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Abstract 
 

Background and Objectives: Excessive Manganese (Mn) exposure is neurotoxic and 
can cause Mn-Induced Parkinsonism (MnIP), marked by cognitive and motor dysfunction. 
Although metabolomic and lipidomic research in Parkinsonism (PD) patients exists, it 
remains limited. This study hypothesizes distinct metabolomic and lipidomic profiles 
based on exposure status, disease diagnosis, and their interaction. 
 
Methods: We used a case-control design with a 2x2 factorial framework to investigate 
the metabolomic and lipidomic alterations associated with Mn exposure and their link to 
PD. The study population of 97 individuals was divided into four groups: non-exposed 
controls (n=23), exposed controls (n=25), non-exposed with PD (n=26) and exposed with 
PD (n=23). Cases, defined by at least two cardinal PD features (excluding vascular, 
iatrogenic, and traumatic origins), were recruited from movement disorder clinics in four 
hospitals in Brescia, Northern Italy. Controls, free from neurological or psychiatric 
conditions, were selected from the same hospitals. Exposed subjects resided in 
metallurgic regions (Val Camonica and Bagnolo Mella) for at least 8 continuous years, 
while non-exposed subjects lived in low-exposure areas around Lake Garda and Brescia 
city. We conducted untargeted analyses of metabolites and lipids in whole blood samples 
using ultra-high-performance liquid chromatography (UHPLC) and mass spectrometry 
(MS), followed by statistical analyses including Principal Component Analysis (PCA), 
Partial Least Squares–Discriminant Analysis (PLS-DA), and Two-Way Analysis of 
Covariance (ANCOVA).  
 
Results: Metabolomic analysis revealed modulation of alanine, aspartate, and glutamate 
metabolism (Impact=0.05, p=0.001) associated with disease effect; butanoate 
metabolism (Impact=0.03, p=0.004) with the exposure effect; and vitamin B6 metabolism 
(Impact=0.08, p=0.03) with the interaction effect. Differential relative abundances in 3-
sulfoxy-L-Tyrosine (β=1.12, FDR p<0.001), glycocholic acid (β=0.48, FDR p=0.03), and 
palmitelaidic acid (β=0.30, FDR p<0.001) were linked to disease, exposure, and 
interaction effects, respectively. In the lipidome, ferroptosis (Pathway Lipids=11, FDR 
p=0.03) associated with the disease effect and sphingolipid signaling (Pathway Lipids=9, 
FDR p=0.04) associated with the interaction effect were significantly altered. Lipid classes 
triacylglycerols, ceramides, and phosphatidylethanolamines showed differential relative 
abundances associated with disease, exposure, and interaction effects, respectively. 
 
Discussion: These findings suggest that PD and Mn exposure induce unique 
metabolomic and lipidomic changes, potentially serving as biomarkers for MnIP and 
warranting further study. 
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1. INTRODUCTION 

In the modern era, characterized by unprecedented industrialization and urban 

development, the concept of the exposome has emerged as a pivotal framework for 

understanding the cumulative impact of occupational and environmental exposures on 

human health [1]. By highlighting the importance of cumulative lifelong exposure, the 

exposome framework recognizes concomitant factors negatively impacting health 

outcomes later in life [1]. This perspective has prompted a comprehensive re-evaluation 

of environmental toxicant mixtures and their additive roles in neurotoxicity development. 

Among many environmental toxicants, manganese (Mn) has garnered attention [2]. Mn, 

recognized as an eminent public health concern due to its extensive industrial use and 

potential for environmental spread, was recently found at unsafe levels in 106 out of 5,034 

public water systems (2.1%) in a 2021 Environmental Protection Agency (EPA) survey of 

North America [3]. In addition, approximately 650 water systems (13%) failed to meet the 

EPA's aesthetic standards for taste and appearance, which set a limit of 50 micrograms 

per liter[3]. These numbers could increase as advancements in steel production and the 

automotive industry's shift toward electric vehicles (EVs) drive up demand. Moreover, it 

should be noted that the EPA's recommended safety limit is more than twice the levels 

recommended by national health agencies in Canada (Health Canada and National 

Institute of Public Health of Quebec (INSPQ)), the World Health Organization, and the 

European Union [3]. These factors underscore the urgent need for stricter regulatory 

standards and increased monitoring to mitigate the rising risks associated with Mn 

exposure [4-6]. 
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The neurotoxic potential of Mn is well-documented in the literature, consistently linking 

Mn exposure to neurotoxicity and subsequent adverse cognitive and motor health 

outcomes [7-9]. In alignment with experimental studies, epidemiological studies have 

demonstrated that communities exposed to chronically elevated levels of Mn exhibit 

increased risk of Parkinsonian disorders (PDs) [10-12]. These findings underscore Mn's 

role as an exogenous trigger for Parkinsonism (PD), particularly in regions with intensive 

ferroalloy production where cases of manganism have been reported [13]. In response, 

efforts to identify biomarkers of Mn exposure and effects have commenced, focusing on 

biofluids and imaging modalities such as magnetic resonance imaging (MRI) [14-16]. 

