

First, workflow management systems like Galaxy4, KNIME5,
and Watchdog6 offer graphical user interfaces for composition
and execution of workflows. The obvious advantage is the
shallow learning curve, making such systems accessible for
everybody, without the need for programming skills.

Second, with systems like Anduril7, Balsam8, Hyperloom9,
Jug10, Pwrake11, Ruffus12, SciPipe13, SCOOP14, and COMPSs15,
and JUDI16, workflows are specified using a set of classes and
functions for generic programming languages like Python,
Scala, and others. Such systems have the advantage that they can
be used without a graphical interface (e.g. in a server environ-
ment), and that workflows can be straightforwardly managed
with version control systems like Git (https://git-scm.com).

Third, with systems like Nextflow17, Snakemake18, BioQueue19,
Bpipe20, ClusterFlow21, Cylc22, and BigDataScript23, workflows
are specified using a domain specific language (DSL). Here,
the advantages of the second niche are shared, while adding the
additional benefit of improved readability; the DSL provides
statements and declarations that specifically model central
components of workflow management, thereby obviating
superfluous operators or boilerplate code. For Nextflow and
Snakemake, since the DSL is implemented as an extension to
a generic programming language (Groovy and Python), access
to the full power of the underlying programming language is
maintained (e.g. for implementing conditional execution and
handling configuration).

Fourth, with systems like Popper24, workflow specification
happens in a purely declarative way, via configuration file
formats like YAML25. These declarative systems share the

concision and clarity of the third niche. In addition, workflow
specification can be particularly readable for non-developers.
The caveat of these benefits is that by disallowing impera-
tive or functional programming, these workflow systems can be
more restrictive in the processes that can expressed.

Fifth, there are system-independent workflow specification
languages like CWL26 and WDL27. These define a declarative
syntax for specifying workflows, which can be parsed and
executed by arbitrary executors, e.g. Cromwell (https://cromwell.
readthedocs.io), Toil28, and Tibanna29. Similar to the fourth
niche, a downside is that imperative or functional programming
is not or less integrated into the specification language, thereby
limiting the expressive power. In contrast, a main advantage
is that the same workflow definition can be executed on various
specialized execution backends, thereby promising scalability
to virtually any computing platform. Another important use case
for system-independent languages is that they promote inter-
operability between other workflow definition languages. For
example, Snakemake workflows can (within limits) be auto-
matically exported to CWL, and Snakemake can make use of
CWL tool definitions. An automatic translation of any CWL
workflow definition into a Snakemake workflow is planned as
well.

Today, several of the above mentioned approaches support
full in silico reproducibility of data analyses (e.g. Galaxy,
Nextflow, Snakemake, WDL, CWL), by allowing the definition
and scalable execution of each involved step, including deploy-
ment of the software stack needed for each step (e.g. via the
Conda package manager, https://docs.conda.io, Docker, https://
www.docker.com, or Singularity30 containers).

Reproducibility is important to generate trust in scientific
results. However, we argue that a data analysis is only of last-
ing and sustained value for the authors and the scientific field
if a hierarchy of additional interdependent properties is ensured
(Figure 1).

First, to gain full in silico reproducibility, a data analysis has to
be automated, scalable to various computational platforms and
levels of parallelism, and portable in the sense that it is able
to be automatically deployed with all required software in
exactly the needed versions.

Second, while being able to reproduce results is a major
achievement, transparency is equally important: the validity
of results can only be fully assessed if the parameters, software,
and custom code of each analysis step are fully accessible. On
the level of the code, a data analysis therefore has to be read-
able and well-documented. On the level of the results it must
be possible to trace parameters, code, and components of the
software stack through all involved steps.

Finally, valid results yielded from a reproducible data analysis
have greater meaning to the scientific community if the analysis
can be reused for other projects. In practice, this will almost
never be a plain reuse, and instead requires adaptability to
new circumstances, for example, being able to extend the

 Amendments from Version 1
In this latest version, we have clarified several claims in the
readability analysis. Further, we have extended the description
of the scheduling to also cover running Snakemake on cluster
and cloud middleware. We have extended the description of the
automatic code linting and formatting provided with Snakemake.
Finally, we have extended the text to cover workflow modules, a
new feature of Snakemake that allows to easily compose multiple
external pipelines together, while being able to extend and
modify them on the fly.

Any further responses from the reviewers can be found at
the end of the article

REVISED

Page 3 of 28

F1000Research 2021, 10:33 Last updated: 11 MAY 2021

https://github.com/pditommaso/awesome-pipeline
https://git-scm.com
https://cromwell.readthedocs.io
https://cromwell.readthedocs.io
https://docs.conda.io
https://www.docker.com
https://www.docker.com

analysis, replace or modify steps, and adjust parameter choices.
Such adaptability can only be achieved if the data analysis
can easily be executed in a different computational environ-
ment (e.g. at a different institute or cloud environment), thus
it has to be scalable and portable again (see Figure 1). In
addition, it is crucial that the analysis code is as readable as
possible such that it can be easily modified.

In this work, we show how data analysis sustainability in terms
of these aspects is supported by the open source workflow
management system Snakemake (https://snakemake.github.io).
Since its original publication in 2012, Snakemake has seen
hundreds of releases and contributions (Figure 2c). It has
gained wide adoption in the scientific community, culminat-
ing in, on average, more than five new citations per week, and

Figure 1. Hierarchy of aspects to consider for sustainable data analysis. By supporting the top layer, a workflow management system
can promote the center layer, and thereby help to obtain true sustainability.

Figure 2. Citations and development of Snakemake. (a) citations by year of the original Snakemake article (note that the year 2020
is still incomplete at the time of writing). (b) citations by scientific discipline of the citing article. Data source: https://badge.dimensions.ai/
details/id/pub.1018944052, 2020/09/29. (c) cumulative number of git commits over time; Releases are marked as circles.

TransparencyAdaptabilityReproducibility

Sustainability

Automation DocumentationReadabilityScalability Portability Traceability
20

13
20

14
20

15
20

16
20

17
20

18
20

19
20

20

year

0

50

100

150

200

ci
ta
ti
on

s

a

Bi
ol

og
ica

l S
cie

nc
es

In
fo

rm
at

io
n

an
d

Co
m

pu
…

M
ed

ica
l a

nd
 H

ea
lth

 S
c…

En
vi

ro
nm

en
ta

l S
cie

nc
es

M
at

he
m

at
ica

l S
cie

nc
es

En
gi

ne
er

in
g

Ch
em

ica
l S

cie
nc

es
Ag

ric
ul

tu
ra

l a
nd

 V
et

e…
Ps

yc
ho

lo
gy

 a
nd

 C
og

ni
t…

Te
ch

no
lo

gy
Ea

rth
 S

cie
nc

es
Ec

on
om

ics
Hi

st
or

y
an

d
Ar

ch
ae

ol
o…

La
w

an
d

Le
ga

l S
tu

di
es

0.0

0.1

0.2

0.3

0.4

0.5

0.6

fr
ac

ti
on

b

2012 2013 2014 2015 2016 2017 2018 2019 2020
date

0

1,000

2,000

3,000

4,000

co
un

t

c

Page 4 of 28

F1000Research 2021, 10:33 Last updated: 11 MAY 2021

https://snakemake.github.io
https://badge.dimensions.ai/details/id/pub.1018944052
https://badge.dimensions.ai/details/id/pub.1018944052

over 700 citations in total (Figure 2a,b). This makes Snakemake
one of the most widely used workflow management systems in
science.

In order to address the requirements of a potentially diverse
readership, we decided to split the following content into two
parts. Section 2 concisely presents Snakemake in terms of the
aspects shown in Figure 1, whereas section 3 provides further
details for the particularly interested reader, including how to
compose multiple workflows for integrative data analysis,
advanced design patterns, and additional technical details.

2 Methods and results
We present how Snakemake enables the researcher to conduct
data analyses that have all the properties leading to repro-
ducibility, transparency and adaptability. This in turn allows
the analysis to become a sustainable resource both for the
researcher themselves and the scientific community. We structure
the results by each of the properties leading to sustainable data
analyses (Figure 1).

We will thereby introduce relevant features of both the work-
flow definition language as well as the execution environment.
Several of them are shared with other tools, while others are
(at the time of writing) exclusive to Snakemake. Finally, there
are features that other workflow management systems provide
while Snakemake does not (or not yet) offer them. We inten-
tionally refrain from performing a full comparison with other
tools, as we believe that such a view will never be unbiased (and
quickly outdated), and should instead be provided by review
articles or performed by the potential users based on their
individual needs.

2.1 Automation
The central idea of Snakemake is that workflows are speci-
fied through decomposition into steps represented as rules
(Figure 3). Each rule describes how to obtain a set of output
files from a set of input files. This can happen via a shell com-
mand, a block of Python code, an external script (Python, R,
or Julia), a Jupyter notebook (https://jupyter.org), or a
so-called wrapper (see Sec. 2.2.1). Depending on the computing

Figure 3. Example Snakemake workflow. (a) workflow definition; hypothesized knowledge requirement for line readability is color-coded
on the left next to the line numbers. (b) directed acyclic graph (DAG) of jobs, representing the automatically derived execution plan from
the example workflow; job node colors reflect rule colors in the workflow definition. (c) content of script plot-hist.py referred from rule
plot_histogram. (d) knowledge requirements for readability by statement category (see subsection 3.3). The example workflow downloads
data, plots histograms of city populations within a given list of countries, and converts these from SVG to PDF format. Note that this is solely
meant as a short yet comprehensive demonstration of the Snakemake syntax.

configfile: "config.yaml"

rule all:
input:

 expand(
 "results/plots/{country}.hist.pdf",
 country=config["countries"]
)

rule download_data:
output:

 "data/worldcitiespop.csv"
log:

 "logs/download.log"
conda:

 "envs/curl.yaml"
shell:

 "curl -L https://burntsushi.net/stuff/worldcitiespop.csv > {output} 2> {log}"

rule select_by_country:
input:

 "data/worldcitiespop.csv"
output:

 "results/by-country/{country}.csv"
log:

 "logs/select-by-country/{country}.log"
conda:

 "envs/xsv.yaml"
shell:

 "xsv search -s Country '{wildcards.country}' "
 " {input} > {output} 2> {log}"

rule plot_histogram:
input:

 "results/by-country/{country}.csv"
output:

 "results/plots/{country}.hist.svg"
container:

 "docker://faizanbashir/python-datascience:3.6"
log:

 "logs/plot-hist/{country}.log"
script:

 "scripts/plot-hist.py"

rule convert_to_pdf:
input:

 "{prefix}.svg"
output:

 "{prefix}.pdf"
log:

 "logs/convert-to-pdf/{prefix}.log"
wrapper:

 "0.47.0/utils/cairosvg"

...

...

...

import sys
sys.stderr = open(snakemake.log[0], "w")

import matplotlib.pyplot as plt
import pandas as pd

cities = pd.read_csv(snakemake.input[0])

plt.hist(cities["Population"], bins=50)

plt.savefig(snakemake.output[0])

a b

c

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

Legend
domain knowledge
technical knowledge
Snakemake knowledge
trivial

d
trivial
snakemake
technical
domain

knowledge

1 2 3 4 5 6 7

category

0

5

10

15

20

co
un

t

Page 5 of 28

F1000Research 2021, 10:33 Last updated: 11 MAY 2021

https://jupyter.org

platform used and how Snakemake is configured, input and
output files are either stored on disk, or in a remote storage
(e.g. FTP, Amazon S3, Google Storage, Microsoft Azure Blob
Storage, etc.). Through the use of wildcards, rules can be
generic. For example, see the rule select_by_country in
Figure 3a (line 20). It can be applied to generate any output file
of the form results/by-country/{country}.csv, with
{country} being a wildcard that can be replaced with any
non-empty string. In shell commands, input and output files,
as well as additional parameters, are directly accessible by
enclosing the respective keywords in curly braces (in case of
more than a single item in any of these, access can happen by
name or index).

