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Abstract 
Data analysis often entails a multitude of heterogeneous steps, from 
the application of various command line tools to the usage of 
scripting languages like R or Python for the generation of plots and 
tables. It is widely recognized that data analyses should ideally be 
conducted in a reproducible way. Reproducibility enables technical 
validation and regeneration of results on the original or even new 
data. However, reproducibility alone is by no means sufficient to 
deliver an analysis that is of lasting impact (i.e., sustainable) for the 
field, or even just one research group. We postulate that it is equally 
important to ensure adaptability and transparency. The former 
describes the ability to modify the analysis to answer extended or 
slightly different research questions. The latter describes the ability to 
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understand the analysis in order to judge whether it is not only 
technically, but methodologically valid. 
Here, we analyze the properties needed for a data analysis to become 
reproducible, adaptable, and transparent. We show how the popular 
workflow management system Snakemake can be used to guarantee 
this, and how it enables an ergonomic, combined, unified 
representation of all steps involved in data analysis, ranging from raw 
data processing, to quality control and fine-grained, interactive 
exploration and plotting of final results.
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1 Introduction
Despite the ubiquity of data analysis across scientific disci-
plines, it is a challenge to ensure in silico reproducibility1–3.  
By automating the analysis process, workflow management  
systems can help to achieve such reproducibility. Consequently, 
a “Cambrian explosion” of diverse scientific workflow manage-
ment systems is in process; some are already in use by many 
and evolving, and countless others are emerging and being  
published (see https://github.com/pditommaso/awesome-pipeline).  
Existing systems can be partitioned into five niches which we  
will describe below, with highlighted examples of each.

First, workflow management systems like Galaxy4, KNIME5, 
and Watchdog6 offer graphical user interfaces for composition  
and execution of workflows. The obvious advantage is the 
shallow learning curve, making such systems accessible for  
everybody, without the need for programming skills.

Second, with systems like Anduril7, Balsam8, Hyperloom9, 
Jug10, Pwrake11, Ruffus12, SciPipe13, SCOOP14, and COMPSs15,  
and JUDI16, workflows are specified using a set of classes and 
functions for generic programming languages like Python,  
Scala, and others. Such systems have the advantage that they can 
be used without a graphical interface (e.g. in a server environ-
ment), and that workflows can be straightforwardly managed  
with version control systems like Git (https://git-scm.com).

Third, with systems like Nextflow17, Snakemake18, BioQueue19, 
Bpipe20, ClusterFlow21, Cylc22, and BigDataScript23, workflows 
are specified using a domain specific language (DSL). Here,  
the advantages of the second niche are shared, while adding the 
additional benefit of improved readability; the DSL provides  
statements and declarations that specifically model central  
components of workflow management, thereby obviating 
superfluous operators or boilerplate code. For Nextflow and  
Snakemake, since the DSL is implemented as an extension to 
a generic programming language (Groovy and Python), access 
to the full power of the underlying programming language is 
maintained (e.g. for implementing conditional execution and  
handling configuration).

Fourth, with systems like Popper24, workflow specification  
happens in a purely declarative way, via configuration file  
formats like YAML25. These declarative systems share the  

concision and clarity of the third niche. In addition, workflow  
specification can be particularly readable for non-developers. 
The caveat of these benefits is that by disallowing impera-
tive or functional programming, these workflow systems can be  
more restrictive in the processes that can expressed.

Fifth, there are system-independent workflow specification 
languages like CWL26 and WDL27. These define a declarative  
syntax for specifying workflows, which can be parsed and  
executed by arbitrary executors, e.g. Cromwell (https://cromwell.
readthedocs.io), Toil28, and Tibanna29. Similar to the fourth 
niche, a downside is that imperative or functional programming  
is not or less integrated into the specification language, thereby 
limiting the expressive power. In contrast, a main advantage 
is that the same workflow definition can be executed on various  
specialized execution backends, thereby promising scalability 
to virtually any computing platform. Another important use case 
for system-independent languages is that they promote inter-
operability between other workflow definition languages. For  
example, Snakemake workflows can (within limits) be auto-
matically exported to CWL, and Snakemake can make use of 
CWL tool definitions. An automatic translation of any CWL  
workflow definition into a Snakemake workflow is planned as 
well.

Today, several of the above mentioned approaches support 
full in silico reproducibility of data analyses (e.g. Galaxy,  
Nextflow, Snakemake, WDL, CWL), by allowing the definition 
and scalable execution of each involved step, including deploy-
ment of the software stack needed for each step (e.g. via the  
Conda package manager, https://docs.conda.io, Docker, https://
www.docker.com, or Singularity30 containers).

Reproducibility is important to generate trust in scientific 
results. However, we argue that a data analysis is only of last-
ing and sustained value for the authors and the scientific field  
if a hierarchy of additional interdependent properties is ensured 
(Figure 1).

First, to gain full in silico reproducibility, a data analysis has to 
be automated, scalable to various computational platforms and 
levels of parallelism, and portable in the sense that it is able  
to be automatically deployed with all required software in  
exactly the needed versions.

Second, while being able to reproduce results is a major 
achievement, transparency is equally important: the validity 
of results can only be fully assessed if the parameters, software,  
and custom code of each analysis step are fully accessible. On 
the level of the code, a data analysis therefore has to be read-
able and well-documented. On the level of the results it must 
be possible to trace parameters, code, and components of the  
software stack through all involved steps.

Finally, valid results yielded from a reproducible data analysis 
have greater meaning to the scientific community if the analysis  
can be reused for other projects. In practice, this will almost 
never be a plain reuse, and instead requires adaptability to 
new circumstances, for example, being able to extend the  

      Amendments from Version 1
In this latest version, we have clarified several claims in the 
readability analysis. Further, we have extended the description 
of the scheduling to also cover running Snakemake on cluster 
and cloud middleware. We have extended the description of the 
automatic code linting and formatting provided with Snakemake. 
Finally, we have extended the text to cover workflow modules, a 
new feature of Snakemake that allows to easily compose multiple 
external pipelines together, while being able to extend and 
modify them on the fly.

Any further responses from the reviewers can be found at 
the end of the article
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analysis, replace or modify steps, and adjust parameter choices. 
Such adaptability can only be achieved if the data analysis  
can easily be executed in a different computational environ-
ment (e.g. at a different institute or cloud environment), thus 
it has to be scalable and portable again (see Figure 1). In  
addition, it is crucial that the analysis code is as readable as  
possible such that it can be easily modified.

In this work, we show how data analysis sustainability in terms 
of these aspects is supported by the open source workflow  
management system Snakemake (https://snakemake.github.io).  
Since its original publication in 2012, Snakemake has seen 
hundreds of releases and contributions (Figure 2c). It has  
gained wide adoption in the scientific community, culminat-
ing in, on average, more than five new citations per week, and 

Figure 1. Hierarchy of aspects to consider for sustainable data analysis. By supporting the top layer, a workflow management system 
can promote the center layer, and thereby help to obtain true sustainability.

Figure 2. Citations and development of Snakemake. (a) citations by year of the original Snakemake article (note that the year 2020 
is still incomplete at the time of writing). (b) citations by scientific discipline of the citing article. Data source: https://badge.dimensions.ai/
details/id/pub.1018944052, 2020/09/29. (c) cumulative number of git commits over time; Releases are marked as circles.
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over 700 citations in total (Figure 2a,b). This makes Snakemake 
one of the most widely used workflow management systems in  
science.

In order to address the requirements of a potentially diverse 
readership, we decided to split the following content into two  
parts. Section 2 concisely presents Snakemake in terms of the 
aspects shown in Figure 1, whereas section 3 provides further 
details for the particularly interested reader, including how to  
compose multiple workflows for integrative data analysis,  
advanced design patterns, and additional technical details.

2 Methods and results
We present how Snakemake enables the researcher to conduct  
data analyses that have all the properties leading to repro-
ducibility, transparency and adaptability. This in turn allows  
the analysis to become a sustainable resource both for the 
researcher themselves and the scientific community. We structure 
the results by each of the properties leading to sustainable data  
analyses (Figure 1).

We will thereby introduce relevant features of both the work-
flow definition language as well as the execution environment. 
Several of them are shared with other tools, while others are  
(at the time of writing) exclusive to Snakemake. Finally, there 
are features that other workflow management systems provide 
while Snakemake does not (or not yet) offer them. We inten-
tionally refrain from performing a full comparison with other  
tools, as we believe that such a view will never be unbiased (and 
quickly outdated), and should instead be provided by review 
articles or performed by the potential users based on their  
individual needs.

2.1 Automation
The central idea of Snakemake is that workflows are speci-
fied through decomposition into steps represented as rules  
(Figure 3). Each rule describes how to obtain a set of output 
files from a set of input files. This can happen via a shell com-
mand, a block of Python code, an external script (Python, R,  
or Julia), a Jupyter notebook (https://jupyter.org), or a  
so-called wrapper (see Sec. 2.2.1). Depending on the computing  

Figure 3. Example Snakemake workflow. (a) workflow definition; hypothesized knowledge requirement for line readability is color-coded 
on the left next to the line numbers. (b) directed acyclic graph (DAG) of jobs, representing the automatically derived execution plan from 
the example workflow; job node colors reflect rule colors in the workflow definition. (c) content of script plot-hist.py referred from rule 
plot_histogram. (d) knowledge requirements for readability by statement category (see subsection 3.3). The example workflow downloads 
data, plots histograms of city populations within a given list of countries, and converts these from SVG to PDF format. Note that this is solely 
meant as a short yet comprehensive demonstration of the Snakemake syntax.

configfile: "config.yaml"

rule all:
input:

        expand(
            "results/plots/{country}.hist.pdf",
            country=config["countries"]
        )

rule download_data:
output:

        "data/worldcitiespop.csv"
log:

        "logs/download.log"
conda:

        "envs/curl.yaml"
shell:

        "curl -L https://burntsushi.net/stuff/worldcitiespop.csv > {output} 2> {log}"

rule select_by_country:
input:

        "data/worldcitiespop.csv"
output:

        "results/by-country/{country}.csv"
log:

        "logs/select-by-country/{country}.log"
conda:

        "envs/xsv.yaml"
shell:

        "xsv search -s Country '{wildcards.country}' "
        " {input} > {output} 2> {log}"

rule plot_histogram:
input:

        "results/by-country/{country}.csv"
output:

        "results/plots/{country}.hist.svg"
container:

        "docker://faizanbashir/python-datascience:3.6"
log:

        "logs/plot-hist/{country}.log"
script:

        "scripts/plot-hist.py"

rule convert_to_pdf:
input:

        "{prefix}.svg"
output:

        "{prefix}.pdf"
log:

        "logs/convert-to-pdf/{prefix}.log"
wrapper:

        "0.47.0/utils/cairosvg"

...