However, the search for reliable, reproducible, and easily accessible biomarkers for Mn 

exposure remains largely unmet. Metabolomics, as an alternative to traditional 

biomonitoring, is gaining prominence in research literature [17]. In combination with 

machine learning, metabolomics shows promise for identifying biomarkers of Mn 

exposure and elucidating the pathways through which Mn exerts toxicity [18-20]. Given 

the lack of support for many traditional biomarkers, such as Mn levels in blood, plasma, 

or urine, further exploration of metabolomics is warranted. 

Brescia, Italy, a city with historical high industrial activity—especially within the steel 

and ferroalloy sector—provides a rare opportunity for studying the association between 

Mn exposure and neurotoxic outcomes. Previous investigations in this region found a 

higher prevalence of PD among municipalities closer to ferromanganese plants 

(492/100,000) compared to other province municipalities (321/100,000) [21]. Additionally, 

a significant association has been found between Bayesian Standardized Morbidity 
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Ratios (SMRs) for PD and dust Mn concentrations [21]. These findings, along with the 

identification of genetic risk factors linking disruption in Mn intracellular homeostasis to 

PD, lay the foundation for our study [21]. Building upon this previous work, our study aims 

to elucidate the metabolomic and lipidomic alterations associated with lifetime Mn 

exposure and PD. We leverage ultra high-performance liquid chromatography-mass 

spectrometry (UHPLC-MS) as a research tool to elucidate novel biomarkers of Mn's 

neurotoxic effects. We hypothesize that elevated Mn exposure, particularly in historically 

active industrial regions of Brescia, is associated with distinct changes in metabolomic 

and lipidomic profiles. The primary outcome of our investigation is the identification of 

abnormal metabolomic and lipidomic biological processes associated with exposure 

and/or PD. Our approach not only attempts to bridge the gap in the current understanding 

of Mn-induced neurotoxicity but also seeks to identify aberrant biological mechanisms 

that could be targeted with innovative therapeutic and public health interventions.  

2. MATERIALS AND METHODS 

Study Population  

The selection methodology for study participants has been described previously 

[21]. This study included 97 subjects divided into two groups: 48 exposed subjects (23 

cases and 25 controls) and 49 non-exposed subjects (26 cases and 23 controls). 

Exposed subjects were selected based on having lived outside Brescia (Val Camonica 

and Bagnolo Mella) for no more than 8 continuous years, considering the half-life of 

manganese (Mn) in bone [22, 23]. Non-exposed subjects were selected from Lake Garda 

and Brescia city, non-industrial reference areas within the same province. Exposure levels 
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were determined using GIS to assess proximity to ferromanganese plants, including Mn 

concentrations in soil, airborne particles, and deposited dust [24]. All subjects underwent 

fasting whole blood sampling (0.2 ml/sample) at final enrollment. Demographic and 

lifestyle data, along with clinical diagnosis, treatment, and age at onset for cases, were 

collected via questionnaires. More detailed study population information can be found in 

the supplemental material. 

Sample Preparation  

Whole blood samples were collected and stored at -80˚C by the University of 

Brescia (UniBS). Following participant consent, Material Transfer and Data Use 

Agreements compliant with European General Data Protection Regulations, and IRB 

approval, samples were shared with the FIU Stempel College in 2023. Sample 

preparation for metabolomics and lipidomics followed previously described 

methodologies [25-29]. For metabolomics, whole blood samples were thawed at 4°C and 

50 µL aliquots were mixed with methanol containing internal standards, incubated at -20C 

for 20 min, centrifuged, and the supernatant dried and reconstituted for analysis. For 

lipidomics, blood samples were mixed with PBS, internal standards in methanol, and 

MTBE, incubated at -20C for 20 min, centrifuged for phase separation, dried, and 

reconstituted for analysis. More detailed sample preparation information can be found in 

the supplemental material. 