When using script integration instead of shell commands,
Snakemake automatically inserts an object giving access to
all properties of the job (e.g. snakemake.output[0], see
Figure 3c). This avoids the presence and repetition of boiler
plate code for parsing command line arguments. By replacing
wildcards with concrete values, Snakemake turns any rule into
a job which will be executed in order to generate the defined
output files.

Dependencies between jobs are implicit, and inferred auto-
matically in the following way. For each input file of a job,
Snakemake determines a rule that can generate it— for exam-
ple by replacing wildcards again (ambiguity can be resolved
by prioritization or constraining wildcards)— yielding another
job. Then, Snakemake goes on recursively for the latter, until
all input files of all jobs are either generated by another job
or already present in the used storage (e.g., on disk). Where
necessary, it is possible to provide arbitrary Python code to
infer input files based on wildcard values or even the contents
of output files generated by upstream jobs.

From this inference, Snakemake obtains a directed acyclic
graph of jobs (DAG, see Figure 3b). The time needed for this is
linear in the number of jobs involved in the workflow, and
negligible compared to the usual runtimes of the workflow
steps (see subsection 3.5).

Figure 3a illustrates all major design patterns needed to define
workflows with Snakemake: workflow configuration (line
1), aggregations (line 5–8), specific (line 33–43) and generic
(line 45–53) transformations, target rules (line 3–8), log file
definition, software stack definition, as well as shell com-
mand, script, and wrapper integration. subsection 3.2 presents
additional patterns that are helpful in certain situations (e.g.
conditional execution, iteration, exploration of large parameter
spaces, benchmarking, scatter/gather).

2.1.1 Automated unit test generation. When maintaining and
developing a production workflow, it is important to test each
contained step, ideally upon every change to the workflow
code. In software development, such tests are called unit tests31.
From a given source workflow with already computed results
that have been checked for correctness, Snakemake can
automatically generate a suite of unit tests, which can be

executed via the Pytest framework (https://pytest.org). Each unit
test consists of the execution of one rule, using input data taken
from the source workflow. The generated results are by default
compared byte-by-byte against the results given by in the
source workflow. However, this behavior can be overwritten
by the user. It is advisable to keep the input datasets of the
source workflow small in order to ensure that unit tests finish
quickly.

2.2 Readability
The workflow definition language of Snakemake is designed
to allow maximum readability, which is crucial for transpar-
ency and adaptability. For natural-language readability, the
occurrence of known words is important. For example, the
Dale-Chall readability formula derives a score from the frac-
tion of potentially unknown words (that do not occur in a list
of common words) among all words in a text32. For work-
flow definition languages, one has to additionally consider
whether punctuation and operator usage is intuitively under-
standable. When analyzing the above example workflow
(Figure 3a) under these aspects, code statements fall into seven
categories (subsection 3.3). In addition, for each statement, we
can judge whether it

1. needs domain knowledge (from the field analyzed in
the given workflow),

2. needs technical knowledge (e.g. about Unix-style
shell commands or Python),

3. needs Snakemake knowledge,

4. is trivial (i.e., it should be understandable for
everybody).

In Figure 3, we hypothesize the required knowledge for read-
ability of each code line. Most statements are understandable
with either general education, domain, or technical knowledge.
In particular, only six lines need Snakemake-specific
knowledge (Figure 3d). The rationale for each hypothesis
can be found in subsection 3.3.

It should be highlighted that with production workflows, there
will always be parts of the codebase that go beyond the simple
example shown here, for example by using advanced design
patterns (subsection 3.2), or various Python functions for
retrieving parameter values, per-sample configurations, etc.
Since Snakemake supports modularization of workflow defini-
tions (subsubsection 2.2.1), it is however possible to hide more
technical parts of the workflow definition (e.g. helper func-
tions or variables) from readers that are just interested in a
general overview. This way, workflows can try to keep a ratio
between the different types of knowledge requirements that
is similar to this example, while still allowing to easily enter
the more complicated parts of the codebase. In the shown
example, a good candidate for such a strategy is the lambda
expression (Figure 3a, line 39) for retrieving the number of bins
per country from the workflow configuration. While the used
way of definition requires specific knowledge about Snakemake
(and Python) when trying to understand the line, it can be

Page 6 of 28

F1000Research 2021, 10:33 Last updated: 11 MAY 2021

https://pytest.org

simplified for a reader that just wants to get an overview of the
workflow by replacing the statement with a function name, for
example get_bins and moving the actual function into
a separate file which is included into the main workflow
definition (see subsubsection 2.2.1).

Since dependencies between jobs are implicitly encoded via
matching filename patterns, we hypothesize that, in many
cases, no specific technical knowledge is necessary to under-
stand the connections between the rules. The file-centric descrip-
tion of workflows makes it intuitive to to infer dependencies
between steps; when the input of one rule reoccurs as the
output of another, their link and order of execution is clear.
Again, one should note that this holds for simple cases as in this
example. Conditional dependencies, input functions, etc. (see
subsection 3.2), can easily yield dependencies that are more
complex to understand. Also, such a textual definition does
not immediately show the entire dependency structure of a
workflow. It is rather suited to zoom in on certain steps, e.g.,
for understanding or modifying them. Therefore, Snakemake
provides mechanisms that help with understanding depend-
encies on a global level (e.g. allowing to visualize them via the
command line, or by automatically generating interactive
reports).

In summary, the readability of the example in Figure 3 should
be seen as an optimum a Snakemake workflow developer
should aim for. Where the optimum cannot be reached, modu-
larization should be used to help the reader to focus on parts
that are understandable for her or his knowledge and experi-
ence. Further, such difficulties can be diminished by Snake-
make’s ability to automatically generate interactive reports that
combine codebase and results in a visual way (subsection 2.4)
and thereby help to explore specific parts of the codebase
(e.g. to look up the code used for generating a particular plot)
and dependencies without the need to understand the entire
workflow.

2.2.1 Modularization. In practice, data analysis workflows are
usually composed of different parts that can vary in terms of
their readability for different audiences. Snakemake offers vari-
ous levels of modularization that help to design a workflow
in a way that ensures that a reader is not distracted from the
aspects relevant for her or his interest.

Snakefile inclusion. A Snakemake workflow definition (a so-
called Snakefile) can include other Snakefiles via a simple
include statement that defines their path or URL. Such inclu-
sion is best used to separate a workflow into sets of rules that
handle a particular part of the analysis by working together. By
giving the included Snakefiles speaking names, they enable
the reader to easily navigate to the part of the workflow she
or he is interested in.

Workflow composition. By declaring so-called workflow
modules, Snakemake allows to compose multiple external
workflows together, while modifying and extending them on
the fly and documenting those changes transparently. A detailed
description of this mechanism can be found in subsection 3.1.

Step-wise modularization. Some workflow steps can be quite
specific and unique to the analysis. Others can be common
to the scientific field and utilize widely used tools or libraries
in a relatively standard way. For the latter, Snakemake pro-
vides the ability to deposit and use tool wrappers in/from a cen-
tral repository. In contrast, the former can require custom code,
often written in scripting languages like R or Python. Snake-
make allows the user to modularize such steps either into scripts
or to craft them interactively by integrating with Jupyter note-
books (https://jupyter.org). In the following, we elaborate
on each of the available mechanisms.

Script integration. Integrating a script works via a special
script directive (see Figure 3a, line 42). The referred script
does not need any boilerplate code, and can instead directly use
all properties of the job (input files, output files, wildcard val-
ues, parameters, etc.), which are automatically inserted as a
global snakemake object before the script is executed (see
Figure 3c).

Jupyter notebook integration. Analogous to script integra-
tion, a notebook directive allows a rule to specify a path to a
Jupyter notebook. Via the command line interface, it is pos-
sible to instruct Snakemake to open a Jupyter notebook server
for editing a notebook in the context of a specific job derived
from the rule that refers to the notebook. The notebook server
can be accessed via a web browser in order to interactively
program the notebook until the desired results (e.g. a certain
plot or figure) are created as intended. Upon saving the note-
book, Snakemake generalizes it such that other jobs from the
same rule can subsequently re-use it automatically without the
need for another interactive notebook session.

Tool wrappers. Reoccurring tools or libraries can be shared
between workflows via Snakemake tool wrappers (see Figure 3a,
line 52–53). A central public repository (https://snakemake-wrap-
pers.readthedocs.io) allows the community to share wrappers
with each other. Each wrapper consists of a Python or R script
that either uses libraries of the respective scripting language
or calls a shell command. Moreover, each wrapper provides a
Conda environment defining the required software stack, includ-
ing tool and library versions (see subsection 2.3). Often,
shell command wrappers contain some additional code that
works around various idiosyncrasies of the wrapped tool (e.g.
dealing with temporary directories or converting job proper-
ties into command line arguments). A wrapper can be used by
simply copying and adapting a provided example rule (e.g.
by modifying input and output file paths). Upon execution, the
wrapper code and the Conda environment are downloaded from
the repository and automatically deployed to the running sys-
tem. In addition to single wrappers, the wrapper repository
also offers pre-defined, tested combinations of wrappers that
constitute entire sub-workflows for common tasks (called
meta-wrappers). This is particularly useful for combinations
of steps that reoccur in many data analyses. All wrappers are
automatically tested to run without errors prior to inclusion in
the repository, and upon each committed change.

Page 7 of 28

F1000Research 2021, 10:33 Last updated: 11 MAY 2021

https://jupyter.org
https://snakemake-wrappers.readthedocs.io
https://snakemake-wrappers.readthedocs.io

2.2.2 Standardized code linting and formatting. The readability
of programming code can be heavily influenced by adhering to
common style and best practices33. Snakemake provides auto-
matic code formatting (via the tool snakefmt) of workflows,
together with any contained Python code. Snakefmt formats plain
Python parts of the codebase with the Python code formatter
Black (https://black.readthedocs.io), while providing its own for-
matting for any Snakemake specific syntax. Thereby, Snakefmt
aims to ensure good readability by using one line per input/output
file or parameter, separating global statements like rules, config-
files, functions etc. with two empty lines (such that they appear
as separate blocks), and breaking too long lines into shorter
multi-line statements.

In addition, Snakemake has a built in code linter that detects
code violating best practices and provides suggestions on how to
improve the code. For example, this covers missing directives
(e.g. no software stack definition or a missing log file), inden-
tation issues, missing environment variables, unnecessarily
complicated Python code (e.g. string concatenations), etc.

Both formatting and linting should ideally be checked for
in continuous integration setups, for example via Github
Actions (https://github.com/features/actions). As such, there
are preconfigured Github actions available for both Snakefmt
(https://github.com/snakemake/snakefmt#github-actions) and the
code linter (https://github.com/snakemake/snakemakegithub-
action#example-usage).

2.3 Portability
Being able to deploy a data analysis workflow to an unpre-
pared system depends on: (a) the ability to install the workflow
management system itself, and (b) the ability to obtain and use
the required software stack for each analysis step. Snakemake
itself is easily deployable via the Conda package manager
(https://conda.io), as a Python package (https://pypi.io), or a
Docker container (https://hub.docker.com/r/snakemake/snake-
make). Instructions and further information can be found
at https://snakemake.github.io.

The management of software stacks needed for individual
rules is directly integrated into Snakemake itself, via two
complementary mechanisms.

Conda integration For each rule, it is possible to define a
software environment that will be automatically deployed via the
Conda package manager (via a conda directive, see Figure 3a,
line 15). Each environment is described by a lightweight
YAML file used by conda to install constituent software. While
efficiently sharing base libraries like Glib with the underly-
ing operating system, software defined in the environment takes
precedence over the same software in the operating system, and
is isolated and independent from the same software in other
Conda environments.

Container integration Instead of defining Conda environ-
ments, it is also possible to define a container for each rule (via
a container directive, see Figure 3a, line 38). Upon exe-
cution, Snakemake will pull the requested container image
and run a job inside that container using Singularity30. The

advantage of using containers is that the execution environment
can be controlled down to the system libraries, and becomes
portable across operating systems, thereby further increasing
reproducibility34. Containers already exist in centralized reposi-
tories for a wide range of scientific software applications,
allowing easy integration info Snakemake workflows.