...

...

import sys
sys.stderr = open(snakemake.log[0], "w")

import matplotlib.pyplot as plt
import pandas as pd

cities = pd.read_csv(snakemake.input[0])

plt.hist(cities["Population"], bins=50)

plt.savefig(snakemake.output[0])
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platform used and how Snakemake is configured, input and 
output files are either stored on disk, or in a remote storage  
(e.g. FTP, Amazon S3, Google Storage, Microsoft Azure Blob 
Storage, etc.). Through the use of wildcards, rules can be 
generic. For example, see the rule select_by_country in  
Figure 3a (line 20). It can be applied to generate any output file 
of the form results/by-country/{country}.csv, with 
{country} being a wildcard that can be replaced with any  
non-empty string. In shell commands, input and output files, 
as well as additional parameters, are directly accessible by 
enclosing the respective keywords in curly braces (in case of  
more than a single item in any of these, access can happen by  
name or index).

When using script integration instead of shell commands, 
Snakemake automatically inserts an object giving access to 
all properties of the job (e.g. snakemake.output[0], see  
Figure 3c). This avoids the presence and repetition of boiler 
plate code for parsing command line arguments. By replacing 
wildcards with concrete values, Snakemake turns any rule into  
a job which will be executed in order to generate the defined  
output files.

Dependencies between jobs are implicit, and inferred auto-
matically in the following way. For each input file of a job,  
Snakemake determines a rule that can generate it— for exam-
ple by replacing wildcards again (ambiguity can be resolved 
by prioritization or constraining wildcards)— yielding another  
job. Then, Snakemake goes on recursively for the latter, until 
all input files of all jobs are either generated by another job 
or already present in the used storage (e.g., on disk). Where  
necessary, it is possible to provide arbitrary Python code to 
infer input files based on wildcard values or even the contents  
of output files generated by upstream jobs.

From this inference, Snakemake obtains a directed acyclic 
graph of jobs (DAG, see Figure 3b). The time needed for this is  
linear in the number of jobs involved in the workflow, and 
negligible compared to the usual runtimes of the workflow  
steps (see subsection 3.5).

Figure 3a illustrates all major design patterns needed to define 
workflows with Snakemake: workflow configuration (line 
1), aggregations (line 5–8), specific (line 33–43) and generic  
(line 45–53) transformations, target rules (line 3–8), log file 
definition, software stack definition, as well as shell com-
mand, script, and wrapper integration. subsection 3.2 presents  
additional patterns that are helpful in certain situations (e.g. 
conditional execution, iteration, exploration of large parameter  
spaces, benchmarking, scatter/gather).

2.1.1 Automated unit test generation. When maintaining and 
developing a production workflow, it is important to test each  
contained step, ideally upon every change to the workflow 
code. In software development, such tests are called unit tests31.  
From a given source workflow with already computed results 
that have been checked for correctness, Snakemake can  
automatically generate a suite of unit tests, which can be 

executed via the Pytest framework (https://pytest.org). Each unit 
test consists of the execution of one rule, using input data taken  
from the source workflow. The generated results are by default 
compared byte-by-byte against the results given by in the 
source workflow. However, this behavior can be overwritten  
by the user. It is advisable to keep the input datasets of the 
source workflow small in order to ensure that unit tests finish  
quickly.

2.2 Readability
The workflow definition language of Snakemake is designed 
to allow maximum readability, which is crucial for transpar-
ency and adaptability. For natural-language readability, the 
occurrence of known words is important. For example, the  
Dale-Chall readability formula derives a score from the frac-
tion of potentially unknown words (that do not occur in a list 
of common words) among all words in a text32. For work-
flow definition languages, one has to additionally consider  
whether punctuation and operator usage is intuitively under-
standable. When analyzing the above example workflow  
(Figure 3a) under these aspects, code statements fall into seven 
categories (subsection 3.3). In addition, for each statement, we  
can judge whether it

1.  needs domain knowledge (from the field analyzed in  
the given workflow),

2.  needs technical knowledge (e.g. about Unix-style  
shell commands or Python),

3.  needs Snakemake knowledge,

4.  is trivial (i.e., it should be understandable for  
everybody).

In Figure 3, we hypothesize the required knowledge for read-
ability of each code line. Most statements are understandable 
with either general education, domain, or technical knowledge.  
In particular, only six lines need Snakemake-specific  
knowledge (Figure 3d). The rationale for each hypothesis  
can be found in subsection 3.3.

It should be highlighted that with production workflows, there 
will always be parts of the codebase that go beyond the simple  
example shown here, for example by using advanced design 
patterns (subsection 3.2), or various Python functions for  
retrieving parameter values, per-sample configurations, etc. 
Since Snakemake supports modularization of workflow defini-
tions (subsubsection 2.2.1), it is however possible to hide more  
technical parts of the workflow definition (e.g. helper func-
tions or variables) from readers that are just interested in a  
general overview. This way, workflows can try to keep a ratio 
between the different types of knowledge requirements that 
is similar to this example, while still allowing to easily enter 
the more complicated parts of the codebase. In the shown 
example, a good candidate for such a strategy is the lambda  
expression (Figure 3a, line 39) for retrieving the number of bins 
per country from the workflow configuration. While the used 
way of definition requires specific knowledge about Snakemake  
(and Python) when trying to understand the line, it can be  
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simplified for a reader that just wants to get an overview of the 
workflow by replacing the statement with a function name, for  
example get_bins and moving the actual function into 
a separate file which is included into the main workflow  
definition (see subsubsection 2.2.1).

Since dependencies between jobs are implicitly encoded via 
matching filename patterns, we hypothesize that, in many  
cases, no specific technical knowledge is necessary to under-
stand the connections between the rules. The file-centric descrip-
tion of workflows makes it intuitive to to infer dependencies  
between steps; when the input of one rule reoccurs as the 
output of another, their link and order of execution is clear.  
Again, one should note that this holds for simple cases as in this 
example. Conditional dependencies, input functions, etc. (see  
subsection 3.2), can easily yield dependencies that are more 
complex to understand. Also, such a textual definition does 
not immediately show the entire dependency structure of a  
workflow. It is rather suited to zoom in on certain steps, e.g., 
for understanding or modifying them. Therefore, Snakemake 
provides mechanisms that help with understanding depend-
encies on a global level (e.g. allowing to visualize them via the  
command line, or by automatically generating interactive  
reports).

In summary, the readability of the example in Figure 3 should 
be seen as an optimum a Snakemake workflow developer  
should aim for. Where the optimum cannot be reached, modu-
larization should be used to help the reader to focus on parts  
that are understandable for her or his knowledge and experi-
ence. Further, such difficulties can be diminished by Snake-
make’s ability to automatically generate interactive reports that  
combine codebase and results in a visual way (subsection 2.4)  
and thereby help to explore specific parts of the codebase 
(e.g. to look up the code used for generating a particular plot) 
and dependencies without the need to understand the entire  
workflow.

2.2.1 Modularization. In practice, data analysis workflows are 
usually composed of different parts that can vary in terms of  
their readability for different audiences. Snakemake offers vari-
ous levels of modularization that help to design a workflow 
in a way that ensures that a reader is not distracted from the  
aspects relevant for her or his interest.

Snakefile inclusion. A Snakemake workflow definition (a so-
called Snakefile) can include other Snakefiles via a simple  
include statement that defines their path or URL. Such inclu-
sion is best used to separate a workflow into sets of rules that 
handle a particular part of the analysis by working together. By  
giving the included Snakefiles speaking names, they enable 
the reader to easily navigate to the part of the workflow she  
or he is interested in.

Workflow composition. By declaring so-called workflow 
modules, Snakemake allows to compose multiple external  
workflows together, while modifying and extending them on  
the fly and documenting those changes transparently. A detailed 
description of this mechanism can be found in subsection 3.1.

Step-wise modularization. Some workflow steps can be quite 
specific and unique to the analysis. Others can be common 
to the scientific field and utilize widely used tools or libraries  
in a relatively standard way. For the latter, Snakemake pro-
vides the ability to deposit and use tool wrappers in/from a cen-
tral repository. In contrast, the former can require custom code,  
often written in scripting languages like R or Python. Snake-
make allows the user to modularize such steps either into scripts 
or to craft them interactively by integrating with Jupyter note-
books (https://jupyter.org). In the following, we elaborate  
on each of the available mechanisms.

Script integration. Integrating a script works via a special  
script directive (see Figure 3a, line 42). The referred script 
does not need any boilerplate code, and can instead directly use  
all properties of the job (input files, output files, wildcard val-
ues, parameters, etc.), which are automatically inserted as a 
global snakemake object before the script is executed (see  
Figure 3c).