Untargeted Metabolomic and Lipidomic Data Acquisition 

Mass spectrometry experiments were conducted using a Thermo UPLC-Exploris 

240 Orbitrap MS (Waltham, MA), with dual injections for both positive and negative 
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ionization modes, and a 1 μL injection volume as described previously [25-29]. Briefly, 

Metabolomics employed a Waters XBridge BEH Amide column, and lipidomics used a 

Waters XSelect HSS T3 column, both with specified mobile phases and flow rates. Peak 

identification involved in-house standards and database searches (HMDB, mzCloud, 

Metabolika, ChemSpider), with data extraction requiring a minimum absolute intensity of 

1,000 and mass accuracy within 5 ppm. Metabolomics data processing used Thermo 

Compound Discoverer 3.3, while lipidomics used Thermo LipidSearch 4.2 software. More 

detailed untargeted metabolomic and lipidomic data acquisition information can be found 

in the supplemental material. 

Statistical Analysis 

Descriptive statistics were reported for all covariates, including age, sex, coffee 

and alcohol consumption, smoking status, and comorbidities. Chi-square tests and t-tests 

compared groups, while Spearman's rank correlation analyzed relationships between 

variables. Metabolomic data analysis included log10-transformation for normalization, 

Principal Component Analysis (PCA) and Partial Least Squares-Discriminate Analysis 

(PLS-DA) for exploratory analysis, Permutation Multivariate Analysis of Variance 

(PERMANOVA) for model evaluation, and Two-Way Analysis of Covariance (ANCOVA) 

for discerning metabolomic alterations, with False Discovery Rate (FDR) adjustments for 

p-values. Overrepresentation pathway analysis and metabolite set enrichment analyses 

were conducted using KEGG and RaMP-DB pathways as suggested by previous reports 

[30, 31]. Lipidomic data analysis followed similar methods, with biological relevance 

assessed using LIPEA (https://hyperlipea.org/home) and the KEGG Database, employing 
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Fisher's exact test and FDR adjustments. Statistical analyses and visualizations were 

performed using RStudio (Version 2023.09.1+494), MetaboAnalyst (Version 6), and 

Jupyter Notebooks (Version 6.5.4) accessed through Anaconda. A more detailed 

statistical analysis plan can be found in the supplemental material. 

Standard Protocol Approvals, Registrations, and Patient Consents 

The research plan and consent process received approval from the Ethical 

Committee of the Civil Hospital in Brescia, Italy. Every participant provided informed 

consent after receiving both written and oral explanations regarding the study's objectives 

and methods. In addition, Institutional Review Board (IRB) approval was obtained through 

the Office of Research Integrity (ORI) at the Florida International University. The ORI is 

responsible for the ethical and regulatory oversight of research at Florida International 

University that involves human subjects. ORI supports and oversees the work of the 

IRB’s.  

Data Availability 

Data not provided in the article because of space limitations may be shared 

(anonymized) at the request of any qualified investigator for purposes of replicating 

procedures and results. 

3. RESULTS 

Demographic and Lifestyle Characteristics of the Study Population 

Table 1 compares the characteristics of the study population across two main 

groups: PD and Controls, each further divided into Exposed and Non-Exposed 

categories. The Control group included 48 participants (52.1% exposed, 47.9% non-
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exposed), and the PD group had 49 participants (46.9% exposed, 53.1% non-exposed). 

Mean ages ranged from 66.4 to 72.4 years, with no significant differences between 

groups. Males constituted 56.5% to 80.7% of participants, with no significant sex 

distribution differences. Coffee consumption, alcohol consumption, smoking status, and 

comorbidities also showed no significant differences, suggesting no association with PD 

in this population. Geographically, non-exposed participants were from Brescia City and 

Garda Lake, while exposed participants were predominantly from Valcamonica, with a 

smaller number from Bagnolo Mella, underscoring a clear distinction between non-

exposed and exposed groups. It should be noted that a disproportionate number of 

participants lived in Valcamonica across both Control and PD groups. Detailed data are 

available in (Supplementary Table 1 – ST1). 