Automatic containerization The downside of using contain-
ers is that generating and modifying container images requires
additional effort, as well as storage, since the image has to be
uploaded to a container registry. Moreover, containers limit
the adaptability of a pipeline, since it is less straightforward
and ad hoc to modify them. Therefore, we advice to rely on
Conda during the development of a workflow, while required
software environments may rapidly evolve. Once a workflow
becomes production ready or is published, Snakemake offers
the ability to automatically generate a containerized version. For
this, Snakemake generates a Dockerfile that deploys all defined
Conda environments into the container. Once the correspond-
ing container image has been built and uploaded to a con-
tainer registry, it can be used in the workflow definition via the
containerized directive. Upon workflow execution, Snake-
make will then use the Conda environments that are found
in the container, instead of having to recreate them.

2.4 Traceability and documentation
While processing a workflow, Snakemake tracks input files,
output files, parameters, software, and code of each executed
job. After completion, this information can be made available
via self-contained, interactive, HTML based reports. Output
files in the workflow can be annotated for automatic inclusion in
the report. These features enable the interactive exploration of
results alongside information about their provenance. Since
results are included into the report, their presentation does
not depend on availability of server backends, making
Snakemake reports easily portable and archivable.

First, the report enables the interactive exploration of the entire
workflow, by visualizing the dependencies between rules as
a graph. Thereby, the nodes of the graph can be clicked in
order to show details about the corresponding rules, like input
and output files, software stack (used container image or conda
environment), and shell, script, or notebook code. Second,
the reports shows runtime statistics for all executed jobs. Third,
used configuration files can be viewed. Fourth, the report shows
the included output files (e.g. plots and tables), along with
job specific information (rule, wildcard values, parameters), pre-
views of images, download functionality, and a textual descrip-
tion. The latter can be written via a templating mechanism
(based on Jinja2, https://jinja.palletsprojects.com) which allows to
dynamically react on wildcard values, parameters and workflow
configuration.

An example report summarizing the data analysis conducted
for this article can be found at https://doi.org/10.5281/zenodo.
424414335. In the future, Snakemake reports will be extended
to additionally follow the RO-crate standard, which will
make them machine-readable and allow an integration with
web services like https://workflowhub.eu.

Page 8 of 28

F1000Research 2021, 10:33 Last updated: 11 MAY 2021

https://black.readthedocs.io
https://github.com/features/actions
https://conda.io
https://pypi.io
https://hub.docker.com/r/snakemake/snakemake
https://hub.docker.com/r/snakemake/snakemake
https://snakemake.github.io
https://jinja.palletsprojects.com
https://doi.org/10.5281/zenodo.4244143
https://doi.org/10.5281/zenodo.4244143
https://workflowhub.eu
https://github.com/snakemake/snakefmt#github-actions
https://github.com/snakemake/snakemakegithub-action#example-usage

2.5 Scalability
Being able to scale a workflow to available computational
resources is crucial for reproducing previous results as well as
adapting a data analysis to novel research questions or datasets.
Like many other state-of-the-art workflow management sys-
tems, Snakemake allows workflow execution to scale to vari-
ous computational platforms (but not to combine multiple of
them in a single run), ranging from single workstations to large
compute servers, any common cluster middleware (like Slurm,
PBS, etc.), grid computing, and cloud computing (with native
support for Kubernetes, the Google Cloud Life Sciences API,
Amazon AWS, TES (https://www.ga4gh.org), and Microsoft
Azure, the latter two in an upcoming release).

Snakemake’s design ensures that scaling a workflow to a spe-
cific platform should only entail the modification of command
line parameters. The workflow itself can remain untouched.
Via configuration profiles, it is possible to persist and share the
command line setup of Snakemake for any computing platform
(https://github.com/snakemake-profiles/doc).

2.5.1 Job scheduling. Because of their dependencies, not all
jobs in a workflow can be executed at the same time. Instead,
one can imagine partitioning the DAG of jobs into three sec-
tions: those that are already finished, those that have already
been scheduled but are not finished yet, and those that have not
yet been scheduled (Figure 4a). Let us call the jobs in the latter
partition Jo, the set of open jobs. Within Jo, all jobs that have
only incoming edges from the partition of finished jobs (or
no incoming edge at all) can be scheduled next. We call this
the set J of pending jobs. The scheduling problem a workflow
manager like Snakemake has to solve is to select the subset
E ⊆ J that leads to an efficient execution of the workflow, while
not exceeding the given resources like hard drive space, I/O
capacity and CPU cores. Snakemake solves the scheduling

problem at the beginning of the workflow execution and
whenever a job has finished and new jobs become pending.

Efficiency of execution is evaluated according to three criteria.
First, execution should be as fast as possible. Second,
high-priority jobs should be preferred (Snakemake allows pri-
oritization of jobs via the workflow definition and the command
line). Third, temporary output files should be quickly deleted
(Snakemake allows output files to be marked as temporary,
which leads to their automatic deletion once all consuming
jobs have been finished). An example is shown in Figure 4.

When running Snakemake in combination with cluster or
cloud middleware (Slurm, PBS, LSF, Kubernetes, etc.), Snake-
make does not need to govern available resources since that
is handled by the middleware (hence, constraint (2) in Table 1
can be dropped). Instead, Snakemake can pass all information
about job resource requirements (threads, memory, and disk)
to the middleware, which can use this information to choose
the best fitting machine for the job. Nevertheless, the number
of jobs that shall be queued/running at a time is usually
restricted in such systems, so that Snakemake still has to select
a subset of jobs E ⊆ J as outlined above. In particular, mini-
mizing the lifetime of temporary files and maximizing priority
is still of high relevance, such that the scheduling problem
still has to be solved, albeit without the resource constraints
(resource requirements of selected jobs are simply passed to the
middleware).

We solve the scheduling problem via a mixed integer linear pro-
gram (MILP) as follows. Let R be the set of resources used
in the workflow (e.g., CPU cores and memory). By default,
Snakemake only considers CPU cores which we indicate
with c, i.e., R = {c}. Let F be the set of temporary files that are
currently present. We first define constants for each pending job
j ∈ J: Let p

j
 ∈ ℕ be its priority, let u

r,j
 ∈ ℕ be its usage of resource

r ∈ R, and let z
f,j
 ∈ {0, 1} indicate whether it needs tempo-

rary file f ∈ F as input (z
f,j
 = 1) or not (z

f,j
 = 0). Further, let U

r

be the free capacity of resource r ∈ R (initially what is provided
to Snakemake on the command line; later what is left, given
resources already used in running jobs). Let S

f
 be the size of file

f ∈ F, and let : ff FS S∈= ∑ be be total temporary file size

(measured in some reasonable unit, such as MB).

Next, we define indicator variables x
j
 ∈ {0, 1}, for each job j

∈ J, indicating whether a job is selected for execution (1) or
not (0). For each temporary file f ∈ F, we define a variable
δ

f
 ∈ [0, 1] indicating the fraction of consuming jobs that will

be scheduled among all open jobs. We also call this variable
the lifetime fraction of temporary file f . In other words, δ

f
 = 1

means that all consuming jobs will be completed after this
scheduling round has been processed, such that the lifetime of
that file is over and it can be deleted. To indicate the latter, we
further define a binary variable γ

f
 ∈ {0, 1}, with γ

f
 = 1 repre-

senting the case that f can indeed be deleted, in other words,
γ

f
 = 1 ⇔ δ

f
 = 1.

Figure 4. Snakemake scheduling problem. (a) Example
workflow DAG. The greenish area depicts the jobs that are ready
for scheduling (because all input files are present) at a given time
during the workflow execution. We assume that the red job at the
root generates a temporary file, which may be deleted once all blue
jobs are finished. (b) Suboptimal scheduling solution: two green
jobs are scheduled, such that only one blue job can be scheduled
and the temporary file generated by the red job has to remain on
disk until all blue jobs are finished in a subsequent scheduling step.
(c) Optimal scheduling solution: the three blue jobs are scheduled,
such that the temporary file generated by the red job can be
deleted afterwards.

cores

a

c

b

cores

Page 9 of 28

F1000Research 2021, 10:33 Last updated: 11 MAY 2021

https://www.ga4gh.org
https://github.com/snakemake-profiles/doc

Table 1. Mixed integer linear program for Snakemake’s scheduling problem.

Objective:

(2)

(3)

(4)

 (1)

,

,

c c2 2 2

{0,1} ,

{0,1} ,

[0,1] ,

,

,.

.

f f f f

f

f

j j j j
j J j J

f F f F

j

j j
j J

j f , jj J
f

f , jj J

f f

o

r r

U S p x S u x

S S S

x j J

f F

f F

x u U r R

x
f F

f F

γ δ

γ

δ

δ

γ δ

∈ ∈

∈ ∈

∈

∈

∈

⋅ ⋅ ⋅ + ⋅ ⋅

+ ⋅ ⋅ + ⋅

∈ ∈

∈ ∈

∈ ∈

⋅ ≤ ∈

⋅
≤ ∈

≤ ∈

∑ ∑

∑ ∑

∑

∑
∑

z

z

Maximize

subject to

for all

for all

for all

for all

for all

for all

Variables:
binary (xj) j ∈J :
do we schedule job j ∈ J ?

binary (γ f) f ∈ F :
can we delete file f ∈ F?

continuous (δf)f ∈ F ∈ [0, 1]:
lifetime fraction of f ; see (3)

Parameters:
 pj ∈ ℕ : priority of job j ∈ J

 ur, j ∈ ℕ : j ’s usage of resource r

 zf, j : does job j ∈ Jo need file f ?

 Ur ∈ ℕ : free capacity of resource r

 Sf ∈ ℕ : size of file f

 S ∈ ℕ : sum of file sizes ff S∑

Then, the scheduling problem can be written as the MILP
depicted in Table 1. The maximization optimizes four criteria,
represented by four separate terms in (1). First, we strive to
prefer jobs with high priority. Second, we aim to maximize
the number of used cores, i.e. the extent of parallelization.
Third, we aim to delete existing temporary files as soon as
possible. Fourth, we try to reduce the lifetime of temporary
files that cannot be deleted in this pass.

We consider these four criteria in lexicographical order. In
other words, priority is most important, only upon ties do we
consider parallelization. Given ties while optimizing paral-
lelization, we consider the ability to delete temporary files.
And only given ties when considering the latter, we take the life-
time of all temporary files that cannot be deleted immediately
into account. Technically, this order is enforced by multiplying
each criterion sum with a value that is at least as high as the
maximum value that the equation right of it can acquire. Unless
the user explicitly requests otherwise, all jobs have the same
priority, meaning that in general the optimization problem
maximizes the number of used cores while trying to remove as
many temporary files as possible.

The constraints (2)–(4) ensure that the variables have the intended
meaning and that the computed schedule does not violate
resource constraints. Constraint (2) ensures that the available
amount U

r
 of each resource r ∈ R is not exceeded by the selec-

tion. Constraint (3) (together with the fact that δ
f
 is being

maximized) ensures that δ
f
 is ineed the lifetime fraction of

temporary file f ∈ F. Note that the sum in the denominator
extends over all open jobs, while the numerator only extends
over pending jobs. Constraint (4) (together with the fact that γ

f
 is

being maximized) ensures that γ
f
 = 0 if and only if δ

f
< 1 and

hence calculates whether temporary file f ∈ F can be deleted.

Additional considerations and alternatives, which may be imple-
mented in subsequent releases of Snakemake, are discussed
in subsection 3.4.

2.5.2 Caching between workflows. While data analyses usually
entail the handling of multiple datasets or samples that are
specific to a particular project, they often also rely on retrieval
and post-processing of common datasets. For example, in the
life sciences, such datasets include reference genomes and
corresponding annotations. Since such datasets potentially
reoccur in many analyses conducted in a lab or at an institute,
re-executing the analysis steps for retrieval and post-processing
of common datasets as part of individual analyses would
waste both disk space and computation time.

Historically, the solution in practice was to compile shared
resources with post-processed datasets that could be referred to
from the workflow definition. For example, in the life sciences,
this has led to the Illumina iGenomes resource (https://support.
illumina.com/sequencing/sequencing_software/igenome.html)
and the GATK resource bundle (https://gatk.broadinstitute.org/hc/
en-us/articles/360035890811-Resource-bundle).