Jupyter notebook integration. Analogous to script integra-
tion, a notebook directive allows a rule to specify a path to a  
Jupyter notebook. Via the command line interface, it is pos-
sible to instruct Snakemake to open a Jupyter notebook server 
for editing a notebook in the context of a specific job derived  
from the rule that refers to the notebook. The notebook server 
can be accessed via a web browser in order to interactively 
program the notebook until the desired results (e.g. a certain  
plot or figure) are created as intended. Upon saving the note-
book, Snakemake generalizes it such that other jobs from the 
same rule can subsequently re-use it automatically without the  
need for another interactive notebook session.

Tool wrappers. Reoccurring tools or libraries can be shared 
between workflows via Snakemake tool wrappers (see Figure 3a, 
line 52–53). A central public repository (https://snakemake-wrap-
pers.readthedocs.io) allows the community to share wrappers 
with each other. Each wrapper consists of a Python or R script  
that either uses libraries of the respective scripting language 
or calls a shell command. Moreover, each wrapper provides a  
Conda environment defining the required software stack, includ-
ing tool and library versions (see subsection 2.3). Often, 
shell command wrappers contain some additional code that  
works around various idiosyncrasies of the wrapped tool (e.g. 
dealing with temporary directories or converting job proper-
ties into command line arguments). A wrapper can be used by 
simply copying and adapting a provided example rule (e.g.  
by modifying input and output file paths). Upon execution, the 
wrapper code and the Conda environment are downloaded from 
the repository and automatically deployed to the running sys-
tem. In addition to single wrappers, the wrapper repository  
also offers pre-defined, tested combinations of wrappers that 
constitute entire sub-workflows for common tasks (called  
meta-wrappers). This is particularly useful for combinations 
of steps that reoccur in many data analyses. All wrappers are  
automatically tested to run without errors prior to inclusion in  
the repository, and upon each committed change.
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2.2.2 Standardized code linting and formatting. The readability 
of programming code can be heavily influenced by adhering to  
common style and best practices33. Snakemake provides auto-
matic code formatting (via the tool snakefmt) of workflows, 
together with any contained Python code. Snakefmt formats plain  
Python parts of the codebase with the Python code formatter 
Black (https://black.readthedocs.io), while providing its own for-
matting for any Snakemake specific syntax. Thereby, Snakefmt 
aims to ensure good readability by using one line per input/output  
file or parameter, separating global statements like rules, config-
files, functions etc. with two empty lines (such that they appear 
as separate blocks), and breaking too long lines into shorter  
multi-line statements.

In addition, Snakemake has a built in code linter that detects 
code violating best practices and provides suggestions on how to  
improve the code. For example, this covers missing directives 
(e.g. no software stack definition or a missing log file), inden-
tation issues, missing environment variables, unnecessarily  
complicated Python code (e.g. string concatenations), etc.

Both formatting and linting should ideally be checked for 
in continuous integration setups, for example via Github 
Actions (https://github.com/features/actions). As such, there 
are preconfigured Github actions available for both Snakefmt  
(https://github.com/snakemake/snakefmt#github-actions) and the  
code linter (https://github.com/snakemake/snakemakegithub-
action#example-usage). 

2.3 Portability
Being able to deploy a data analysis workflow to an unpre-
pared system depends on: (a) the ability to install the workflow  
management system itself, and (b) the ability to obtain and use 
the required software stack for each analysis step. Snakemake 
itself is easily deployable via the Conda package manager  
(https://conda.io), as a Python package (https://pypi.io), or a 
Docker container (https://hub.docker.com/r/snakemake/snake-
make). Instructions and further information can be found  
at https://snakemake.github.io. 

The management of software stacks needed for individual 
rules is directly integrated into Snakemake itself, via two  
complementary mechanisms.

Conda integration For each rule, it is possible to define a  
software environment that will be automatically deployed via the 
Conda package manager (via a conda directive, see Figure 3a,  
line 15). Each environment is described by a lightweight 
YAML file used by conda to install constituent software. While  
efficiently sharing base libraries like Glib with the underly-
ing operating system, software defined in the environment takes  
precedence over the same software in the operating system, and 
is isolated and independent from the same software in other  
Conda environments.

Container integration Instead of defining Conda environ-
ments, it is also possible to define a container for each rule (via  
a container directive, see Figure 3a, line 38). Upon exe-
cution, Snakemake will pull the requested container image 
and run a job inside that container using Singularity30. The  

advantage of using containers is that the execution environment 
can be controlled down to the system libraries, and becomes 
portable across operating systems, thereby further increasing  
reproducibility34. Containers already exist in centralized reposi-
tories for a wide range of scientific software applications,  
allowing easy integration info Snakemake workflows.

Automatic containerization The downside of using contain-
ers is that generating and modifying container images requires  
additional effort, as well as storage, since the image has to be 
uploaded to a container registry. Moreover, containers limit 
the adaptability of a pipeline, since it is less straightforward 
and ad hoc to modify them. Therefore, we advice to rely on  
Conda during the development of a workflow, while required 
software environments may rapidly evolve. Once a workflow 
becomes production ready or is published, Snakemake offers 
the ability to automatically generate a containerized version. For  
this, Snakemake generates a Dockerfile that deploys all defined 
Conda environments into the container. Once the correspond-
ing container image has been built and uploaded to a con-
tainer registry, it can be used in the workflow definition via the  
containerized directive. Upon workflow execution, Snake-
make will then use the Conda environments that are found  
in the container, instead of having to recreate them.

2.4 Traceability and documentation
While processing a workflow, Snakemake tracks input files, 
output files, parameters, software, and code of each executed 
job. After completion, this information can be made available  
via self-contained, interactive, HTML based reports. Output 
files in the workflow can be annotated for automatic inclusion in  
the report. These features enable the interactive exploration of 
results alongside information about their provenance. Since 
results are included into the report, their presentation does  
not depend on availability of server backends, making  
Snakemake reports easily portable and archivable.

First, the report enables the interactive exploration of the entire 
workflow, by visualizing the dependencies between rules as 
a graph. Thereby, the nodes of the graph can be clicked in  
order to show details about the corresponding rules, like input 
and output files, software stack (used container image or conda 
environment), and shell, script, or notebook code. Second,  
the reports shows runtime statistics for all executed jobs. Third, 
used configuration files can be viewed. Fourth, the report shows 
the included output files (e.g. plots and tables), along with  
job specific information (rule, wildcard values, parameters), pre-
views of images, download functionality, and a textual descrip-
tion. The latter can be written via a templating mechanism  
(based on Jinja2, https://jinja.palletsprojects.com) which allows to 
dynamically react on wildcard values, parameters and workflow 
configuration.

An example report summarizing the data analysis conducted  
for this article can be found at https://doi.org/10.5281/zenodo. 
424414335. In the future, Snakemake reports will be extended 
to additionally follow the RO-crate standard, which will 
make them machine-readable and allow an integration with  
web services like https://workflowhub.eu. 
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2.5 Scalability
Being able to scale a workflow to available computational 
resources is crucial for reproducing previous results as well as 
adapting a data analysis to novel research questions or datasets.  
Like many other state-of-the-art workflow management sys-
tems, Snakemake allows workflow execution to scale to vari-
ous computational platforms (but not to combine multiple of  
them in a single run), ranging from single workstations to large 
compute servers, any common cluster middleware (like Slurm, 
PBS, etc.), grid computing, and cloud computing (with native 
support for Kubernetes, the Google Cloud Life Sciences API, 
Amazon AWS, TES (https://www.ga4gh.org), and Microsoft  
Azure, the latter two in an upcoming release). 

Snakemake’s design ensures that scaling a workflow to a spe-
cific platform should only entail the modification of command 
line parameters. The workflow itself can remain untouched.  
Via configuration profiles, it is possible to persist and share the 
command line setup of Snakemake for any computing platform 
(https://github.com/snakemake-profiles/doc). 

2.5.1 Job scheduling. Because of their dependencies, not all 
jobs in a workflow can be executed at the same time. Instead,  
one can imagine partitioning the DAG of jobs into three sec-
tions: those that are already finished, those that have already 
been scheduled but are not finished yet, and those that have not 
yet been scheduled (Figure 4a). Let us call the jobs in the latter  
partition Jo, the set of open jobs. Within Jo, all jobs that have 
only incoming edges from the partition of finished jobs (or 
no incoming edge at all) can be scheduled next. We call this 
the set J of pending jobs. The scheduling problem a workflow 
manager like Snakemake has to solve is to select the subset  
E ⊆ J that leads to an efficient execution of the workflow, while 
not exceeding the given resources like hard drive space, I/O 
capacity and CPU cores. Snakemake solves the scheduling  

problem at the beginning of the workflow execution and  
whenever a job has finished and new jobs become pending.

Efficiency of execution is evaluated according to three criteria.  
First, execution should be as fast as possible. Second,  
high-priority jobs should be preferred (Snakemake allows pri-
oritization of jobs via the workflow definition and the command 
line). Third, temporary output files should be quickly deleted 
(Snakemake allows output files to be marked as temporary,  
which leads to their automatic deletion once all consuming  
jobs have been finished). An example is shown in Figure 4.

When running Snakemake in combination with cluster or 
cloud middleware (Slurm, PBS, LSF, Kubernetes, etc.), Snake-
make does not need to govern available resources since that  
is handled by the middleware (hence, constraint (2) in Table 1 
can be dropped). Instead, Snakemake can pass all information 
about job resource requirements (threads, memory, and disk)  
to the middleware, which can use this information to choose 
the best fitting machine for the job. Nevertheless, the number 
of jobs that shall be queued/running at a time is usually  
restricted in such systems, so that Snakemake still has to select 
a subset of jobs E ⊆ J as outlined above. In particular, mini-
mizing the lifetime of temporary files and maximizing priority  
is still of high relevance, such that the scheduling problem 
still has to be solved, albeit without the resource constraints 
(resource requirements of selected jobs are simply passed to the  
middleware).