Metabolomics 

Analysis of Covariance (ANCOVA) and Metabolite Associations with Disease Effect 

Following exploratory analysis, ANCOVA identified 156 metabolites significantly 

associated with the disease, reduced to 99 after FDR correction (Supplementary Figure 

6 – SF6). This indicates that even after stringent statistical correction, many metabolites 

display changes that are potentially characteristic of the disease state. The volcano plot 

(Figure 1A) contrasts the significance of observed changes in relative abundance 

(indicated by p < 0.05) with their effect size (represented by beta coefficients), for the 

disease effect. Notably, metabolites such as “dimethyl sulfoxide” (β=-1.31, FDR p<0.001), 

“sulbactam” (β=1.61, FDR p<0.001), and “dopamine 3-O-sulfate” (β=1.15, FDR p<0.001) 

exhibited high statistical significance, suggesting a strong association with the disease. 
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The labeled metabolites were limited to only the top 25 metabolites statistically significant 

after FDR adjustment for legible reporting (a table with the full list of metabolites is in 

Supplementary Table 2 – ST2).  The bar chart (Figure 1B) represents the top 25 

metabolites associated with the disease hierarchically ranked by their 𝑛!" values. Again, 

“sulbactam” (𝑛!"   = 0.70), “dimethyl sulfoxide” (𝑛!"= 0.68), and “dopamine 3-O-sulfate” (𝑛!"   

= 0.61) demonstrate the largest magnitude of effect associated with disease (a table with 

the full list of 𝑛!" values can be found in ST2). The pathway analysis bubble plot 

(Supplementary Figure 8 – SF8) employs a bubble plot visualization to evaluate the 

significance and impact of metabolic pathways associated with the disease effect. 

Notably, “alanine, aspartate and glutamate metabolism” (Impact=0.05, p=0.001), the 

“citrate cycle (TCA cycle)” (Impact=0.15, p=0.01), “glyoxylate and dicarboxylate 

metabolism,” (Impact=0.31, p=0.03), and “arginine and proline metabolism” 

(Impact=0.02, p=0.03) exhibited statistically significant association with the disease effect 

(a table with the full list of pathways can be found in Supplementary Table 3 – ST3).  (SF8) 

also presents a bubble plot that depicts the results of the MSEA using the RaMP-DB 

pathway library. The bubble plot highlights enriched pathways related to amino acid 

metabolism, such as “Alanine, aspartate and glutamate metabolism” (Expect=0.352, 

p=0.006) and energy production, such as “Citric acid cycle and respiratory electron 

transport” (Expect=0.255, p=0.002) (a table with the full list of MSEA pathways can be 

found in Supplementary Table 4 – ST4). These biological processes, markedly implicated 

in the main effect of disease, may contribute to the etiology and pathogenesis of PD, 

representing critical areas for potential further study  
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ANCOVA and Metabolite Associations with Exposure Effect 

We identified 29 statistically significant metabolites related to exposure after FDR 

correction (SF6). As demonstrated in the volcano plot (Figure 2A), “dimethyl sulfoxide” 

(β=-0.91, FDR p<0.001), “D-(-)-Mannitol” (β=0.64, FDR p<0.001), and “L-Iditol” (β=0.86, 

FDR p<0.001), emerged as notable metabolites with a substantial association with the 

exposure effect. Additionally, “L-Histidinol phosphate” (β=0.59, FDR p=0.002), “lyngbic 

acid” (β=-0.24, FDR p=0.002), and “citric acid” (β=0.51, FDR p=0.003), demonstrated a 

substantial statistical significance suggesting a marked association with exposure. 

(Supplementary Figure 9 - SF9) illustrates the top 25 metabolites ranked by their 𝑛!" 

values, illustrating magnitude of effect of exposure on each metabolite. “Dimethyl 

sulfoxide” (𝑛!"  = 0.39), “tetrahomomethionine” (𝑛!"  = 0.22), and “lafutidine” (𝑛!"  = 0.22) 

exhibit higher 𝑛!" 	  values, suggesting the strongest effect of exposure on their relative 

abundance. The pathway analysis bubble plot (Figure 2B) reveled “alanine, aspartate and 

glutamate metabolism” (Impact=0.2, p<0.001), “butanoate metabolism” (Impact=0.03, 

p=0.004), and “glyoxylate and dicarboxylate metabolism” (Impact=0.03, p=0.01) as 

statistically significant, indicating the largest effect of exposure on these pathways. (SF9) 

also represents the top 25 metabolite sets enriched due to exposure, as determined by 

MSEA. The results of the enrichment analysis revealed several metabolites sets with 

significant alterations related to transmembrane transporters. “SLC-mediated 

transmembrane transport” (Expect=0.326, p=0.003), “transport of small molecules” 

(Expect=0.437, p=0.007), and “sodium-coupled sulphate, di- and tri-carboxylate 

transporters” (Expect=0.00841, p=0.008) showed higher levels of enrichment, indicating 
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a significant perturbation in these metabolite sets due to exposure. Note, biological 

relevance should be interpreted with caution as no pathway or enriched set achieved 

statistical significance after FDR correction. All corresponding primary exposure effect 

data can be found in (ST2 – ST4).  