In addition, in order to provide a more flexible way of selec-
tion and retrieval for such shared resources, so-called “reference
management” systems have been published, like Go Get Data
(https://gogetdata.github.io) and RefGenie (http://refgenie.databio.
org). Here, the logic for retrieval and post-processing is curated
in a set of recipes or scripts, and the resulting resources can be

Page 10 of 28

F1000Research 2021, 10:33 Last updated: 11 MAY 2021

https://support.illumina.com/sequencing/sequencing_software/igenome.html
https://support.illumina.com/sequencing/sequencing_software/igenome.html
https://gatk.broadinstitute.org/hc/en-us/articles/360035890811-Resource-bundle
https://gatk.broadinstitute.org/hc/en-us/articles/360035890811-Resource-bundle
https://gogetdata.github.io
http://refgenie.databio.org
http://refgenie.databio.org

automatically retrieved via command line utilities. The down-
side of all these approaches is that the transparency of the data
analysis is hampered since the steps taken to obtain the used
resources are hidden and less accessible for the reader of the
data analysis.

Snakemake provides a new, generic approach to the problem
which does not have this downside (see Figure 5). Leveraging
workflow-inherent information, Snakemake can calculate a
hash value for each job that unambiguously captures exactly
how an output file is generated, prior to actually generat-
ing the file. This hash can be used to store and lookup output
files in a central cache (e.g., a folder on the same machine or
in a remote storage). For any output file in a workflow, if
the corresponding rule is marked as eligible for caching,
Snakemake can obtain the file from the cache if it has been
created before in a different workflow or by a different user
on the same system, thereby saving computation time, as
well as disk space (on local machines, the file can be linked
instead of copied).

The hash value is calculated in the following way. Let J be
the set of jobs of a workflow. For any job j ∈ J, let c

j
 denote its

code (shell command, script, wrapper, or notebook), let
P

j
 = {(k

i
, v

i
) | i = 0,...,m} be its set of parameters (with key k

i

and JSON-encoded value v
i
), let F

j
 be its set of input files that

are not created by any other job, and let s
j
 be a string describing

the associated software environment (either a container
unique resource identifier, a Conda environment definition, or
both). Then, assuming that job j ∈ J with dependencies D

j
 ⊂ J

is the job of interest, we can calculate the hash value as

0

()

()

()

j

m

i i j
i

j
f F

h j h k v c

h f s

h j

=

′∈

∈

′=

′

′

�

�

�

⊙ ⊙ ⊙

⊙ ⊙

j D j

with h′ being the SHA-25636 hash function, ⊙ being the string
concatenation, and ⊙ being the string concatenation of its
operands in lexicographic order.

The hash function h(j) comprehensively describes everything
that affects the content of the output files of job j, namely code,
parameters, raw input files, the software environment and
the input generated by jobs it depends on. For the latter, we
recursively apply the hash function h again. In other words, for
each dependency j′ ∈ D

j
 we include a hash value into the hash

of job j, which is in fact the hashing principle behind block-
chains used for cryptocurrency37. The hash is only descriptive if
the workflow developer ensures that the cached result is
generated in a deterministic way. For example, downloading
from a URL that yields data which may change over time
should be avoided.

2.5.3 Graph partitioning. A data analysis workflow can contain
diverse compute jobs, some of which may be long-running,
and some which may complete quickly. When executing a
Snakemake workflow in a cluster or cloud setting, by default,
every job will be submitted separately to the underlying
queuing system. For short-running jobs, this can result in a con-
siderable overhead, as jobs wait in a queue, and may also incur
additional delays or cost when accessing files from remote
storage or network file systems. To minimize such over-
head, Snakemake offers the ability to partition the DAG of
jobs into subgraphs that will be submitted together, as a single
cluster or cloud job.

Partitioning happens by assigning rules to groups (see Figure 6).
Upon execution, Snakemake determines connected subgraphs
with the same assigned group for each job and submits such
subgraphs together (as a so called group job) instead of
submitting each job separately. For each group, it is in addition
possible to define how many connected subgraphs shall be
spanned when submitting (one by default). This way, it is pos-
sible to adjust the partition size to the needs of the available
computational platform. The resource usage of a group job is
determined by sorting involved jobs topologically, summing
resource usage per level and taking the maximum over all
levels.

2.5.4 Streaming. Sometimes, intermediate results of a data
analysis can be huge, but not important enough to store
persistently on disk. Apart from the option to mark such
files as temporary so that Snakemake will automatically delete
them once no longer needed, it is also possible to instruct
Snakemake to never store them on disk at all by directly stream-
ing their content from the producing job to to the consum-
ing job. This requires the producing and consuming jobs to
run at the same time on the same computing node (then, the
output of the producer can be written to a small in-memory
buffer; on Unix, this is called a named pipe). Snakemake
ensures this by submitting producer and consumer as a group
job (see subsubsection 2.5.3).

Figure 5. Blockchain-hashing based between workflow
caching scheme of Snakemake. If a job is eligible for caching,
its code, parameters, raw input files, software environment and the
hashes of its dependencies are used to calculate a SHA-256 hash
value, under which the output files are stored in a central cache.
Subsequent runs of the same job (with the same dependencies) in
other workflows can skip the execution and directly take the output
files from the cache.

af7399cf6... 1ee69986...

767eb707...

without cache entry
with cache entry

Page 11 of 28

F1000Research 2021, 10:33 Last updated: 11 MAY 2021

Figure 7. Workflow composition capabilities of Snakemake.
Single or multiple external workflows can be declared as modules,
along with the selection of all or specific rules. Properties of rules
can be overwritten, and the analysis can be extended with further
rules.

Figure 6. Job graph partitioning by assigning rules to groups. Two rules of the example workflow (Figure 3a) are grouped together,
(a) spanning one connected component, (b) spanning two connected components, and (c) spanning five connected components. Resulting
submitted group jobs are represented as grey boxes.

3 Further considerations
3.1 Workflow composition
Upon development, data analyses are usually crafted with a
particular aim in mind, for example being able to test a particu-
lar hypothesis, to find certain patterns in a given data type, etc.
In particular with larger, long-running scientific projects, it can
happen that data becomes increasingly multi-modal, encom-
passing multiple, orthogonal types that need completely dif-
ferent analyses. While a framework like Snakemake easily
allows to develop a large integrative analyses over such diverse
data types, such an analysis can also become very specific to a
particular scientific project. When aiming for re-use of an
analysis, it is often beneficial to keep it rather specific to some
data type or not extend it beyond a common scope. Via the
declaration of external workflows as modules, integration of
such separately maintained workflows is well supported in
Snakemake (Figure 7). By referring to a local or remote
Snakefile (Figure 7, line 3–4) a workflow module can be
declared, while configuration is passed as a Python dictionary
object (line 5). The usage of all or specific rules from the
workflow module can be declared (line 7), and properties of
individual rules can be overwritten (e.g., params, input,
output, line 9–11). This way, as many external workflows
as needed can be composed into a new data analysis (line
13–17). Optionally, in order to avoid name clashes, rules
can be renamed with the as keyword (line 17), analogously
to the Python import mechanism. Moreover, the external
workflows can be easily extended with further rules that
generate additional output (line 19–27).

This way, both the plain use as well as extension and modifica-
tion becomes immediately transparent from the source code.
Often, data analyses extend beyond a template or production
analysis that seemed appropriate at the beginning (at latest
during the review of a publication). Hence, Snakemake’s
workflow composition mechanism is also appropriate for the
simple application of a published data analysis pipeline on new
data. By declaring usage of the pipeline as a module as shown

above, both the plain execution with custom configuration
as well as an extension or modification becomes transparent.
Moreover, when maintaining the applied analysis in a version
controlled (e.g. git) repository, it does not need to host a copy
of the source code of the original pipeline, just the customized
configuration and any modifications.

3.2 Advanced workflow design patterns
Figure 8 shows advanced design patterns which are less com-
mon but useful in certain situations. For brevity, only rule

snakemake --groups select_by_country=a
 plot_histogram=a

snakemake --groups select_by_country=a
 plot_histogram=a
 --group-components a=2

snakemake --groups select_by_country=a
 plot_histogram=a
 --group-components a=5

a b c

1 configfile: "config.yaml"
2
3 module some_workflow:
4 snakefile: "https://github.com/some/raw/v1.0.0/Snakefile"
5 config: config["some"]
6
7 use rule * from some_workflow
8
9 use rule simulate_data from some_workflow with:
10 params:
11 some_threshold=1.e-7
12
13 module other_workflow:
14 snakefile: "https://github.com/other/raw/v1.0.0/Snakefile"
15 config: config["other"]
16
17 use rule * from other_workflow as other_*
18
19 rule some_plot:
20 input:
21 "results/tables/all.csv"
22 output:
23 "results/plots/all.svg"
24 conda:
25 "envs/stats.yaml"
26 notebook:
27 "notebooks/some-plot.py.ipynb"

Legend
declare module
use rules
modify rule
extend workflow

Page 12 of 28

F1000Research 2021, 10:33 Last updated: 11 MAY 2021

Figure 8. Additional design patterns for Snakemake workflows. For brevity only rule properties that are necessary to understand
each example are shown (e.g. omitting log directives and shell commands or script directives). (a) scatter/gather process, (b) streaming, (c)
non-file parameters, (d) iteration, (e) sample sheet based configuration, (f) conditional execution, (g) benchmarking, (h) parameter space
exploration. See subsection 3.2 for details.

1 pepfile: "pep/config.yaml"
2 pepschema: "schemas/pep.yaml"
3
4 rule all:
5 input:
6 expand(
7 "results/{sample}.someresult.txt",
8 sample=pep.sample_table["sample_name"]
9)

e
1 scattergather:
2 someprocess=8
3
4 rule scatter:
5 output:
6 scatter.someprocess("scattered/{scatteritem}.txt")
7
8 rule step2:
9 input:
10 "scattered/{scatteritem}.txt"
11 output:
12 "transformed/{scatteritem}.txt"
13
14 rule gather:
15 input:
16 gather.someprocess("transformed/{scatteritem}.txt")

a

1 rule step1:
2 output:
3 pipe("hello.txt")
4 shell:
5 "echo hello > {output}"
6
7 rule step2:
8 output:
9 pipe("world.txt")
10 shell:
11 "echo world > {output}"
12
13 rule step3:
14 input:
15 "hello.txt",
16 "world.txt"
17 output:
18 "hello-world.txt"
19 shell:
20 "cat {input} > {output}"

b

1 rule step:
2 input:
3 "data/{sample}.txt"
4 output:
5 "results/{sample}.txt"
6 params:
7 threshold=lambda w: config["threshold"][w.sample]
8 shell:
9 "some-tool -x {params.threshold} {input} > {output}"

c
1 rule step:
2 input:
3 "data/{sample}.txt"
4 output:
5 "results/{sample}.txt"
6 benchmark:
7 "benchmarks/some-tool/{sample}.txt
8 shell:
9 "some-tool {input} > {output}"

g

1 def get_results(wildcards):
2 with checkpoints.qc.get().output[0].open() as f:
3 qc = pd.read_csv(f, sep="\t")
4 return expand(
5 "results/processed/{sample}.txt",
6 sample=qc[qc["some-value"] > 90.0]["sample"]
7)
8
9 rule all:
10 input:
11 get_results
12
13 checkpoint qc:
14 input:
15 expand("results/preprocessed/{sample}.txt", sample=samples)
16 output:
17 "results/qc.tsv"
18 shell:
19 "perfom-qc {input} > {output}"
20
21 rule process:
22 input:
23 "results/preprocessed/{sample}.txt"
24 output:
25 "results/processed/{sample}.txt"
26 shell:
27 "process {input} > {output}"

f

1 rule all:
2 input:
3 "data.10.transformed.txt"
4
5 def get_iteration_input(wildcards):
6 i = int(wildcards.i)
7 if i == 0:
8 return "data.txt"
9 else:
10 return f"data.{i-1}.transformed.txt"
11
12 rule iterate:
13 input:
14 get_iteration_input
15 output:
16 "data.{i}.transformed.txt"

d
1 from snakemake.utils import Paramspace
2 import pandas as pd
3
4 paramspace = Paramspace(pd.read_csv("params.tsv", sep="\t"))
5
6 rule all:
7 input:
8 expand(
9 "results/simulations/{params}.pdf",
10 params=paramspace.instance_patterns
11)
12
13 rule simulate:
14 output:
15 f"results/simulations/{paramspace.wildcard_pattern}.tsv"
16 params:
17 simulation=paramspace.instance

h

Page 13 of 28

F1000Research 2021, 10:33 Last updated: 11 MAY 2021

properties that are necessary to understand each example are shown
(e.g. omitting log directives and shell commands or script
directives). Below, we explain each example in detail.