We solve the scheduling problem via a mixed integer linear pro-
gram (MILP) as follows. Let R be the set of resources used 
in the workflow (e.g., CPU cores and memory). By default,  
Snakemake only considers CPU cores which we indicate 
with c, i.e., R = {c}. Let F be the set of temporary files that are  
currently present. We first define constants for each pending job  
j ∈ J: Let p

j
 ∈ ℕ be its priority, let u

r,j
 ∈ ℕ be its usage of resource 

r ∈ R, and let z
f,j
 ∈ {0, 1} indicate whether it needs tempo-

rary file f ∈ F as input (z
f,j
 = 1) or not (z

f,j
 = 0). Further, let U

r
  

be the free capacity of resource r ∈ R (initially what is provided 
to Snakemake on the command line; later what is left, given 
resources already used in running jobs). Let S

f
 be the size of file  

f ∈ F, and let : ff FS S∈= ∑  be be total temporary file size  

(measured in some reasonable unit, such as MB). 

Next, we define indicator variables x
j
 ∈ {0, 1}, for each job j 

∈ J, indicating whether a job is selected for execution (1) or  
not (0). For each temporary file f ∈ F, we define a variable  
δ

f
 ∈ [0, 1] indicating the fraction of consuming jobs that will 

be scheduled among all open jobs. We also call this variable 
the lifetime fraction of temporary file f . In other words, δ

f
 = 1  

means that all consuming jobs will be completed after this 
scheduling round has been processed, such that the lifetime of 
that file is over and it can be deleted. To indicate the latter, we  
further define a binary variable γ

f
 ∈ {0, 1}, with γ

f
 = 1 repre-

senting the case that f can indeed be deleted, in other words,  
γ

f
 = 1 ⇔ δ

f
 = 1.

Figure 4. Snakemake scheduling problem. (a) Example 
workflow DAG. The greenish area depicts the jobs that are ready 
for scheduling (because all input files are present) at a given time 
during the workflow execution. We assume that the red job at the 
root generates a temporary file, which may be deleted once all blue 
jobs are finished. (b) Suboptimal scheduling solution: two green 
jobs are scheduled, such that only one blue job can be scheduled 
and the temporary file generated by the red job has to remain on 
disk until all blue jobs are finished in a subsequent scheduling step. 
(c) Optimal scheduling solution: the three blue jobs are scheduled, 
such that the temporary file generated by the red job can be 
deleted afterwards.

cores

a

c

b

cores
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Table 1. Mixed integer linear program for Snakemake’s scheduling problem.
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Maximize

subject to

for all

for all

for all

for all

for all

for all

Variables: 
binary (xj) j ∈J : 
do we schedule job j ∈ J ? 
 
binary (γ f ) f ∈ F : 
can we delete file f ∈ F? 
 
continuous (δf)f ∈ F ∈ [0, 1]: 
lifetime fraction of f ; see (3) 
 
Parameters: 
              pj ∈ ℕ : priority of job j ∈ J

            ur, j ∈ ℕ : j ’s usage of resource r    

                     zf, j : does job j ∈ Jo need file f ?

             Ur ∈ ℕ : free capacity of resource r

              Sf ∈ ℕ : size of file f

             S ∈ ℕ : sum of file sizes ff S∑

Then, the scheduling problem can be written as the MILP 
depicted in Table 1. The maximization optimizes four criteria,  
represented by four separate terms in (1). First, we strive to 
prefer jobs with high priority. Second, we aim to maximize 
the number of used cores, i.e. the extent of parallelization.  
Third, we aim to delete existing temporary files as soon as  
possible. Fourth, we try to reduce the lifetime of temporary  
files that cannot be deleted in this pass.

We consider these four criteria in lexicographical order. In 
other words, priority is most important, only upon ties do we  
consider parallelization. Given ties while optimizing paral-
lelization, we consider the ability to delete temporary files.  
And only given ties when considering the latter, we take the life-
time of all temporary files that cannot be deleted immediately 
into account. Technically, this order is enforced by multiplying  
each criterion sum with a value that is at least as high as the 
maximum value that the equation right of it can acquire. Unless 
the user explicitly requests otherwise, all jobs have the same  
priority, meaning that in general the optimization problem 
maximizes the number of used cores while trying to remove as  
many temporary files as possible. 

The constraints (2)–(4) ensure that the variables have the intended 
meaning and that the computed schedule does not violate  
resource constraints. Constraint (2) ensures that the available 
amount U

r
 of each resource r ∈ R is not exceeded by the selec-

tion. Constraint (3) (together with the fact that δ
f
 is being  

maximized) ensures that δ
f
 is ineed the lifetime fraction of  

temporary file f ∈ F. Note that the sum in the denominator 
extends over all open jobs, while the numerator only extends 
over pending jobs. Constraint (4) (together with the fact that γ

f
 is  

being maximized) ensures that γ
f
 = 0 if and only if δ

f 
< 1 and  

hence calculates whether temporary file f ∈ F can be deleted.

Additional considerations and alternatives, which may be imple-
mented in subsequent releases of Snakemake, are discussed  
in subsection 3.4. 

2.5.2 Caching between workflows. While data analyses usually  
entail the handling of multiple datasets or samples that are  
specific to a particular project, they often also rely on retrieval  
and post-processing of common datasets. For example, in the 
life sciences, such datasets include reference genomes and  
corresponding annotations. Since such datasets potentially 
reoccur in many analyses conducted in a lab or at an institute,  
re-executing the analysis steps for retrieval and post-processing 
of common datasets as part of individual analyses would  
waste both disk space and computation time. 

Historically, the solution in practice was to compile shared 
resources with post-processed datasets that could be referred to 
from the workflow definition. For example, in the life sciences, 
this has led to the Illumina iGenomes resource (https://support.
illumina.com/sequencing/sequencing_software/igenome.html)  
and the GATK resource bundle (https://gatk.broadinstitute.org/hc/
en-us/articles/360035890811-Resource-bundle).

In addition, in order to provide a more flexible way of selec-
tion and retrieval for such shared resources, so-called “reference 
management” systems have been published, like Go Get Data  
(https://gogetdata.github.io) and RefGenie (http://refgenie.databio.
org). Here, the logic for retrieval and post-processing is curated 
in a set of recipes or scripts, and the resulting resources can be  
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automatically retrieved via command line utilities. The down-
side of all these approaches is that the transparency of the data 
analysis is hampered since the steps taken to obtain the used  
resources are hidden and less accessible for the reader of the  
data analysis.

Snakemake provides a new, generic approach to the problem 
which does not have this downside (see Figure 5). Leveraging  
workflow-inherent information, Snakemake can calculate a 
hash value for each job that unambiguously captures exactly  
how an output file is generated, prior to actually generat-
ing the file. This hash can be used to store and lookup output 
files in a central cache (e.g., a folder on the same machine or  
in a remote storage). For any output file in a workflow, if 
the corresponding rule is marked as eligible for caching,  
Snakemake can obtain the file from the cache if it has been 
created before in a different workflow or by a different user 
on the same system, thereby saving computation time, as 
well as disk space (on local machines, the file can be linked  
instead of copied).

The hash value is calculated in the following way. Let J be 
the set of jobs of a workflow. For any job j ∈ J, let c

j
 denote its  

code (shell command, script, wrapper, or notebook), let  
P

j
 = {(k

i
, v

i
) | i = 0,...,m} be its set of parameters (with key k

i
 

and JSON-encoded value v
i
), let F

j
 be its set of input files that 

are not created by any other job, and let s
j
 be a string describing  

the associated software environment (either a container 
unique resource identifier, a Conda environment definition, or  
both). Then, assuming that job j ∈ J with dependencies D

j
 ⊂ J  

is the job of interest, we can calculate the hash value as

0

( )

( )

( )

j

m

i i j
i

j
f F

h j h k v c

h f s

h j

=

′∈

∈

′=

′

′

  
 
 
 
   

 
 

  

�

�

�

⊙ ⊙ ⊙

⊙ ⊙

  
j D j

with h′ being the SHA-25636 hash function, ⊙ being the string 
concatenation, and ⊙ being the string concatenation of its  
operands in lexicographic order.

The hash function h(j) comprehensively describes everything 
that affects the content of the output files of job j, namely code, 
parameters, raw input files, the software environment and  
the input generated by jobs it depends on. For the latter, we 
recursively apply the hash function h again. In other words, for 
each dependency j′ ∈ D

j
 we include a hash value into the hash 

of job j, which is in fact the hashing principle behind block-
chains used for cryptocurrency37. The hash is only descriptive if  
the workflow developer ensures that the cached result is  
generated in a deterministic way. For example, downloading  
from a URL that yields data which may change over time  
should be avoided.

2.5.3 Graph partitioning. A data analysis workflow can contain  
diverse compute jobs, some of which may be long-running, 
and some which may complete quickly. When executing a  
Snakemake workflow in a cluster or cloud setting, by default, 
every job will be submitted separately to the underlying  
queuing system. For short-running jobs, this can result in a con-
siderable overhead, as jobs wait in a queue, and may also incur 
additional delays or cost when accessing files from remote 
storage or network file systems. To minimize such over-
head, Snakemake offers the ability to partition the DAG of 
jobs into subgraphs that will be submitted together, as a single  
cluster or cloud job.

Partitioning happens by assigning rules to groups (see Figure 6). 
Upon execution, Snakemake determines connected subgraphs 
with the same assigned group for each job and submits such  
subgraphs together (as a so called group job) instead of  
submitting each job separately. For each group, it is in addition  
possible to define how many connected subgraphs shall be  
spanned when submitting (one by default). This way, it is pos-
sible to adjust the partition size to the needs of the available  
computational platform. The resource usage of a group job is 
determined by sorting involved jobs topologically, summing  
resource usage per level and taking the maximum over all  
levels.