ANCOVA and Metabolite Associations with Interaction Effect 

We found 58 statistically significant metabolites associated with the interaction 

effect between disease and exposure after FDR correction (SF6). The volcano plot 

(Figure 3A) highlights key metabolites such as “palmitelaidic acid” (β=0.30, FDR 

p<0.001), “pentobarbital” (β=0.35, FDR p<0.001), “(S)-2-methlbutanal (β=0.60, FDR 

p<0.001), "dimethyl sulfoxide" (β=0.68, FDR p<0.001), “lyngbic acid” (β=0.36, FDR 

p<0.001)  and “n-Butyl lactate” (β=0.60, FDR p<0.001), showing a positive association 

with the interaction effect. Markedly, many of the statistically significant metabolites 

associated with the interaction effect showed a positive association. Notably, "dimethyl 

sulfoxide" reversed its association from negative in main effects to positive in the 

interaction context. In (Supplementary Figure 10 – SF10) "palmitelaidic acid" (𝑛!"   = 0.24), 

"(S)-2-methylbutanal" (𝑛!"   = 0.21) and "n-Butyl lactate" (𝑛!"   = 0.21), displayed the largest 

𝑛!" 	values among the metabolites, indicating that a substantial portion of their variance is 

explained by the interaction effect. Pathway analysis bubble plot (SF10) revealed "vitamin 

B6 metabolism" (Impact=0.08, p=0.03) as significant, although not after FDR correction. 

Additionally, “tyrosine metabolism” (Impact=0.13, p=0.15) is associated with the 

interaction effect; however, the impact does not reach the level of significance. It should 

be noted that a considerably lower number of pathways were identified compared to the 
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main effects of disease (SF8) and exposure (Figure 2B). MSEA (Figure 3B) broadly 

identified amino acid metabolism and transmembrane transporters as enriched 

metabolite sets. These findings corroborate what was previously found in our main effect 

of disease (SF8) and main effect of exposure (SF9). "phase II - Conjugation of 

compounds" (Expect=0.341, p<0.001), "sudden infant death syndrome (SIDS) 

susceptibility pathways" (Expect=0.0327, p<0.001), and “SLC transporter disorders” 

(Expect=0.187, p<0.001) were among the top three statistically significant enriched sets. 

However, the smaller size of their bubbles indicates a low enrichment ratio. Conversely, 

high enrichment ratios were found among “defective SLC22A12 causes renal 

hypouricemia 1 (RHUC1)” (Expect=0.00467, p=0.005), “defective SLC6A3 causes 

Parkinsonism-dystonia infantile (PKDYS)” (Expect=0.00467, p=0.005), and “defective 

SLC35A1 causes congenital disorder of glycosylation 2F (CDG2F)” (Expect=0.00467, 

p=0.005). Of interest is the "defective SLC6A3 causes Parkinsonism-dystonia infantile 

(PKDYS)" enriched set due to its relevance to PD. All corresponding primary interaction 

effect data can be found in (ST2 – ST4).  

Lipidomics 

ANCOVA and Lipid Associations with Disease Effect, Exposure Effect, and Interaction 

Effect.  

Transitioning from our metabolomic analysis, our ANCOVA identified 33 lipids 

significantly associated with the disease effect after FDR correction (Supplementary 

Figure 13 – SF13). The volcano plot (Figure 4A) shows notable lipids such as 

"TG(16:0_10:0_18:1)" (β=0.8, FDR p=0.001), "SM(d44:3)" (β=0.17, FDR p=0.01), and 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 6, 2024. ; https://doi.org/10.1101/2024.09.04.24313002doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.04.24313002
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 

   

 

“TG(18:0_18:0_18:1)” (β=0.37, FDR p=0.01) with positive associations (a table with the 

full list of lipids is in Supplementary Table 5 – ST5). The bar chart (Figure 4B) ranks the 

top 25 lipids by 𝑛!"  values, highlighting “TG(16:0_10:0_18:1)” (𝑛!" = 0.40), 

“TG(16:1_14:0_18:2)” (𝑛!"  = 0.28), and “TG(16:0_14:0_16:0)” (𝑛!"  = 0.27) as having the 

largest effects (a table with the full list of 𝑛!"  values can be found in ST5).  For the 

exposure effect, no statistically significant lipids were identified after FDR correction, but 

notable lipids included "Cer(d18:1_24:0)" (β=-0.87, FDR p=0.25) and "Cer(d18:0_24:0)" 