Scatter/gather processes (Figure 8a). Snakemake’s abil-
ity to employ arbitrary Python code for defining a rule’s input
and output files already enables any kind of scattering, gath-
ering, and aggregations in workflows. Nevertheless, it can be
more readable and scalable to use Snakemake’s explicit support
for scatter/gather processes. A Snakemake workflow can have
any number of such processes, each of which has a name (here
someprocess). In this example, the rule scatter (line 4)
splits some data into n items; the rule step2 (line 8) is applied
to each item; the rule gather (line 14) aggregates over the
outputs of step2 for each item. Thereby, n is defined via the
scattergather directive (line 1) at the beginning, which sets
n for each scatter/gather process in the workflow. In addition,
n can be set via the command line via the flag --set-scat-
ter. For example, here, we could set the number of scatter items
to 16 by specifying --set-scatter someprocess=16.
This enables the user to better scale the data analysis workflow
to its computing platform, beyond the defaults provided by the
workflow designer.

Streaming (Figure 8b). Snakemake allows to stream output
between jobs, instead of writing it to disk (see subsubsection 2.5.4).
Here, the output of rule step1 (line 1) and step2 (line 7)
is streamed into rule step3 (line 13).

Non-file parameters (Figure 8c). Data analysis steps can
need additional non-file input in the form of parameters, that
are for example obtained from the workflow configuration (see
subsection 2.1). Both input files and such non-file parameters
can optionally be defined via a Python function, which is evalu-
ated for each job, when wildcard values are known. In this
example, we define a lambda expression (an anonymous
function in Python), that retrieves a threshold depending on the
value of the wildcard sample (w.sample, line 7). Wildcard
values are passed as the first positional argument to such
functions (here w, line 7).

Iteration (Figure 8d). Sometimes, a certain step in a data
analysis workflow needs to be applied iteratively. Snakemake
allows to model defining by setting the iteration count vari-
able as a wildcard (here {i}, line 16). Then, an input function
can be used to either request the output of the previous iteration
(if i > 0, line 10) or the initial data (if i == 0, line 8). Finally,
in the rule that requests the final iteration result, the wildcard
{i} is set to the desired count (here 10, line 3).

Sample sheet based configuration (Figure 8e). Often,
scientific experiments entail multiple samples, for which meta-
information is known (e.g. gender, tissue etc. in biomedicine).
Portable encapsulated projects (PEPs, https://pep.databio.org)
are an approach to standardize such information and pro-
vide them in a shareable format. Snakemake workflows can be
directly integrated with PEPs, thereby allowing to configure them
via meta-information that is contained in the sample sheets

defined by the PEP. Here, a pepfile (line 1) along with a
validation schema (line 2) is defined, followed by an aggregation
over all samples defined in the contained sample sheet.

Conditional execution (Figure 8f). By default, Snakemake
determines the entire DAG of jobs upfront, before the first job
is executed. However, sometimes the analysis path that shall be
taken depends on some intermediate results. For example, this
is the case when filtering samples based on quality control cri-
teria. At the beginning of the data analysis, some quality con-
trol (QC) step is performed, which yields QC values for each
sample. The actual analysis that shall happen afterwards might
be only suitable for samples that pass the QC. Hence, one might
have to filter out samples that do not pass the QC. Since the
QC is an intermediate result of the same data analysis, it can
be necessary to determine the part of the DAG that comes
downstream of the QC only after QC has been finalized. Of
course, one option is to separate QC and the actual analysis into
two workflows, or defining a separate target rule for QC, such
that it can be manually completed upfront, before the actual
analysis is started. Alternatively, if QC shall happen auto-
matically as part of the whole workflow, one can make use of
Snakemake’s conditional execution capabilities. In the example,
we define that the qc rule shall be a so-called checkpoint.
Rules can depend on such checkpoints by obtaining their
output from a global checkpoints object (line 2), that is
accessed inside of a function, which is passed to the input
directive of the rule (line 11). This function is re-evaluated
after the checkpoint has been executed (and its output files are
present), thereby allowing to inspect the content of the check-
oint’s output files, and decide about the input files based on that.
In this example, the checkpoint rule qc creates a TSV file,
which the function loads, in order to extract only those samples
for which the column "some-value" contains a value greater
than 90 (line 6). Only for those samples, the file "results/
processed/{sample}.txt" is requested, which is then
generated by applying the rule process for each of these
samples.

Benchmarking (Figure 8g). Sometimes, a data analysis entails
the benchmarking of certain tools in terms of runtime, CPU,
and memory consumption. Snakemake directly supports
such benchmarking by defining a benchmark directive in a
rule (line 7). This directive takes a path to a TSV file. Upon
execution of a job spawned from such a rule, Snakemake will
constantly measure CPU and memory consumption, and store
averaged results together with runtime information into the
given TSV file. Benchmark files can be input to other rules, for
example in order to generate plots or summary statistics.

Parameter space exploration (Figure 8h). In Python (and
therefore also with Snakemake), large parameter spaces can be
represented very well via Pandas38,39 data frames. When such
a parameter space shall be explored by the application of a
set of rules to each instance of the space (i.e., each row of the
data frame), the idiomatic approach in Snakemake is to encode
each data frame column as a wildcard and request all occur-
ing combinations of values (i.e., the data frame rows), by some

Page 14 of 28

F1000Research 2021, 10:33 Last updated: 11 MAY 2021

https://pep.databio.org

consuming rule. However, with large parameter spaces that have
a lot of columns, the wildcard expressions could become cum-
bersome to write down explicitly in the Snakefile. Therefore,
Snakemake provides a helper called Paramspace, which can
wrap a Pandas data frame (this functionality was inspired by the
JUDI workflow management system16 https://pyjudi.readthe-
docs.io). The helper allows to retrieve a wildcard pattern (via
the property wildcard_pattern) that encodes each column
of the data frame in the form name~{name} (i.e., column
name followed by the wildcard/wildcard value). The wildcard
pattern can be formatted into input or output file names of rules
(line 15). The method instance of the Paramspace
object, automatically returns the corresponding data frame
row (as a Python dict) for given wildcard values (here, that
method is automatically evaluated by Snakemake for each
instance of the rule simulate, line 17). Finally, aggregation
over a parameter space becomes possible via the property
instance_patterns, which retrieves a concrete pattern
of above form for each data frame row. Using the expand
helper, these patterns can be formatted into a file path (line 8–11),
thereby modelling an aggregation over the entire parameter
space. Naturally, filtering rows or columns on the paramspace
via the usual Pandas methods allows to generate sub-spaces.

3.3 Readability
Statements in Snakemake workflow definitions fall into seven
categories:

1. a natural language word, followed by a colon
(e.g. input: and output:),

2. the word “rule”, followed by a name and a colon
(e.g. rule convert_to_pdf:),

3. a quoted filename pattern (e.g. "{prefix}.pdf"),

4. a quoted shell command,

5. a quoted wrapper identifier,

6. a quoted container URL

7. a Python statement.

Below, we list the rationale of our assessment for each category
in Figure 3:

1. The natural language word is either trivially under-
standable (e.g. input: and output:) or under-
standable with technical knowledge (container:
or conda:). The colon straightforwardly shows that
the content follows next. Only for the wrapper direc-
tive (wrapper:) one needs to have the Snakemake
specific knowledge that it is possible to refer to
publicly available tool wrappers.

2. The word “rule” is trivially understandable, and
when carefully choosing rule names, at most
domain knowledge is needed for understanding such
statements.

3. Filename patterns can mostly be understood with
domain knowledge, since the file extensions should

tell the expert what kind of content will be used or
created. We hypothesize that wildcard definitions
(e.g. {country}) are straightforwardly understandable
as a placeholder.

4. Shell commands will usually need domain and
technical knowledge for understanding.

5. Wrapper identifiers can be understood with Snake-
make knowledge only, since one needs to know about
the central tool wrapper repository of Snakemake.
Nevertheless, with only domain knowledge one can at
least conclude that the mentioned tool (last part of the
wrapper ID) will be used in the wrapper.

6. A container URL will usually be understandable with
technical knowledge.

7. Python statements will either need technical knowl-
edge or Snakemake knowledge (when using the
Snakemake API, as it happens here with the expand
command, which allows to aggregate over a
combination of wildcard values).

3.4 Scheduling
While the first releases of Snakemake used a greedy sched-
uler, the current implementation aims at using more efficient
schedules by solving a mixed integer linear program (MILP)
whenever there are free resources. The current implementa-
tion already works well; still, future releases may consider
additional objectives:

• The current formulation leads to fast removal of exist-
ing temporary files. In addition, one may control crea-
tion of temporary files in the first place, such that
only limited space is occupied by temporary files at
any time point during workflow execution.

• It may also be beneficial to initially identify bot-
tleneck jobs in the graph and prioritize them auto-
matically instead of relying on the workflow author to
prioritize them.

Because we consider different objectives hierarchically and
use large constants in the objective function, currently a high
solver precision is needed. If more objectives are considered
in the future, an alternative hierarchical formulation may be
used: First find the optimal objective value for the first (or the
first two) objectives; then solve another MILP that maximizes
less important objectives and ensures via constraints that the
optimality of the most important objective(s) is not violated,
or stays within, say, 5% of the optimal value.

We also need to mention a technical detail about the inter-
action between the scheduler and streams (subsection 3.2).
Some jobs that take part in handling a data stream may effec-
tively use zero cores (because they mostly wait for data and
then only read or write data), i.e. they have u

c,j
 = 0 in the

MILP notation, which means that they do not contribute to
the objective function. We thus replace the MILP objective

term that maximizes paralellization c,()j jj J u x∈ ⋅∑ by the

Page 15 of 28

F1000Research 2021, 10:33 Last updated: 11 MAY 2021

https://pyjudi.readthedocs.io
https://pyjudi.readthedocs.io

modified term c,max{ , 1}j jj J u x∈ ⋅∑ to ensure that the weight

of any x
j
 within the sum is at least 1.

3.5 Performance
When executing a data analysis workflow, running time and
resource usage is dominated by the executed jobs and the per-
formance of the libraries and tools used in these. Nevertheless,
Snakemake has to process dependencies between jobs, which
can incur some startup time until the actual workflow is
executed. In order to provide an estimate on the amount of time
and memory needed for this computation, we took the example
workflow from Figure 3 in the main manuscript and arti-
ficially inflated it by replicating the countries in the input
dataset. By this, we generated workflows of 10 to 90,000 jobs.
Then, we benchmarked runtime and memory usage of
Snakemake for computing the entire graph of jobs on these on a
single core of an Intel Core i5 CPU with 1.6 GHz, 8 GB RAM
and a Lenovo PCIe SSD (LENSE20512GMSP34MEAT2TA)
(Figure 9). It can be seen that both runtime and memory
increase linearly, starting from 0.2 seconds with 2.88 MB for
11 jobs and reaching 60 seconds with 1.1 GB for 90,000 jobs.

For future releases of Snakemake, we plan to further improve
performance, for example by making use of PyPy (https://
www.pypy.org), and by caching dependency resolution results
between subsequent invocations of Snakemake.