2.5.4 Streaming. Sometimes, intermediate results of a data 
analysis can be huge, but not important enough to store  
persistently on disk. Apart from the option to mark such  
files as  temporary so that Snakemake will automatically delete 
them once no longer needed, it is also possible to instruct  
Snakemake to never store them on disk at all by directly stream-
ing their content from the producing job to to the consum-
ing job. This requires the producing and consuming jobs to 
run at the same time on the same computing node (then, the  
output of the producer can be written to a small in-memory  
buffer; on Unix, this is called a named pipe). Snakemake 
ensures this by submitting producer and consumer as a group  
job (see subsubsection 2.5.3).

Figure 5. Blockchain-hashing based between workflow 
caching scheme of Snakemake. If a job is eligible for caching, 
its code, parameters, raw input files, software environment and the 
hashes of its dependencies are used to calculate a SHA-256 hash 
value, under which the output files are stored in a central cache. 
Subsequent runs of the same job (with the same dependencies) in 
other workflows can skip the execution and directly take the output 
files from the cache.

af7399cf6... 1ee69986...

767eb707...

without cache entry
with cache entry
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Figure 7. Workflow composition capabilities of Snakemake. 
Single or multiple external workflows can be declared as modules, 
along with the selection of all or specific rules. Properties of rules 
can be overwritten, and the analysis can be extended with further 
rules.

Figure 6. Job graph partitioning by assigning rules to groups. Two rules of the example workflow (Figure 3a) are grouped together, 
(a) spanning one connected component, (b) spanning two connected components, and (c) spanning five connected components. Resulting 
submitted group jobs are represented as grey boxes.

3 Further considerations
3.1 Workflow composition
Upon development, data analyses are usually crafted with a  
particular aim in mind, for example being able to test a particu-
lar hypothesis, to find certain patterns in a given data type, etc. 
In particular with larger, long-running scientific projects, it can 
happen that data becomes increasingly multi-modal, encom-
passing multiple, orthogonal types that need completely dif-
ferent analyses. While a framework like Snakemake easily 
allows to develop a large integrative analyses over such diverse 
data types, such an analysis can also become very specific to a  
particular scientific project. When aiming for re-use of an  
analysis, it is often beneficial to keep it rather specific to some 
data type or not extend it beyond a common scope. Via the 
declaration of external workflows as modules, integration of 
such separately maintained workflows is well supported in  
Snakemake (Figure 7). By referring to a local or remote  
Snakefile (Figure 7, line 3–4) a workflow module can be 
declared, while configuration is passed as a Python dictionary  
object (line 5). The usage of all or specific rules from the 
workflow module can be declared (line 7), and properties of  
individual rules can be overwritten (e.g., params, input,  
output, line 9–11). This way, as many external workflows 
as needed can be composed into a new data analysis (line  
13–17). Optionally, in order to avoid name clashes, rules 
can be renamed with the as keyword (line 17), analogously 
to the Python import mechanism. Moreover, the external  
workflows can be easily extended with further rules that  
generate additional output (line 19–27).

This way, both the plain use as well as extension and modifica-
tion becomes immediately transparent from the source code.  
Often, data analyses extend beyond a template or production  
analysis that seemed appropriate at the beginning (at latest  
during the review of a publication). Hence, Snakemake’s  
workflow composition mechanism is also appropriate for the  
simple application of a published data analysis pipeline on new  
data. By declaring usage of the pipeline as a module as shown 

above, both the plain execution with custom configuration  
as well as an extension or modification becomes transparent.  
Moreover, when maintaining the applied analysis in a version  
controlled (e.g. git) repository, it does not need to host a copy 
of the source code of the original pipeline, just the customized  
configuration and any modifications.

3.2 Advanced workflow design patterns
Figure 8 shows advanced design patterns which are less com-
mon but useful in certain situations. For brevity, only rule  

snakemake --groups select_by_country=a
                   plot_histogram=a

snakemake --groups select_by_country=a
                   plot_histogram=a
          --group-components a=2

snakemake --groups select_by_country=a
                   plot_histogram=a
          --group-components a=5

a b c

1 configfile: "config.yaml"
2
3 module some_workflow:
4 snakefile: "https://github.com/some/raw/v1.0.0/Snakefile"
5 config: config["some"]
6
7 use rule * from some_workflow
8
9 use rule simulate_data from some_workflow with:
10 params:
11         some_threshold=1.e-7
12
13 module other_workflow:
14 snakefile: "https://github.com/other/raw/v1.0.0/Snakefile"
15 config: config["other"]
16
17 use rule * from other_workflow as other_*
18
19 rule some_plot:
20 input:
21         "results/tables/all.csv"
22 output:
23         "results/plots/all.svg"
24 conda:
25         "envs/stats.yaml"
26 notebook:
27         "notebooks/some-plot.py.ipynb"

Legend
declare module
use rules
modify rule
extend workflow
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Figure 8. Additional design patterns for Snakemake workflows. For brevity only rule properties that are necessary to understand 
each example are shown (e.g. omitting log directives and shell commands or script directives). (a) scatter/gather process, (b) streaming, (c) 
non-file parameters, (d) iteration, (e) sample sheet based configuration, (f) conditional execution, (g) benchmarking, (h) parameter space 
exploration. See subsection 3.2 for details.

1  pepfile: "pep/config.yaml"
2  pepschema: "schemas/pep.yaml"
3
4  rule all:
5 input:
6          expand(
7              "results/{sample}.someresult.txt", 
8              sample=pep.sample_table["sample_name"]
9          )

e
1  scattergather:
2      someprocess=8
3
4  rule scatter:
5 output:
6          scatter.someprocess("scattered/{scatteritem}.txt")
7
8  rule step2:
9 input:
10         "scattered/{scatteritem}.txt"
11 output:
12         "transformed/{scatteritem}.txt"
13
14 rule gather:
15 input:
16         gather.someprocess("transformed/{scatteritem}.txt")

a

1  rule step1:
2 output:
3          pipe("hello.txt")
4 shell:
5          "echo hello > {output}"
6
7  rule step2:
8 output:
9          pipe("world.txt")
10 shell:
11         "echo world > {output}"
12
13 rule step3:
14 input:
15         "hello.txt",
16         "world.txt"
17 output:
18         "hello-world.txt"
19 shell:
20         "cat {input} > {output}" 

b

1  rule step:
2 input:
3          "data/{sample}.txt"
4      output:
5          "results/{sample}.txt"
6 params:
7          threshold=lambda w: config["threshold"][w.sample]
8 shell:
9          "some-tool -x {params.threshold} {input} > {output}"

c
1 rule step:
2 input:
3         "data/{sample}.txt"
4     output:
5         "results/{sample}.txt"
6 benchmark:
7         "benchmarks/some-tool/{sample}.txt
8 shell:
9         "some-tool {input} > {output}"

g

1  def get_results(wildcards):
2 with checkpoints.qc.get().output[0].open() as f:
3          qc = pd.read_csv(f, sep="\t")
4 return expand(
5              "results/processed/{sample}.txt", 
6              sample=qc[qc["some-value"] > 90.0]["sample"]
7          )
8
9  rule all:
10 input:
11         get_results
12
13 checkpoint qc:
14 input:
15         expand("results/preprocessed/{sample}.txt", sample=samples)
16 output:
17         "results/qc.tsv"
18 shell:
19         "perfom-qc {input} > {output}"
20
21 rule process:
22 input:
23         "results/preprocessed/{sample}.txt"
24 output:
25       "results/processed/{sample}.txt"
26 shell:
27       "process {input} > {output}"

f

1 rule all:
2 input:
3          "data.10.transformed.txt"
4
5 def get_iteration_input(wildcards):
6      i = int(wildcards.i)
7 if i == 0:
8          return "data.txt"
9 else:
10         return f"data.{i-1}.transformed.txt"
11
12 rule iterate:
13 input:
14         get_iteration_input
15 output:
16         "data.{i}.transformed.txt"

d
1 from snakemake.utils import Paramspace
2 import pandas as pd
3
4  paramspace = Paramspace(pd.read_csv("params.tsv", sep="\t"))
5
6 rule all:
7 input:
8          expand(
9              "results/simulations/{params}.pdf",
10             params=paramspace.instance_patterns
11         )
12
13 rule simulate:
14 output:
15         f"results/simulations/{paramspace.wildcard_pattern}.tsv"
16 params:
17         simulation=paramspace.instance

h
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properties that are necessary to understand each example are shown  
(e.g. omitting log directives and shell commands or script  
directives). Below, we explain each example in detail.

Scatter/gather processes (Figure 8a). Snakemake’s abil-
ity to employ arbitrary Python code for defining a rule’s input  
and output files already enables any kind of scattering, gath-
ering, and aggregations in workflows. Nevertheless, it can be 
more readable and scalable to use Snakemake’s explicit support 
for scatter/gather processes. A Snakemake workflow can have 
any number of such processes, each of which has a name (here  
someprocess). In this example, the rule scatter (line 4) 
splits some data into n items; the rule step2 (line 8) is applied 
to each item; the rule gather (line 14) aggregates over the 
outputs of step2 for each item. Thereby, n is defined via the  
scattergather directive (line 1) at the beginning, which sets 
n for each scatter/gather process in the workflow. In addition, 
n can be set via the command line via the flag --set-scat-
ter. For example, here, we could set the number of scatter items 
to 16 by specifying --set-scatter someprocess=16.  
This enables the user to better scale the data analysis workflow 
to its computing platform, beyond the defaults provided by the  
workflow designer.