(β=-0.12, FDR p=0.25) (Figure 4C). The bar chart (Figure 4D) ranks the top 25 lipids by 

𝑛!"  values, with “Cer(d18:1_24:1)” (𝑛!"  = 0.08) showing the largest effect. The interaction 

effect revealed 12 significant lipids after FDR correction (SF13), including 

"PE(16:0_20:4)" (β=-0.39, FDR p=0.02) and "PE(40:7e)" (β=-0.38, FDR p=0.02) (Figure 

4E). The bar chart (Figure 4F) ranks the top 25 lipids by 𝑛!"  values, with “PC(37:5e)” (𝑛!"  

= -0.48) and “PE(40:5e)” (𝑛!"  = -0.46) having the largest negative associations. Pathway 

analysis (Supplementary Table 6 – ST6) linked the disease effect to retrograde 

endocannabinoid signaling (Pathway Lipids=8 p=0.03), ferroptosis (Pathway Lipids=11, 

p=0.03), and glycerophospholipid metabolism (Pathway Lipids=26, p=0.05). The 

interaction effect was associated with retrograde endocannabinoid signaling (Pathway 

Lipids=8, p=0.04), ferroptosis (Pathway Lipids=11, p=0.04), and sphingolipid signaling 

pathway (Pathway Lipids=9, p=0.04). The exposure effect was not included due to the 

absence of significant lipids. All corresponding primary data can be found in ST5 and ST6. 
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4. DISCUSSION 

These findings suggest that alterations in metabolite and lipid signatures could 

serve as predictive biomarkers for specific PD subtypes related to environmental 

exposure. These insights into the metabolomic and lipidomics perturbations associated 

with PD and environmental exposure may aid in preventive screenings, novel diagnostic 

methods, and therapeutic strategies. While statistical significance is essential, biological 

relevance is equally important in identifying clinically relevant biomarkers. Thus, we focus 

our discussion on metabolomic and lipidomic perturbations that are both statistically 

significant and biologically relevant, as represented in (Table 2).  

Disease Effect on Metabolites  

Significant metabolites related to medication usage, dietary habits, amino acid 

metabolism, cellular redox balance, and vitamin B regulation were identified. However, 

some metabolites like sulbactam, dopamine 3-O-sulfate (DA-3S), vanillic acid, and 3-

hydroxy-3-[3-methoxy-4-(sulfoxy)-phenyl] propanoic acid (3HMSPP) may be biologically 

artifactual. For example, sulbactam, a beta-lactamase inhibitor, is often used by PD 

patients to treat infections [32-34] and DA-3S, a dopamine metabolite, reflects increased 

dopamine metabolism but shows no consistent link with PD severity [35, 36]. Similarly, 

vanillic acid and 3HMSPP, found in common foods and beverages, are not likely to serve 

as diagnostic biomarkers [37, 38]. Conversely, biologically relevant metabolites such as 

3-sulfoxy-L-tyrosine, formiminoglutamic acid, glyoxylic acid, and dimethyl sulfoxide 

(DMSO) were identified. 3-sulfoxy-L-tyrosine, a post-translational modification of tyrosine, 

plays a role in norepinephrine synthesis, which may be reduced in PD [39, 40]. 
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Formiminoglutamic acid, an intermediate in L-histidine breakdown, serves as a biomarker 

for folate levels, and its increase can indicate vitamin B12 deficiency, which is associated 

with PD [41]. Glyoxylic acid, crucial for cellular redox balance and amino acid metabolism, 

is linked to mitochondrial function and neuroprotection, highlighting its importance in PD 

[42]. Lastly, DMSO, known for its anti-inflammatory and antioxidant properties, might play 

a protective role in neurodegenerative processes, though its exact impact in PD requires 

further investigation [43, 44]. The disease effect also impacted pathways related to amino 

acid metabolism and the TCA cycle. Alterations in 3-sulfoxy-L-tyrosine, formiminoglutamic 

acid, and glyoxylic acid suggest that nerve degeneration and mitochondrial dysfunction 

could lead to changes in amino acid metabolism, exacerbating PD symptoms [45, 46]. 