4 Conclusion
While having been almost the holy grail of data analysis
workflow management in recent years and being certainly of
high importance, reproducibility alone is not enough to sustain
the hours of work that scientists invest in crafting data analyses.
Here, we outlined how the interplay of automation, scalabil-
ity, portability, readability, traceability, and documentation can
help to reach beyond reproducibility, making data analyses
adaptable and transparent. Adaptable data analyses can not
only be repeated on the same data, but also be modified and
extended for new questions or scenarios, thereby greatly increas-
ing their value for both the scientific community and the origi-
nal authors. While reproducibility is a necessary property for
checking the validity of scientific results, it is not sufficient.
Being able to reproduce exactly the same figure on a different
machine tells us that the analysis is robust and valid from a
technical perspective. However, it does not tell anything about
the methodological validity (correctness of statistical assump-
tions, avoidance of overfitting, etc.). The latter can only be
secured by having a transparent yet accessible view on the
analysis code.

By analyzing its readability and presenting its modularization,
portability, reporting, scheduling, caching, partitioning, and
streaming abilities, we have shown how Snakemake supports all
these aspects, thereby providing a comprehensive framework
for sustainable data analysis, and enabling an ergonomic, unified,

Figure 9. Runtime and memory usage of Snakemake while building the graph of jobs depending on the number of jobs in
the workflow. The Snakemake workflow generating the results along with a self-contained Snakemake report that connects results and
provenance information is available at https://doi.org/10.5281/zenodo.4244143.

20,000
60,000

100,000

jobs

0

10

20

30

40

50

60

se
co

nd
s

20,000
60,000

100,000

jobs

0

200

400

600

800

1,000

1,200

m
em

or
y

[M
B]

Page 16 of 28

F1000Research 2021, 10:33 Last updated: 11 MAY 2021

https://www.pypy.org
https://www.pypy.org
https://doi.org/10.5281/zenodo.4244143

combined representation of any kind of analysis step, from raw
data processing, to quality control and fine-grained, interactive
exploration and plotting of final results.

Software availability
Snakemake is available as MIT licensed open source software
(homepage: https://snakemake.github.io, repository: https://
github.com/snakemake/snakemake) and can be installed via
Bioconda40.

Data availability
The Snakemake workflow generating the results presented in
this work, along with the corresponding Snakemake report
connecting results and provenance information is available at
https://doi.org/10.5281/zenodo.424414328.

Data are available under the terms of the Creative Commons
Attribution 4.0 International license (CC-BY 4.0).

Author information
Felix Mölder has designed and implemented the job scheduling
mechanism (subsubsection 2.5.1; supervised by Johannes
Köster and Sven Rahmann) and edited the manuscript. Kim
Philip Jablonski has designed and implemented Jupyter
notebook integration (subsubsection 2.2.1) and edited the
manuscript. Michael Hall and Brice Letcher have designed and
implemented automated code formatting (subsubsection 2.2.2)

and Brice Letcher has edited the manuscript. Vanessa Sochat has
designed and implemented the Google Cloud Life Sciences API
execution backend, as well as various improvements to Google
storage support (subsection 2.5) and edited the manuscript.
Soohyun Lee has designed and implemented the AWS execution
backend via integration with Tibanna (subsection 2.5). Sven O.
Twardziok and Alexander Kanitz have designed and imple-
mented the TES execution backend (subsection 2.5). Andreas
Wilm has designed and implemented the Microsoft Azure exe-
cution backend (subsection 2.5) and edited the manuscript.
Manuel Holtgrewe has designed and implemented benchmarking
support (subsection 3.2). Jan Forster has designed and
implemented meta-wrapper support (subsubsection 2.2.1).
Christopher Tomkins-Tinch has designed and implemented
remote storage support (subsection 2.1) and edited the manu-
script. Sven Rahmann has edited the manuscript. Sven Nahnsen
has provided the initial idea of using blockchain hashing to
fingerprint output files a priori (subsubsection 2.5.2). Johannes
Köster has written the manuscript and implemented all other
features that occur in the text but are not explicitly men-
tioned in above listing. All authors have read and approved the
manuscript.

Acknowledgements
We are most grateful for the thousands of Snakemake users,
their enhancement proposals, bug reports, and efforts to perform
sustainable data analyses. We deeply thank all contributors
to the Snakemake, Snakemake-Profile, Snakemake-Workflows,
and Snakemake-Wrappers codebases.

References

1. Baker M: 1,500 scientists lift the lid on reproducibility. Nature. 2016;
533(7604): 452–4.
PubMed Abstract | Publisher Full Text

2. Mesirov JP: Computer science. Accessible reproducible research. Science.
2010; 327(5964): 415–6.
PubMed Abstract | Publisher Full Text | Free Full Text

3. Munafò MR, Nosek BA, Bishop DVM, et al.: A manifesto for reproducible
science. Nat Hum Behav. 2017; 1: 0021.
Publisher Full Text

4. Afgan E, Baker D, Batut B, et al.: The Galaxy platform for accessible,
reproducible and collaborative biomedical analyses: 2018 update. Nucleic
Acids Res. 2018; 46(W1): W537–W544.
PubMed Abstract | Publisher Full Text | Free Full Text

5. Berthold MR, Cebron N, Dill F, et al.: KNIME: The Konstanz Information Miner.
In: Studies in Classification, Data Analysis, and Knowledge Organization (GfKL
2007). Springer, 2007.
Reference Source

6. Kluge M, Friedl MS, Menzel AL, et al.: Watchdog 2.0: New developments for
reusability, reproducibility, and workflow execution. GigaScience. 2020; 9(6):
giaa068.
PubMed Abstract | Publisher Full Text | Free Full Text

7. Cervera A, Rantanen V, Ovaska K, et al.: Anduril 2: upgraded large–scale data
integration framework. Bioinformatics. 2019; 35(19): 3815–3817.
PubMed Abstract | Publisher Full Text

8. Salim M, Uram T, Childers JT, et al.: Balsam: Automated Scheduling and
Execution of Dynamic, Data-Intensive HPC Workflows. In: Proceedings of
the 8th Workshop on Python for High-Performance and Scientific Computing. ACM
Press. 2018.
Reference Source

9. Cima V, Böhm S, Martinovič J, et al.: HyperLoom: A Platform for Defining

and Executing Scientific Pipelines in Distributed Environments. In:
Proceedings of the 9th Workshop and 7th Workshop on Parallel Programming and
RunTime Management Techniques for Manycore Architectures and Design Tools
and Architectures for Multicore Embedded Computing Platforms. ACM. 2018; 1–6.
Publisher Full Text

10. Coelho LP: Jug: Software for Parallel Reproducible Computation in Python. J
Open Res Softw. 2017; 5(1): 30.
Publisher Full Text

11. Tanaka M, Tatebe O: Pwrake: a parallel and distributed flexible workflow
management tool for wide-area data intensive computing. In: Proceedings
of the 19th ACM International Symposium on High Performance Distributed
Computing -HPDC 2010. ACM Press. 2010; 356–359.
Publisher Full Text

12. Goodstadt L: Ruffus: a lightweight Python library for computational
pipelines. Bioinformatics. 2010; 26(21): 2778–9.
PubMed Abstract | Publisher Full Text

13. Lampa S, Dahlö M, Alvarsson J, et al.: SciPipe: A workflow library for
agile development of complex and dynamic bioinformatics pipelines.
Gigascience. 2019; 8(5): giz044.
PubMed Abstract | Publisher Full Text | Free Full Text

14. Hold-Geoffroy Y, Gagnon O, Parizeau M: Once you SCOOP, no need to fork.
In: Proceedings of the 2014 Annual Conference on Extreme Science and Engineering
Discovery Environment. ACM. 2014; 1–8.
Publisher Full Text

15. Lordan F, Tejedor E, Ejarque J, et al.: ServiceSs: An Interoperable
Programming Framework for the Cloud. J Grid Comput. 2013; 12(1): 67–91.
Publisher Full Text

16. Pal S, Przytycka TM: Bioinformatics pipeline using JUDI: Just Do It!
Bioinformatics. 2020; 36(8): 2572–2574.
PubMed Abstract | Publisher Full Text | Free Full Text

Page 17 of 28

F1000Research 2021, 10:33 Last updated: 11 MAY 2021

https://snakemake.github.io
https://github.com/snakemake/snakemake
https://github.com/snakemake/snakemake
https://doi.org/10.5281/zenodo.4244143
http://www.ncbi.nlm.nih.gov/pubmed/27225100
http://dx.doi.org/10.1038/533452a
http://www.ncbi.nlm.nih.gov/pubmed/20093459
http://dx.doi.org/10.1126/science.1179653
http://www.ncbi.nlm.nih.gov/pmc/articles/3878063
http://dx.doi.org/10.1038/s41562-016-0021
http://www.ncbi.nlm.nih.gov/pubmed/29790989
http://dx.doi.org/10.1093/nar/gky379
http://www.ncbi.nlm.nih.gov/pmc/articles/6030816
http://kops.uni-konstanz.de/handle/123456789/5434
http://www.ncbi.nlm.nih.gov/pubmed/32556167
http://dx.doi.org/10.1093/gigascience/giaa068
http://www.ncbi.nlm.nih.gov/pmc/articles/7298769
http://www.ncbi.nlm.nih.gov/pubmed/30793160
http://dx.doi.org/10.1093/bioinformatics/btz133
https://arxiv.org/abs/1909.08704
http://dx.doi.org/10.1145/3183767.3183768
http://dx.doi.org/10.5334/jors.161
http://dx.doi.org/10.1145/1851476.1851529
http://www.ncbi.nlm.nih.gov/pubmed/20847218
http://dx.doi.org/10.1093/bioinformatics/btq524
http://www.ncbi.nlm.nih.gov/pubmed/31029061
http://dx.doi.org/10.1093/gigascience/giz044
http://www.ncbi.nlm.nih.gov/pmc/articles/6486472
http://dx.doi.org/10.1145/2616498.2616565
http://dx.doi.org/10.1007/s10723-013-9272-5
http://www.ncbi.nlm.nih.gov/pubmed/31882996
http://dx.doi.org/10.1093/bioinformatics/btz956
http://www.ncbi.nlm.nih.gov/pmc/articles/7868055

17. Di Tommaso P, Chatzou M, Floden EW, et al.: Nextflow enables reproducible
computational workflows. Nat Biotechnol. 2017; 35(4): 316–319.
PubMed Abstract | Publisher Full Text

18. Köster J, Rahmann S: Snakemake–a scalable bioinformatics workflow
engine. Bioinformatics. 2012; 28(19): 2520–2.
PubMed Abstract | Publisher Full Text

19. Yao L, Wang H, Song Y, et al.: BioQueue: a novel pipeline framework to
accelerate bioinformatics analysis. Bioinformatics. 2017; 33(20): 3286–3288.
PubMed Abstract | Publisher Full Text

20. Sadedin SP, Pope B, Oshlack A: Bpipe: a tool for running and managing
bioinformatics pipelines. Bioinformatics. 2012; 28(11): 1525–6.
PubMed Abstract | Publisher Full Text

21. Ewels P, Krueger F, Käller M, et al.: Cluster Flow: A user-friendly
bioinformatics workflow tool [version 1; peer review: 3 approved].
F1000Res. 2016; 5: 2824.
PubMed Abstract | Publisher Full Text | Free Full Text

22. Oliver HJ, Shin M, Sanders O: Cylc: A Workflow Engine for Cycling Systems.
J Open Source Softw. 2018; 3(27): 737.
Publisher Full Text

23. Cingolani P, Sladek R, Blanchette M: BigDataScript: a scripting language for
data pipelines. Bioinformatics. 2015; 31(1): 10–16.
PubMed Abstract | Publisher Full Text | Free Full Text

24. Jimenez I, Sevilla M, Watkins N, et al.: The Popper Convention: Making
Reproducible Systems Evaluation Practical. In: 2017 IEEE International Parallel
and Distributed Processing Symposium Workshops (IPDPSW). IEEE. 2017.
Publisher Full Text