Streaming (Figure 8b). Snakemake allows to stream output 
between jobs, instead of writing it to disk (see subsubsection 2.5.4). 
Here, the output of rule step1 (line 1) and step2 (line 7)  
is streamed into rule step3 (line 13).

Non-file parameters (Figure 8c). Data analysis steps can 
need additional non-file input in the form of parameters, that 
are for example obtained from the workflow configuration (see  
subsection 2.1). Both input files and such non-file parameters 
can optionally be defined via a Python function, which is evalu-
ated for each job, when wildcard values are known. In this  
example, we define a lambda expression (an anonymous  
function in Python), that retrieves a threshold depending on the  
value of the wildcard sample (w.sample, line 7). Wildcard  
values are passed as the first positional argument to such  
functions (here w, line 7).

Iteration (Figure 8d). Sometimes, a certain step in a data 
analysis workflow needs to be applied iteratively. Snakemake  
allows to model defining by setting the iteration count vari-
able as a wildcard (here {i}, line 16). Then, an input function 
can be used to either request the output of the previous iteration  
(if i > 0, line 10) or the initial data (if i == 0, line 8). Finally, 
in the rule that requests the final iteration result, the wildcard  
{i} is set to the desired count (here 10, line 3).

Sample sheet based configuration (Figure 8e). Often,  
scientific experiments entail multiple samples, for which meta-
information is known (e.g. gender, tissue etc. in biomedicine). 
Portable encapsulated projects (PEPs, https://pep.databio.org)  
are an approach to standardize such information and pro-
vide them in a shareable format. Snakemake workflows can be 
directly integrated with PEPs, thereby allowing to configure them  
via meta-information that is contained in the sample sheets 

defined by the PEP. Here, a pepfile (line 1) along with a  
validation schema (line 2) is defined, followed by an aggregation 
over all samples defined in the contained sample sheet.

Conditional execution (Figure 8f). By default, Snakemake 
determines the entire DAG of jobs upfront, before the first job 
is executed. However, sometimes the analysis path that shall be 
taken depends on some intermediate results. For example, this 
is the case when filtering samples based on quality control cri-
teria. At the beginning of the data analysis, some quality con-
trol (QC) step is performed, which yields QC values for each  
sample. The actual analysis that shall happen afterwards might 
be only suitable for samples that pass the QC. Hence, one might 
have to filter out samples that do not pass the QC. Since the  
QC is an intermediate result of the same data analysis, it can 
be necessary to determine the part of the DAG that comes  
downstream of the QC only after QC has been finalized. Of 
course, one option is to separate QC and the actual analysis into 
two workflows, or defining a separate target rule for QC, such 
that it can be manually completed upfront, before the actual  
analysis is started. Alternatively, if QC shall happen auto-
matically as part of the whole workflow, one can make use of  
Snakemake’s conditional execution capabilities. In the example, 
we define that the qc rule shall be a so-called checkpoint. 
Rules can depend on such checkpoints by obtaining their  
output from a global checkpoints object (line 2), that is 
accessed inside of a function, which is passed to the input  
directive of the rule (line 11). This function is re-evaluated 
after the checkpoint has been executed (and its output files are 
present), thereby allowing to inspect the content of the check-
oint’s output files, and decide about the input files based on that.  
In this example, the checkpoint rule qc creates a TSV file, 
which the function loads, in order to extract only those samples 
for which the column "some-value" contains a value greater  
than 90 (line 6). Only for those samples, the file "results/
processed/{sample}.txt" is requested, which is then 
generated by applying the rule process for each of these  
samples.

Benchmarking (Figure 8g). Sometimes, a data analysis entails 
the benchmarking of certain tools in terms of runtime, CPU,  
and memory consumption. Snakemake directly supports 
such benchmarking by defining a benchmark directive in a 
rule (line 7). This directive takes a path to a TSV file. Upon  
execution of a job spawned from such a rule, Snakemake will 
constantly measure CPU and memory consumption, and store 
averaged results together with runtime information into the 
given TSV file. Benchmark files can be input to other rules, for  
example in order to generate plots or summary statistics.

Parameter space exploration (Figure 8h). In Python (and  
therefore also with Snakemake), large parameter spaces can be 
represented very well via Pandas38,39 data frames. When such 
a parameter space shall be explored by the application of a  
set of rules to each instance of the space (i.e., each row of the 
data frame), the idiomatic approach in Snakemake is to encode 
each data frame column as a wildcard and request all occur-
ing combinations of values (i.e., the data frame rows), by some  
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consuming rule. However, with large parameter spaces that have 
a lot of columns, the wildcard expressions could become cum-
bersome to write down explicitly in the Snakefile. Therefore, 
Snakemake provides a helper called Paramspace, which can  
wrap a Pandas data frame (this functionality was inspired by the 
JUDI workflow management system16 https://pyjudi.readthe-
docs.io). The helper allows to retrieve a wildcard pattern (via 
the property wildcard_pattern) that encodes each column  
of the data frame in the form name~{name} (i.e., column 
name followed by the wildcard/wildcard value). The wildcard 
pattern can be formatted into input or output file names of rules  
(line 15). The method instance of the Paramspace 
object, automatically returns the corresponding data frame 
row (as a Python dict) for given wildcard values (here, that 
method is automatically evaluated by Snakemake for each 
instance of the rule simulate, line 17). Finally, aggregation  
over a parameter space becomes possible via the property  
instance_patterns, which retrieves a concrete pattern  
of above form for each data frame row. Using the expand 
helper, these patterns can be formatted into a file path (line 8–11),  
thereby modelling an aggregation over the entire parameter 
space. Naturally, filtering rows or columns on the paramspace  
via the usual Pandas methods allows to generate sub-spaces. 

3.3 Readability
Statements in Snakemake workflow definitions fall into seven  
categories:

1.  a natural language word, followed by a colon  
(e.g. input: and output:),

2.  the word “rule”, followed by a name and a colon  
(e.g. rule convert_to_pdf:),

3.  a quoted filename pattern (e.g. "{prefix}.pdf"),

4.  a quoted shell command,

5.  a quoted wrapper identifier,

6.  a quoted container URL

7.  a Python statement.

Below, we list the rationale of our assessment for each category  
in Figure 3:

1.  The natural language word is either trivially under-
standable (e.g. input: and output:) or under-
standable with technical knowledge (container:  
or conda:). The colon straightforwardly shows that 
the content follows next. Only for the wrapper direc-
tive (wrapper:) one needs to have the Snakemake  
specific knowledge that it is possible to refer to  
publicly available tool wrappers.

2.  The word “rule” is trivially understandable, and 
when carefully choosing rule names, at most 
domain knowledge is needed for understanding such  
statements.

3.  Filename patterns can mostly be understood with 
domain knowledge, since the file extensions should 

tell the expert what kind of content will be used or 
created. We hypothesize that wildcard definitions  
(e.g. {country}) are straightforwardly understandable 
as a placeholder.

4.  Shell commands will usually need domain and  
technical knowledge for understanding.

5.  Wrapper identifiers can be understood with Snake-
make knowledge only, since one needs to know about 
the central tool wrapper repository of Snakemake.  
Nevertheless, with only domain knowledge one can at 
least conclude that the mentioned tool (last part of the 
wrapper ID) will be used in the wrapper.

6.  A container URL will usually be understandable with 
technical knowledge.

7.  Python statements will either need technical knowl-
edge or Snakemake knowledge (when using the  
Snakemake API, as it happens here with the expand 
command, which allows to aggregate over a  
combination of wildcard values).

3.4 Scheduling
While the first releases of Snakemake used a greedy sched-
uler, the current implementation aims at using more efficient  
schedules by solving a mixed integer linear program (MILP) 
whenever there are free resources. The current implementa-
tion already works well; still, future releases may consider  
additional objectives:

•  The current formulation leads to fast removal of exist-
ing temporary files. In addition, one may control crea-
tion of temporary files in the first place, such that  
only limited space is occupied by temporary files at  
any time point during workflow execution.

•  It may also be beneficial to initially identify bot-
tleneck jobs in the graph and prioritize them auto-
matically instead of relying on the workflow author to  
prioritize them.

Because we consider different objectives hierarchically and 
use large constants in the objective function, currently a high 
solver precision is needed. If more objectives are considered  
in the future, an alternative hierarchical formulation may be 
used: First find the optimal objective value for the first (or the 
first two) objectives; then solve another MILP that maximizes  
less important objectives and ensures via constraints that the 
optimality of the most important objective(s) is not violated,  
or stays within, say, 5% of the optimal value.

We also need to mention a technical detail about the inter-
action between the scheduler and streams (subsection 3.2).  
Some jobs that take part in handling a data stream may effec-
tively use zero cores (because they mostly wait for data and 
then only read or write data), i.e. they have u

c,j
 = 0 in the  

MILP notation, which means that they do not contribute to 
the objective function. We thus replace the MILP objective 

term that maximizes paralellization c,( )j jj J u x∈ ⋅∑  by the  
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modified term c,max{ , 1}j jj J u x∈ ⋅∑  to ensure that the weight  

of any x
j
 within the sum is at least 1.

3.5 Performance
When executing a data analysis workflow, running time and 
resource usage is dominated by the executed jobs and the per-
formance of the libraries and tools used in these. Nevertheless,  
Snakemake has to process dependencies between jobs, which 
can incur some startup time until the actual workflow is  
executed. In order to provide an estimate on the amount of time 
and memory needed for this computation, we took the example  
workflow from Figure 3 in the main manuscript and arti-
ficially inflated it by replicating the countries in the input  
dataset. By this, we generated workflows of 10 to 90,000 jobs.  
Then, we benchmarked runtime and memory usage of  
Snakemake for computing the entire graph of jobs on these on a 
single core of an Intel Core i5 CPU with 1.6 GHz, 8 GB RAM 
and a Lenovo PCIe SSD (LENSE20512GMSP34MEAT2TA)  
(Figure 9). It can be seen that both runtime and memory 
increase linearly, starting from 0.2 seconds with 2.88 MB for  
11 jobs and reaching 60 seconds with 1.1 GB for 90,000 jobs.