These findings align with existing literature and underscore the complex interplay 

between neurodegeneration and metabolic dysfunction. 

Exposure Effect on Metabolites 

Tetrahomomethionine, lafutidine, and mannitol were strongly associated with the 

exposure effect but were excluded as diagnostic or prognostic biomarkers due to their 

artifactual nature and lack of biological relevance. Lafutidine and mannitol are strongly 

correlated with medication usage, while tetrahomomethionine is linked to dietary intake 

of L-methionine, though its biosynthetic pathway is unclear [47, 48]. Glycocholic acid, a 

bile acid conjugated with glycine, is upregulated, possibly due to liver damage caused by 

metal exposure, which aligns with its role in emulsifying fats and enhancing solubility [49, 

50]. Butanoate metabolism was significantly altered, reflecting the breakdown of L-

glutamate into GABA. Metals, particularly manganese (Mn), disrupt these pathways by 
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interfering with neurotransmitter systems, including blocking NMDA calcium channels and 

inhibiting the expression of NMDAR subunits (GluN1, GluN2A, GluN2B). Mn exposure 

also induces alpha-synuclein overexpression, leading to phosphorylation and 

downregulation of the GluN2B subunit, impairing NMDAR signaling. Additionally, Mn 

decreases GABAA receptor expression and induces GABAB receptors, contributing to 

alpha-synuclein accumulation [49, 51]. Metal exposure also disrupts SLC-mediated 

transport, activating proinflammatory genes (e.g., IL-6, IL-1B, CCL2), competing with 

essential metal ions, and blocking TRPC3 channels in astrocytes. Moreover, metals alter 

amino acid metabolism by binding to sites, catalyzing oxidation, disrupting protein folding, 

and displacing essential ions. These disruptions likely drive the alterations in amino acid 

metabolism observed with the exposure effect [49, 52]. Furthermore, higher doses of 

metals directly damage intestinal flora by causing cell death through homeostasis 

imbalances and intracellular interactions with vital proteins and DNA [53]. Alterations in 

oxidative stress signaling and downregulation of DMSO (related to thiol-disulfide 

homeostasis) were also noted. Metal exposure increases free radicals via Fenton & 

Haber-Weiss reactions, where metal ions catalyze the conversion of hydrogen peroxide 

into hydroxyl radicals, elevating oxidative stress. Glutathione, a key intracellular 

antioxidant, is disrupted, further affecting redox balance. The downregulation of DMSO, 

formed from dimethyl sulfide reacting with reactive oxygen species (ROS), may heighten 

oxidative stress [54]. Lastly, exposure effects on taste perception were observed. 

Phantogeusia, a taste disorder, is a recognized symptom in areas affected by heavy metal 

fume exposure [55]. 
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Interaction Effect on Metabolites 

N-butyl lactate, 2-methylbutanal, and pentobarbital were statistically associated 

with the interaction effect between disease and exposure status but were considered 

artifactual due to confounding factors such as diet and medication [56, 57]. However, 

palmitelaidic acid and DMSO were both statistically significant and biologically relevant. 

Palmitelaidic acid, a trans fatty acid associated with increased cardiovascular disease 

risk, is primarily obtained through diet. It also plays a role in lipid peroxidation, a process 

where ROS cause oxidative degradation of lipids, leading to oxidative stress, cell 

damage, and PD disease progression [58, 59]. Key pathways affected by the interaction 

effect—glucose homeostasis, amino acid metabolism, and SLC transporter disorders—

highlight how combined exposure and disease effects mirror biological perturbations seen 

in the independent main effects, presumably heightening them. Uniquely, vitamin B6 

metabolism was significantly impacted, highlighting its importance in amino acid 

metabolism and neurotransmitter synthesis, which are crucial for proper brain function 

[60]. Additionally, impairments in glucose homeostasis, supported by previous PD patient 

literature, was associated with the interaction effect, potentially due to mechanisms like 

insulin resistance, oxidative stress, and blood-brain barrier dysfunction [61]. In summary, 

palmitelaidic acid and DMSO, which have been previously linked to both disease and 

exposure effects, and are also associated with the interaction effect, may serve as 

potential diagnostic or prognostic biomarkers warranting further investigation.  