25. Evans C, Ben-Kiki O: YAML Ain’t Markup Language YAML Version 1.2. 2009.
Accessed: 2020-9-29.
Reference Source

26. Amstutz P, Crusoe MR, Tijanić N, et al.: Common Workflow Language, v1.0.
2016.
Publisher Full Text

27. Voss K, Gentry J, Auwera GVD: Full-stack genomics pipelining with GATK4
+WDL +Cromwell. F1000Res. 6: 2017.
Publisher Full Text

28. Vivian J, Rao AA, Nothaft FA, et al.: Toil enables reproducible open source, big
biomedical data analyses. Nat Biotechnol. 2017; 35(4): 314–316.
PubMed Abstract | Publisher Full Text | Free Full Text

29. Lee S, Johnson J, Vitzthum C, et al.: Tibanna: software for scalable execution

of portable pipelines on the cloud. Bioinformatics. 2019; 35(21): 4424–4426.
PubMed Abstract | Publisher Full Text | Free Full Text

30. Kurtzer GM, Sochat V, Bauer MW: Singularity: Scientific containers for
mobility of compute. PLoS One. 2017; 12(5): e0177459.
PubMed Abstract | Publisher Full Text | Free Full Text

31. Huizinga D, kolawa A: Automated Defect Prevention: Best Practices in
Software Management. Google-Books-ID: PhnoE90CmdIC. John Wiley & Sons.
2007.
Reference Source

32. Chall JS, Dale E: Readability revisited: the new Dale-Chall readability
formula. English. OCLC: 32347586. Cambridge, Mass.: Brookline Books, 1995.
Reference Source

33. Sundkvist LT, Persson E: Code Styling and its Effects on Code Readability and
Interpretation. 2017.
Reference Source

34. Grüning B, Chilton J, Köster J, et al.: Practical Computational Reproducibility
in the Life Sciences. Cell Syst. 2018; 6(6): 631–635.
PubMed Abstract | Publisher Full Text | Free Full Text

35. Köster, J: Data analysis for paper “Sustainable data analysis with
Snakemake”. Zenodo. 2020.
http://www.doi.org/10.5281/zenodo.4244143

36. Handschuh H: SHA Family (Secure Hash Algorithm). Encyclopedia of
Cryptography and Security. Springer US. 2005; 565–567.
Publisher Full Text

37. Narayanan A, Bonneau J, Felten E, et al.: Bitcoin and Cryptocurrency
Technologies: A Comprehensive Introduction. Google-Books-ID:
LchFDAAAQBAJ. Princeton University Press. 2016.
Reference Source

38. McKinney W: Data Structures for Statistical Computing in Python.
Proceedings of the 9th Python in Science Conference. Ed. by Stéfan van der Walt
and Jarrod Millman. 2010; 56–61.
Publisher Full Text

39. The pandas development team: pandas-dev/pandas: Pandas. Version latest.
2020.
Publisher Full Text

40. Grüning B, Dale R, Sjödin A, et al.: Bioconda: sustainable and comprehensive
software distribution for the life sciences. Nat Methods. 2018; 15(7): 475–476.
PubMed Abstract | Publisher Full Text

Page 18 of 28

F1000Research 2021, 10:33 Last updated: 11 MAY 2021

http://www.ncbi.nlm.nih.gov/pubmed/28398311
http://dx.doi.org/10.1038/nbt.3820
http://www.ncbi.nlm.nih.gov/pubmed/22908215
http://dx.doi.org/10.1093/bioinformatics/bts480
http://www.ncbi.nlm.nih.gov/pubmed/28633441
http://dx.doi.org/10.1093/bioinformatics/btx403
http://www.ncbi.nlm.nih.gov/pubmed/22500002
http://dx.doi.org/10.1093/bioinformatics/bts167
http://www.ncbi.nlm.nih.gov/pubmed/28299179
http://dx.doi.org/10.12688/f1000research.10335.1
http://www.ncbi.nlm.nih.gov/pmc/articles/5310375
http://dx.doi.org/10.21105/joss.00737
http://www.ncbi.nlm.nih.gov/pubmed/25189778
http://dx.doi.org/10.1093/bioinformatics/btu595
http://www.ncbi.nlm.nih.gov/pmc/articles/4271142
http://dx.doi.org/10.1109/IPDPSW.2017.157
https://yaml.org/spec/1.2/spec.html
http://dx.doi.org/10.6084/m9.figshare.3115156.v2
http://dx.doi.org/10.7490/f1000research.1114634.1
http://www.ncbi.nlm.nih.gov/pubmed/28398314
http://dx.doi.org/10.1038/nbt.3772
http://www.ncbi.nlm.nih.gov/pmc/articles/5546205
http://www.ncbi.nlm.nih.gov/pubmed/31077294
http://dx.doi.org/10.1093/bioinformatics/btz379
http://www.ncbi.nlm.nih.gov/pmc/articles/6931271
http://www.ncbi.nlm.nih.gov/pubmed/28494014
http://dx.doi.org/10.1371/journal.pone.0177459
http://www.ncbi.nlm.nih.gov/pmc/articles/5426675
https://www.wiley.com/en-us/Automated+Defect+Prevention%3A+Best+Practices+in+Software+Management-p-9780470042120
https://books.google.co.in/books/about/Readability_Revisited.html?id=2nbuAAAAMAAJ&redir_esc=y
http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1112978&dswid=6028
http://www.ncbi.nlm.nih.gov/pubmed/29953862
http://dx.doi.org/10.1016/j.cels.2018.03.014
http://www.ncbi.nlm.nih.gov/pmc/articles/6263957
http://www.doi.org/10.5281/zenodo.4244143
http://dx.doi.org/10.1007/0-387-23483-7_388
https://press.princeton.edu/books/hardcover/9780691171692/bitcoin-and-cryptocurrency-technologies
http://dx.doi.org/10.25080/Majora-92bf1922-00a
http://dx.doi.org/10.5281/zenodo.3509134
http://www.ncbi.nlm.nih.gov/pubmed/29967506
http://dx.doi.org/10.1038/s41592-018-0046-7
http://www.diva-portal.org/smash/record.jsf?pid=diva2:1112978&dswid=6028

Open Peer Review
Current Peer Review Status:

Version 2

Reviewer Report 11 May 2021

https://doi.org/10.5256/f1000research.56004.r83481

© 2021 Friedel C. This is an open access peer review report distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Caroline C. Friedel
Institute of Informatics, LMU Munich, Munich, Germany

Response 2
"Indeed, we agree that our initial example was lacking parameter definitions via the params directive,
which are indeed quite ubiquitous in practice. We have extended our example accordingly."

While the params directive is now included in the new example in Figure 7, it is still mentioned as
one of the design patterns that are less common in section 3.2. I would suggest reordering the
design patterns in 3.2 to first mention the params directive and then the others and change the
wording "...advanced design patterns which are less common but useful in certain situations" to
"...advanced design patterns. Some of these are less common but useful in certain situations."

My other comments were satisfactorily addressed.

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Bioinformatics

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

Version 1

Reviewer Report 11 March 2021

https://doi.org/10.5256/f1000research.32078.r79773

Page 19 of 28

F1000Research 2021, 10:33 Last updated: 11 MAY 2021

https://doi.org/10.5256/f1000research.56004.r83481
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0003-3569-4877
https://doi.org/10.5256/f1000research.32078.r79773

© 2021 Friedel C. This is an open access peer review report distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Caroline C. Friedel
Institute of Informatics, LMU Munich, Munich, Germany

The authors present an updated version of their workflow management system snakemake. Here,
the authors focus on particular aspects important for sustainable data analysis, in particular
automation, readability, portability, documentation and scalability. This is followed by a section on
"further consideration", which presents specific workflow patterns, more details on their
readability analysis, some more details on scheduling as well as a performance analysis. Apart
from the performance analysis at the end, these "further considerations" aspects would be more
appropriate earlier in the manuscript. In particular, the scheduling considerations (3.3) would be
more appropriate in the section on scalability (2.5), where scheduling is extensively described. The
readability considerations (3.2) would be more appropriate in the readability section earlier (2.2),
in particular as the latter refers extensively to these considerations. The current structure
ironically reduces readability of the article.

The advanced workflow design patterns are more difficult to place, but would be more
appropriate somewhere before readability as they are not quite as easy to read as the simple
example at the beginning and their readability should be discussed. While the authors state that
they are "less common but useful in certain situations", I would argue that some of them, in
particular "Non-file parameters" (Fig. 7c) should be commonly used. Most bioinformatics tools one
would want to use in a workflow, have multiple non-file parameters where one would not
necessarily use the default values (if there even are defaults).

Apart from these issues, the authors present their case well on what they consider to be important
for sustainable data analysis and show that snakemake is both well maintained, and commonly
used, not only in the bioinformatics community. The section on job scheduling is very extensive,
but I am also missing some details on how snakemake interacts with cluster scheduling software
like SLURM etc. The question remains whether that complex mixed integer linear program for
scheduling is still relevant or necessary if jobs will be submitted to a cluster with an own load-
balancing software anyway. Another point that should be addressed is how or if different
computing environments could be combined, e.g. if one has both a high-memory machine
available for memory-intensive jobs and a separate computing cluster. Would one have to either
run all jobs in the same environment or separate the workflow into two workflows that are run
separately?

The main issue I have with the manuscript is that the authors overstate the readability of
snakemake workflows. Readability is extensively discussed on a very simply workflow even with a
sort of quantification of the readability of the workflow. However, this workflow would also be
pretty easy to read as a simple bash script, so I do not think this is an appropriate example to
show how readable snakemake workflows are. Furthermore, several of the lines they consider
"trivial", in my opinion, still require some understanding of snakemake, make or programming. I
have previously worked with snakemake, though not recently, and in my experience the rule
structure is not easy to mentally parse if one is not familiar with it. Moreover, even if every single

Page 20 of 28

F1000Research 2021, 10:33 Last updated: 11 MAY 2021

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0003-3569-4877

line were trivial the whole workflow could still be difficult to understand due to the dependencies
which are implicitly created through use of common in- or output files. This can very easily lead to
a very complex structure, in particular since the order in which rules are given does not have to be
in order of their dependencies. Their argument is also somewhat contradicted by the advanced
workflow design patterns presented later, which are not that easy to read even with the
explanation.

I think the article would benefit if instead of trying to quantify the readability of the simple
workflow, the authors would focus more on the approaches they included in snakemake for
improving readability of workflows, i.e. modularization and standardized code linting and
formatting. In particular, I would be interested in hearing more details on the snakefmt tool and
the recommended best practices.

Is the rationale for developing the new method (or application) clearly explained?
Yes

Is the description of the method technically sound?
Yes

Are sufficient details provided to allow replication of the method development and its use
by others?
Yes

If any results are presented, are all the source data underlying the results available to
ensure full reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the
findings presented in the article?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Bioinformatics

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard, however I have
significant reservations, as outlined above.

Author Response 08 Apr 2021
Johannes Köster, University Hospital Essen, University of Duisburg-Essen, Essen, Germany

Thanks a lot for the comprehensive assessment of the manuscript. This was very helpful
and we are confident that your suggestions have significantly improved the article. Answers
to individual comments can be found below.

Page 21 of 28

F1000Research 2021, 10:33 Last updated: 11 MAY 2021

Comment 1
Here, the authors focus on particular aspects important for sustainable data analysis, in
particular automation, readability, portability, documentation and scalability. This is
followed by a section on "further consideration", which presents specific workflow patterns,
more details on their readability analysis, some more details on scheduling as well as a
performance analysis. Apart from the performance analysis at the end, these "further
considerations" aspects would be more appropriate earlier in the manuscript. In particular,
the scheduling considerations (3.3) would be more appropriate in the section on scalability
(2.5), where scheduling is extensively described. The readability considerations (3.2) would
be more appropriate in the readability section earlier (2.2), in particular as the latter refers
extensively to these considerations. The current structure ironically reduces readability of
the article.

Response 1
Thanks a lot for this suggestion. We had indeed moved around these sections several times
before submission. In the end, we thought the current structure is best at addressing a
potentially diverse readership (technical and non-technical, seeking for a quick overview or
for in-depth details, experienced users and beginners) with section 2 providing a
comprehensive overview and section 3 showing additional details for particularly interested
readers.
We have added an explanation of the concept to the end of the introduction, and hope that
this clarifies the intention and hopefully diminishes the negative effects of the split.