For future releases of Snakemake, we plan to further improve  
performance, for example by making use of PyPy (https://
www.pypy.org), and by caching dependency resolution results  
between subsequent invocations of Snakemake. 

4 Conclusion
While having been almost the holy grail of data analysis  
workflow management in recent years and being certainly of 
high importance, reproducibility alone is not enough to sustain 
the hours of work that scientists invest in crafting data analyses.  
Here, we outlined how the interplay of automation, scalabil-
ity, portability, readability, traceability, and documentation can 
help to reach beyond reproducibility, making data analyses 
adaptable and transparent. Adaptable data analyses can not  
only be repeated on the same data, but also be modified and 
extended for new questions or scenarios, thereby greatly increas-
ing their value for both the scientific community and the origi-
nal authors. While reproducibility is a necessary property for 
checking the validity of scientific results, it is not sufficient. 
Being able to reproduce exactly the same figure on a different  
machine tells us that the analysis is robust and valid from a 
technical perspective. However, it does not tell anything about 
the methodological validity (correctness of statistical assump-
tions, avoidance of overfitting, etc.). The latter can only be  
secured by having a transparent yet accessible view on the  
analysis code.

By analyzing its readability and presenting its modularization,  
portability, reporting, scheduling, caching, partitioning, and 
streaming abilities, we have shown how Snakemake supports all 
these aspects, thereby providing a comprehensive framework  
for sustainable data analysis, and enabling an ergonomic, unified, 

Figure 9. Runtime and memory usage of Snakemake while building the graph of jobs depending on the number of jobs in 
the workflow. The Snakemake workflow generating the results along with a self-contained Snakemake report that connects results and 
provenance information is available at https://doi.org/10.5281/zenodo.4244143.

20,000
60,000

100,000

jobs

0

10

20

30

40

50

60

se
co

nd
s

20,000
60,000

100,000

jobs

0

200

400

600

800

1,000

1,200

m
em

or
y 

[M
B]

Page 16 of 28

F1000Research 2021, 10:33 Last updated: 11 MAY 2021

https://www.pypy.org
https://www.pypy.org
https://doi.org/10.5281/zenodo.4244143


combined representation of any kind of analysis step, from raw 
data processing, to quality control and fine-grained, interactive  
exploration and plotting of final results.

Software availability
Snakemake is available as MIT licensed open source software 
(homepage: https://snakemake.github.io, repository: https://
github.com/snakemake/snakemake) and can be installed via  
Bioconda40. 

Data availability 
The Snakemake workflow generating the results presented in 
this work, along with the corresponding Snakemake report 
connecting results and provenance information is available at  
https://doi.org/10.5281/zenodo.424414328.

Data are available under the terms of the Creative Commons  
Attribution 4.0 International license (CC-BY 4.0).
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Response 2 
"Indeed, we agree that our initial example was lacking parameter definitions via the params directive, 
which are indeed quite ubiquitous in practice. We have extended our example accordingly." 
 
While the params directive is now included in the new example in Figure 7, it is still mentioned as 
one of the design patterns that are less common in section 3.2. I would suggest reordering the 
design patterns in 3.2 to first mention the params directive and then the others and change the 
wording "...advanced design patterns which are less common but useful in certain situations" to 
"...advanced design patterns. Some of these are less common but useful in certain situations." 
 
My other comments were satisfactorily addressed.
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© 2021 Friedel C. This is an open access peer review report distributed under the terms of the Creative Commons 
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the 
original work is properly cited.

Caroline C. Friedel   
Institute of Informatics, LMU Munich, Munich, Germany 

The authors present an updated version of their workflow management system snakemake. Here, 
the authors focus on particular aspects important for sustainable data analysis, in particular 
automation, readability, portability, documentation and scalability. This is followed by a section on 
"further consideration", which presents specific workflow patterns, more details on their 
readability analysis, some more details on scheduling as well as a performance analysis. Apart 
from the performance analysis at the end, these "further considerations" aspects would be more 
appropriate earlier in the manuscript. In particular, the scheduling considerations (3.3) would be 
more appropriate in the section on scalability (2.5), where scheduling is extensively described. The 
readability considerations (3.2) would be more appropriate in the readability section earlier (2.2), 
in particular as the latter refers extensively to these considerations. The current structure 
ironically reduces readability of the article. 
 
The advanced workflow design patterns are more difficult to place, but would be more 
appropriate somewhere before readability as they are not quite as easy to read as the simple 
example at the beginning and their readability should be discussed. While the authors state that 
they are "less common but useful in certain situations", I would argue that some of them, in 
particular "Non-file parameters" (Fig. 7c) should be commonly used. Most bioinformatics tools one 
would want to use in a workflow, have multiple non-file parameters where one would not 
necessarily use the default values (if there even are defaults). 
 
Apart from these issues, the authors present their case well on what they consider to be important 
for sustainable data analysis and show that snakemake is both well maintained, and commonly 
used, not only in the bioinformatics community. The section on job scheduling is very extensive, 
but I am also missing some details on how snakemake interacts with cluster scheduling software 
like SLURM etc. The question remains whether that complex mixed integer linear program for 
scheduling is still relevant or necessary if jobs will be submitted to a cluster with an own load-
balancing software anyway. Another point that should be addressed is how or if different 
computing environments could be combined, e.g. if one has both a high-memory machine 
available for memory-intensive jobs and a separate computing cluster. Would one have to either 
run all jobs in the same environment or separate the workflow into two workflows that are run 
separately? 
 
The main issue I have with the manuscript is that the authors overstate the readability of 
snakemake workflows. Readability is extensively discussed on a very simply workflow even with a 
sort of quantification of the readability of the workflow. However, this workflow would also be 
pretty easy to read as a simple bash script, so I do not think this is an appropriate example to 
show how readable snakemake workflows are. Furthermore, several of the lines they consider 
"trivial", in my opinion, still require some understanding of snakemake, make or programming. I 
have previously worked with snakemake, though not recently, and in my experience the rule 
structure is not easy to mentally parse if one is not familiar with it. Moreover, even if every single 
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line were trivial the whole workflow could still be difficult to understand due to the dependencies 
which are implicitly created through use of common in- or output files. This can very easily lead to 
a very complex structure, in particular since the order in which rules are given does not have to be 
in order of their dependencies. Their argument is also somewhat contradicted by the advanced 
workflow design patterns presented later, which are not that easy to read even with the 
explanation. 
 
I think the article would benefit if instead of trying to quantify the readability of the simple 
workflow, the authors would focus more on the approaches they included in snakemake for 
improving readability of workflows, i.e. modularization and standardized code linting and 
formatting. In particular, I would be interested in hearing more details on the snakefmt tool and 
the recommended best practices.
 
Is the rationale for developing the new method (or application) clearly explained?
Yes

Is the description of the method technically sound?
Yes

Are sufficient details provided to allow replication of the method development and its use 
by others?
Yes

If any results are presented, are all the source data underlying the results available to 
ensure full reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the 
findings presented in the article?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Bioinformatics

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Author Response 08 Apr 2021
Johannes Köster, University Hospital Essen, University of Duisburg-Essen, Essen, Germany 

Thanks a lot for the comprehensive assessment of the manuscript. This was very helpful 
and we are confident that your suggestions have significantly improved the article. Answers 
to individual comments can be found below. 
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Comment 1 
Here, the authors focus on particular aspects important for sustainable data analysis, in 
particular automation, readability, portability, documentation and scalability. This is 
followed by a section on "further consideration", which presents specific workflow patterns, 
more details on their readability analysis, some more details on scheduling as well as a 
performance analysis. Apart from the performance analysis at the end, these "further 
considerations" aspects would be more appropriate earlier in the manuscript. In particular, 
the scheduling considerations (3.3) would be more appropriate in the section on scalability 
(2.5), where scheduling is extensively described. The readability considerations (3.2) would 
be more appropriate in the readability section earlier (2.2), in particular as the latter refers 
extensively to these considerations. The current structure ironically reduces readability of 
the article. 
 
Response 1 
Thanks a lot for this suggestion. We had indeed moved around these sections several times 
before submission. In the end, we thought the current structure is best at addressing a 
potentially diverse readership (technical and non-technical, seeking for a quick overview or 
for in-depth details, experienced users and beginners) with section 2 providing a 
comprehensive overview and section 3 showing additional details for particularly interested 
readers. 
We have added an explanation of the concept to the end of the introduction, and hope that 
this clarifies the intention and hopefully diminishes the negative effects of the split. 
 
Comment 2 
The advanced workflow design patterns are more difficult to place, but would be more 
appropriate somewhere before readability as they are not quite as easy to read as the 
simple example at the beginning and their readability should be discussed. While the 
authors state that they are "less common but useful in certain situations", I would argue 
that some of them, in particular "Non-file parameters" (Fig. 7c) should be commonly used. 
Most bioinformatics tools one would want to use in a workflow, have multiple non-file 
parameters where one would not necessarily use the default values (if there even are 
defaults). 
 
Response 2 
Thanks a lot for these important thoughts. Indeed, we agree that our initial example was 
lacking parameter definitions via the params directive, which are indeed quite ubiquitous in 
practice. We have extended our example accordingly. 
 
Comment 3 
Apart from these issues, the authors present their case well on what they consider to be 
important for sustainable data analysis and show that snakemake is both well maintained, 
and commonly used, not only in the bioinformatics community. The section on job 
scheduling is very extensive, but I am also missing some details on how snakemake 
interacts with cluster scheduling software like SLURM etc. The question remains whether 
that complex mixed integer linear program for scheduling is still relevant or necessary if 
jobs will be submitted to a cluster with an own load-balancing software anyway.  
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Response 3 
Indeed, the scheduling problem description was lacking an explanation about what 
happens in a cluster/cloud setting. We have extended the text accordingly. In brief: resource 
requirements are passed to the cluster/cloud middleware, but the scheduling problem still 
has to be solved in order to prioritze jobs and minimize the lifetime of temporary files. It 
becomes a bit less constrained though. 
 
Comment 4 
Another point that should be addressed is how or if different computing environments 
could be combined, e.g. if one has both a high-memory machine available for memory-
intensive jobs and a separate computing cluster. Would one have to either run all jobs in the 
same environment or separate the workflow into two workflows that are run separately? 
 
Response 4 
This is indeed a very good point. For addressing execution on multiple machines, 
Snakemake entirely relies on cluster or cloud middleware. By specifying resource 
requirements per rule (or dynamically per job), which are passed to the middleware, it is of 
course possible to run different jobs on different types of machines. What is currently not 
possible is to combine different execution backends like two different cluster systems or a 
cluster and a local high memory machine. We have updated the text accordingly. 
 
Comment 5 
The main issue I have with the manuscript is that the authors overstate the readability of 
snakemake workflows. Readability is extensively discussed on a very simply workflow even 
with a sort of quantification of the readability of the workflow. However, this workflow 
would also be pretty easy to read as a simple bash script, so I do not think this is an 
appropriate example to show how readable snakemake workflows are. Furthermore, 
several of the lines they consider "trivial", in my opinion, still require some understanding of 
snakemake, make or programming. I have previously worked with snakemake, though not 
recently, and in my experience the rule structure is not easy to mentally parse if one is not 
familiar with it. Moreover, even if every single line were trivial the whole workflow could still 
be difficult to understand due to the dependencies which are implicitly created through use 
of common in- or output files. This can very easily lead to a very complex structure, in 
particular since the order in which rules are given does not have to be in order of their 
dependencies. Their argument is also somewhat contradicted by the advanced workflow 
design patterns presented later, which are not that easy to read even with the explanation. 
I think the article would benefit if instead of trying to quantify the readability of the simple 
workflow, the authors would focus more on the approaches they included in snakemake for 
improving readability of workflows, i.e. modularization and standardized code linting and 
formatting. In particular, I would be interested in hearing more details on the snakefmt tool 
and the recommended best practices. 
 
Response 5 
This is indeed a valid point, thanks a lot for bringing it up. We have rewritten the readability 
section to better reflect that the presented example shows an ideal, quite simple situation, 
that might be impossible to reach for parts of workflows in practice (but nevertheless 
should be aimed for). We have added advice on how to use modularization to help the 
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reader of a workflow in such cases. 
 
We still think that the example is appropriate (in combination with the mentioned changes 
in the text).  
 
While it is indeed simple, a bash script that would contain all the work that Snakemake is 
doing behind the scenes (checking file consistency, scheduling, various execution backends, 
parallelization, software stack deployment, etc.) would be much longer and less readable. 
We have also checked the triviality claims in all lines again (the numbers did change 
slightly). Of course, we'd be grateful to discuss or directly modify specific examples where 
you might still disagree with our judgement after the fixes. 
 
We agree that the dependency structure can be sometimes complicated and we have 
therefore added some sentences that clarify this. Here, it is important to mention 
Snakemake's ability to visualize dependencies and to automatically generate interactive 
reports. Since the latter are of particular value for peeking into the codebase without 
needing to understand the entire workflow, we have further extended the corresponding 
section (2.4). 
We are thankful for the suggestion to elaborate on other measures for improving 
readability and have therefore extended our section on the linter and formatter (Section 
2.2.2). Further, we have added some additional sentences about modularization and how to 
use it best for ensuring readability (Section 2.2.1).  

Competing Interests: No competing interests were disclosed.
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https://doi.org/10.5256/f1000research.32078.r77869
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Michael Reich   
Department of Medicine, University of California, San Diego, San Diego, CA, USA 

The authors describe Snakemake, a text-based pipeline execution system that builds on the 
principles of the Unix 'make' utility to include optimized job scheduling, extensive specification of 
compute resources, advanced workflow features, integration with package managers and 
container technologies, and result caching. The authors identify where Snakemake exists within 
the large ecosystem of pipeline management systems and describe the motivating principles of 
Snakemake in terms of a hierarchy of sustainable data analysis that includes reproducibility, 
accessibility, transparency, and other objectives. They then walk through several examples 
illustrating the scope and use of the system. This paper updates and extends the original 
Snakemake publication of Köster et al., Bioinformatics 20121. The value of Snakemake to the field 
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of bioinformatics is well-established, and the paper provides usage statistics and citations to 
reinforce this point. 
 
The paper thoroughly describes the features of Snakemake and the necessary background to 
understand their use. While it is possible to understand a Snakemake workflow at a high level with 
little programming knowledge, experience with Unix, Python, and an understanding of how 'make' 
works are necessary to author Snakemake workflows. The authors balance the conceptual 
overview with well-chosen usage examples that are simple enough to understand and make clear 
how the example can generalize to other cases. They also describe in detail the job scheduling 
algorithm that snakemake uses. The paper would benefit from a brief discussion of how 
snakemake interacts with load-balancing software (such as SLURM, Torque, LSF, etc.), because of 
the focus on the details of executing jobs. This information is in the documentation on the 
Snakemake web site, but a conceptual overview in the paper would help the reader to understand 
this relationship. 
 
Information necessary to install and use snakemake is available on the snakemake web site as 
referenced in the paper. The instructions and tutorial are comprehensive and understandable, and 
the progressive exercises give a good feel for the snakemake paradigm. Given the ease and 
popularity of container technology, it would be useful to include how to run snakemake from a 
Docker container in the tutorial. I was able to do this easily from the official snakemake container 
on Dockerhub and think it would be a helpful alternative in the documentation to installing 
Miniconda. 
 
In general, this paper provides a comprehensive introduction and overview of Snakemake and 
serves as an effective entry point to this popular system. 
 
References 
1. Köster J, Rahmann S: Snakemake--a scalable bioinformatics workflow engine.Bioinformatics. 
2012; 28 (19): 2520-2 PubMed Abstract | Publisher Full Text  
 
Is the rationale for developing the new method (or application) clearly explained?
Yes

Is the description of the method technically sound?
Yes

Are sufficient details provided to allow replication of the method development and its use 
by others?
Yes

If any results are presented, are all the source data underlying the results available to 
ensure full reproducibility?
No source data required

Are the conclusions about the method and its performance adequately supported by the 
findings presented in the article?
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Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Bioinformatics; reproducible research; workflow systems; open science

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard.

Author Response 08 Apr 2021
Johannes Köster, University Hospital Essen, University of Duisburg-Essen, Essen, Germany 

Thanks a lot for the assessment of our manuscript. Your comments have led to several 
important improvements. Answers to individual comments can be found below. 
 
Comment 1 
The paper would benefit from a brief discussion of how snakemake interacts with load-
balancing software (such as SLURM, Torque, LSF, etc.), because of the focus on the details of 
executing jobs. This information is in the documentation on the Snakemake web site, but a 
conceptual overview in the paper would help the reader to understand this relationship. 
 
Response 1 
Indeed, the paper failed to explicitly mention how this is handled. We have now added an 
explaining paragraph to section 2.5.1. In brief: resource requirements are passed to the 
middleware, but the scheduling problem still has to be solved in order to prioritze jobs and 
minimize the lifetime of temporary files. It becomes a bit less constrained though. 
 
Comment 2 
Information necessary to install and use snakemake is available on the snakemake web site 
as referenced in the paper. The instructions and tutorial are comprehensive and 
understandable, and the progressive exercises give a good feel for the snakemake 
paradigm. Given the ease and popularity of container technology, it would be useful to 
include how to run snakemake from a Docker container in the tutorial. I was able to do this 
easily from the official snakemake container on Dockerhub and think it would be a helpful 
alternative in the documentation to installing Miniconda. 
 
Response 2 
Offering further ways of performing the tutorial is indeed a good idea. We have considered 
providing instructions for performing the tutorial from a container, but felt that this would 
complicate editing and interaction too much. However, we now instead provide a Gitpod 
setup for the tutorial, which allows to directly run it, without any setup needed, from inside 
a browser window which offers both an editor and a terminal based on the Eclipse Theia IDE 
(see here). 
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Comments on this article
Version 1

Author Response 26 Feb 2021
Johannes Köster, University Hospital Essen, University of Duisburg-Essen, Essen, Germany 

Thanks for the comment, Soumitra. We will make sure to fix the reference in the next version of the 
paper, after all reviews have been received. 
 
Regarding composition, this is now very easy via the new module system of Snakemake, which will 
also be described in the next version of this paper.

Competing Interests: No competing interests were disclosed.

Reader Comment 30 Jan 2021
Soumitra Pal, NCBI/NIH, Bethesda, MD, USA 

One of the most useful features of Nextflow, another workflow manager like Snakemake, is to 
provide dynamic composition of two or more workflows into a new workflow using what the 
Nextflow developers call DSL 2.0. While I anticipate that such a useful feature can be implemented 
in Snakemake using wrappers (Section 2.2.1), an explicit mention which enough details contrasting 
the two approaches would be very useful to the readers as well as the workflow builders using 
Snakemake.

Competing Interests: No competing interests were disclosed.

Reader Comment 18 Jan 2021
Soumitra Pal, NCBI/NIH/USA, USA 

Please note that JUDI can be cited using this paper in Bioinformatics. 
https://doi.org/10.1093/bioinformatics/btz956
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