Comment 2
The advanced workflow design patterns are more difficult to place, but would be more
appropriate somewhere before readability as they are not quite as easy to read as the
simple example at the beginning and their readability should be discussed. While the
authors state that they are "less common but useful in certain situations", I would argue
that some of them, in particular "Non-file parameters" (Fig. 7c) should be commonly used.
Most bioinformatics tools one would want to use in a workflow, have multiple non-file
parameters where one would not necessarily use the default values (if there even are
defaults).

Response 2
Thanks a lot for these important thoughts. Indeed, we agree that our initial example was
lacking parameter definitions via the params directive, which are indeed quite ubiquitous in
practice. We have extended our example accordingly.

Comment 3
Apart from these issues, the authors present their case well on what they consider to be
important for sustainable data analysis and show that snakemake is both well maintained,
and commonly used, not only in the bioinformatics community. The section on job
scheduling is very extensive, but I am also missing some details on how snakemake
interacts with cluster scheduling software like SLURM etc. The question remains whether
that complex mixed integer linear program for scheduling is still relevant or necessary if
jobs will be submitted to a cluster with an own load-balancing software anyway.

Page 22 of 28

F1000Research 2021, 10:33 Last updated: 11 MAY 2021

Response 3
Indeed, the scheduling problem description was lacking an explanation about what
happens in a cluster/cloud setting. We have extended the text accordingly. In brief: resource
requirements are passed to the cluster/cloud middleware, but the scheduling problem still
has to be solved in order to prioritze jobs and minimize the lifetime of temporary files. It
becomes a bit less constrained though.

Comment 4
Another point that should be addressed is how or if different computing environments
could be combined, e.g. if one has both a high-memory machine available for memory-
intensive jobs and a separate computing cluster. Would one have to either run all jobs in the
same environment or separate the workflow into two workflows that are run separately?

Response 4
This is indeed a very good point. For addressing execution on multiple machines,
Snakemake entirely relies on cluster or cloud middleware. By specifying resource
requirements per rule (or dynamically per job), which are passed to the middleware, it is of
course possible to run different jobs on different types of machines. What is currently not
possible is to combine different execution backends like two different cluster systems or a
cluster and a local high memory machine. We have updated the text accordingly.

Comment 5
The main issue I have with the manuscript is that the authors overstate the readability of
snakemake workflows. Readability is extensively discussed on a very simply workflow even
with a sort of quantification of the readability of the workflow. However, this workflow
would also be pretty easy to read as a simple bash script, so I do not think this is an
appropriate example to show how readable snakemake workflows are. Furthermore,
several of the lines they consider "trivial", in my opinion, still require some understanding of
snakemake, make or programming. I have previously worked with snakemake, though not
recently, and in my experience the rule structure is not easy to mentally parse if one is not
familiar with it. Moreover, even if every single line were trivial the whole workflow could still
be difficult to understand due to the dependencies which are implicitly created through use
of common in- or output files. This can very easily lead to a very complex structure, in
particular since the order in which rules are given does not have to be in order of their
dependencies. Their argument is also somewhat contradicted by the advanced workflow
design patterns presented later, which are not that easy to read even with the explanation.
I think the article would benefit if instead of trying to quantify the readability of the simple
workflow, the authors would focus more on the approaches they included in snakemake for
improving readability of workflows, i.e. modularization and standardized code linting and
formatting. In particular, I would be interested in hearing more details on the snakefmt tool
and the recommended best practices.

Response 5
This is indeed a valid point, thanks a lot for bringing it up. We have rewritten the readability
section to better reflect that the presented example shows an ideal, quite simple situation,
that might be impossible to reach for parts of workflows in practice (but nevertheless
should be aimed for). We have added advice on how to use modularization to help the

Page 23 of 28

F1000Research 2021, 10:33 Last updated: 11 MAY 2021

reader of a workflow in such cases.

We still think that the example is appropriate (in combination with the mentioned changes
in the text).

While it is indeed simple, a bash script that would contain all the work that Snakemake is
doing behind the scenes (checking file consistency, scheduling, various execution backends,
parallelization, software stack deployment, etc.) would be much longer and less readable.
We have also checked the triviality claims in all lines again (the numbers did change
slightly). Of course, we'd be grateful to discuss or directly modify specific examples where
you might still disagree with our judgement after the fixes.

We agree that the dependency structure can be sometimes complicated and we have
therefore added some sentences that clarify this. Here, it is important to mention
Snakemake's ability to visualize dependencies and to automatically generate interactive
reports. Since the latter are of particular value for peeking into the codebase without
needing to understand the entire workflow, we have further extended the corresponding
section (2.4).
We are thankful for the suggestion to elaborate on other measures for improving
readability and have therefore extended our section on the linter and formatter (Section
2.2.2). Further, we have added some additional sentences about modularization and how to
use it best for ensuring readability (Section 2.2.1).

Competing Interests: No competing interests were disclosed.

Reviewer Report 15 February 2021

https://doi.org/10.5256/f1000research.32078.r77869

© 2021 Reich M. This is an open access peer review report distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Michael Reich
Department of Medicine, University of California, San Diego, San Diego, CA, USA

The authors describe Snakemake, a text-based pipeline execution system that builds on the
principles of the Unix 'make' utility to include optimized job scheduling, extensive specification of
compute resources, advanced workflow features, integration with package managers and
container technologies, and result caching. The authors identify where Snakemake exists within
the large ecosystem of pipeline management systems and describe the motivating principles of
Snakemake in terms of a hierarchy of sustainable data analysis that includes reproducibility,
accessibility, transparency, and other objectives. They then walk through several examples
illustrating the scope and use of the system. This paper updates and extends the original
Snakemake publication of Köster et al., Bioinformatics 20121. The value of Snakemake to the field

Page 24 of 28

F1000Research 2021, 10:33 Last updated: 11 MAY 2021

https://doi.org/10.5256/f1000research.32078.r77869
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0003-4735-5514
jar:file:/work/f1000research/webapps/ROOT/WEB-INF/lib/service-1.0-SNAPSHOT.jar!/com/f1000research/service/export/pdf/#rep-ref-77869-1

of bioinformatics is well-established, and the paper provides usage statistics and citations to
reinforce this point.

The paper thoroughly describes the features of Snakemake and the necessary background to
understand their use. While it is possible to understand a Snakemake workflow at a high level with
little programming knowledge, experience with Unix, Python, and an understanding of how 'make'
works are necessary to author Snakemake workflows. The authors balance the conceptual
overview with well-chosen usage examples that are simple enough to understand and make clear
how the example can generalize to other cases. They also describe in detail the job scheduling
algorithm that snakemake uses. The paper would benefit from a brief discussion of how
snakemake interacts with load-balancing software (such as SLURM, Torque, LSF, etc.), because of
the focus on the details of executing jobs. This information is in the documentation on the
Snakemake web site, but a conceptual overview in the paper would help the reader to understand
this relationship.

Information necessary to install and use snakemake is available on the snakemake web site as
referenced in the paper. The instructions and tutorial are comprehensive and understandable, and
the progressive exercises give a good feel for the snakemake paradigm. Given the ease and
popularity of container technology, it would be useful to include how to run snakemake from a
Docker container in the tutorial. I was able to do this easily from the official snakemake container
on Dockerhub and think it would be a helpful alternative in the documentation to installing
Miniconda.

In general, this paper provides a comprehensive introduction and overview of Snakemake and
serves as an effective entry point to this popular system.

References
1. Köster J, Rahmann S: Snakemake--a scalable bioinformatics workflow engine.Bioinformatics.
2012; 28 (19): 2520-2 PubMed Abstract | Publisher Full Text

Is the rationale for developing the new method (or application) clearly explained?
Yes

Is the description of the method technically sound?
Yes

Are sufficient details provided to allow replication of the method development and its use
by others?
Yes

If any results are presented, are all the source data underlying the results available to
ensure full reproducibility?
No source data required

Are the conclusions about the method and its performance adequately supported by the
findings presented in the article?

Page 25 of 28

F1000Research 2021, 10:33 Last updated: 11 MAY 2021

https://snakemake.github.io/
http://www.ncbi.nlm.nih.gov/pubmed/22908215
https://doi.org/10.1093/bioinformatics/bts480

Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Bioinformatics; reproducible research; workflow systems; open science

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

Author Response 08 Apr 2021
Johannes Köster, University Hospital Essen, University of Duisburg-Essen, Essen, Germany

Thanks a lot for the assessment of our manuscript. Your comments have led to several
important improvements. Answers to individual comments can be found below.

Comment 1
The paper would benefit from a brief discussion of how snakemake interacts with load-
balancing software (such as SLURM, Torque, LSF, etc.), because of the focus on the details of
executing jobs. This information is in the documentation on the Snakemake web site, but a
conceptual overview in the paper would help the reader to understand this relationship.

Response 1
Indeed, the paper failed to explicitly mention how this is handled. We have now added an
explaining paragraph to section 2.5.1. In brief: resource requirements are passed to the
middleware, but the scheduling problem still has to be solved in order to prioritze jobs and
minimize the lifetime of temporary files. It becomes a bit less constrained though.

Comment 2
Information necessary to install and use snakemake is available on the snakemake web site
as referenced in the paper. The instructions and tutorial are comprehensive and
understandable, and the progressive exercises give a good feel for the snakemake
paradigm. Given the ease and popularity of container technology, it would be useful to
include how to run snakemake from a Docker container in the tutorial. I was able to do this
easily from the official snakemake container on Dockerhub and think it would be a helpful
alternative in the documentation to installing Miniconda.

Response 2
Offering further ways of performing the tutorial is indeed a good idea. We have considered
providing instructions for performing the tutorial from a container, but felt that this would
complicate editing and interaction too much. However, we now instead provide a Gitpod
setup for the tutorial, which allows to directly run it, without any setup needed, from inside
a browser window which offers both an editor and a terminal based on the Eclipse Theia IDE
(see here).

Competing Interests: No competing interests were disclosed.

Page 26 of 28

F1000Research 2021, 10:33 Last updated: 11 MAY 2021

https://snakemake.readthedocs.io/en/stable/tutorial/setup.html#run-tutorial-for-free-in-the-cloud-via-gitpod

Comments on this article
Version 1

Author Response 26 Feb 2021
Johannes Köster, University Hospital Essen, University of Duisburg-Essen, Essen, Germany

Thanks for the comment, Soumitra. We will make sure to fix the reference in the next version of the
paper, after all reviews have been received.

Regarding composition, this is now very easy via the new module system of Snakemake, which will
also be described in the next version of this paper.

Competing Interests: No competing interests were disclosed.

Reader Comment 30 Jan 2021
Soumitra Pal, NCBI/NIH, Bethesda, MD, USA

One of the most useful features of Nextflow, another workflow manager like Snakemake, is to
provide dynamic composition of two or more workflows into a new workflow using what the
Nextflow developers call DSL 2.0. While I anticipate that such a useful feature can be implemented
in Snakemake using wrappers (Section 2.2.1), an explicit mention which enough details contrasting
the two approaches would be very useful to the readers as well as the workflow builders using
Snakemake.

Competing Interests: No competing interests were disclosed.

Reader Comment 18 Jan 2021
Soumitra Pal, NCBI/NIH/USA, USA

Please note that JUDI can be cited using this paper in Bioinformatics.
https://doi.org/10.1093/bioinformatics/btz956

Competing Interests: No competing interests were disclosed.

Page 27 of 28

F1000Research 2021, 10:33 Last updated: 11 MAY 2021

https://slides.com/johanneskoester/snakemake-6

The benefits of publishing with F1000Research:

Your article is published within days, with no editorial bias•

You can publish traditional articles, null/negative results, case reports, data notes and more•

The peer review process is transparent and collaborative•

Your article is indexed in PubMed after passing peer review•

Dedicated customer support at every stage•

For pre-submission enquiries, contact research@f1000.com

Page 28 of 28

F1000Research 2021, 10:33 Last updated: 11 MAY 2021

mailto:research@f1000.com