Disease and Interaction effect on Lipids  
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Lipid classes were significantly altered in association with the disease and 

interaction effects, while the exposure effect did not reach statistical significance. This 

suggests a greater lipid class alteration when disease and exposure effects are 

combined. Key lipids involved include triglycerides (TG), lysophosphatidylcholine (LPC), 

ceramides, and phosphatidylcholines (PC), all of which are linked to cognitive function 

[62]. Longitudinal studies indicate that elevated triglyceride levels increase the risk of 

cognitive impairment, a hallmark of late-stage PD [63]. Ceramides, a class of 

sphingolipids (SPs), are crucial for cellular processes like division, differentiation, and 

apoptosis. Dysregulation in sphingolipid metabolism is associated with neurological 

disorders and disease progression [64, 65]. LPC, a phospholipid integral to cell 

membrane structure and function, plays roles in signaling, inflammation, and immune 

regulation. Abnormal LPC levels have been linked to neurological disorders and may 

reflect oxidative stress response [66]. The interaction effect interestingly showed a 

downregulation in lipid classes, especially phosphatidylethanolamine (PE), corroborating 

findings in other PD studies  [67]. These altered lipids are associated with pathways like 

retrograde endocannabinoid signaling, ferroptosis, and sphingolipid metabolism [68-70]. 

The disease and interaction effects significantly impacted endocannabinoid signaling and 

ferroptosis, with the interaction effect also affecting sphingolipid metabolism. 

Endocannabinoids, such as anandamide (AEA) and 2-arachidonoylglycerol (2AG), 

regulate synaptic activity and mitochondrial function through CB1 receptors [68]. 

Ferroptosis, a form of regulated cell death driven by ROS and lipid peroxidation, is 

involved in various pathological processes, including PD [69]. Lastly, sphingolipids, like 
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ceramide and sphingosine-1-phosphate (S1P), play opposing roles in cell stress 

responses and survival, highlighting their importance in these pathways [70].  

This study provides valuable insights into the metabolomic and lipidomic 

alterations associated with manganese exposure and PD. Our findings highlight distinct 

metabolic and lipid signatures, including the potential roles of palmitelaidic acid and 

DMSO as diagnostic or prognostic biomarkers, which could significantly contribute to the 

early detection and management of manganese-induced Parkinsonism (MnIP). The 

study's strengths lie in its comprehensive approach, using a case-control design and 

advanced metabolomic and lipidomic analyses, which allow for the identification of 

potential biomarkers associated with both disease and exposure effects. However, this 

study has limitations that should be acknowledged. A significant limitation is the cross-

sectional nature of the study and the fact that the participants were already diagnosed 

with PD, which precludes establishing causality between manganese exposure and 

disease onset. Additionally, the relatively small sample size may limit the generalizability 

of the findings. Future studies should focus on larger, longitudinal cohorts to better 

understand the temporal relationship between exposure and disease development and 

to validate the identified biomarkers. The current findings will be instrumental in 

conducting a power analysis to determine the sample size needed for future studies, 

ensuring that they are adequately powered to detect meaningful differences and 

associations. Future research should also incorporate transcriptomic and proteomic 

analyses to further investigate the metabolic and lipid pathways identified in this study. 

Integrating these omics approaches will enable a more comprehensive understanding of 
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how manganese exposure disrupts metabolic homeostasis and contributes to 

neurodegenerative processes. In terms of public health significance, our study 

underscores the urgent need for stricter regulatory standards and enhanced monitoring 

of environmental manganese exposure, particularly in industrial regions. The 

identification of biomarkers like palmitelaidic acid and DMSO could pave the way for 

improved screening protocols and targeted interventions aimed at mitigating the 

neurotoxic effects of manganese. Furthermore, understanding the metabolic pathways 

disrupted by manganese exposure may open new avenues for therapeutic strategies to 

prevent or slow the progression of PD in affected populations. 
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Table 1: Characteristics of the Study Population 

 

This table compares the characteristics of Parkinsonism (PD) and control subjects, both 
exposed and non-exposed. The table includes sample size, age, sex, coffee 
consumption, alcohol consumption, smoking status, comorbidities, and site of residence. 
The p-values indicate the statistical significance of differences between Parkinsonism 
(PD) and control groups, with "NS" denoting non-significant differences. For more detailed 
information, please refer to the supplemental material. 
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Figure 1: Disease Effect on Metabolites 

 
 
Panel A: Volcano plot for disease effect, showing the relationship between the beta 
coefficients (effect size) and the -log10(p-value) of metabolites. Red points represent 
metabolites with significant positive associations, and blue points represent significant 
negative associations with the disease effect. The vertical green line indicates a beta 
coefficient of ±	0.301, and the horizontal blue line indicates a significance threshold of p 
= 0.05. Panel B: Bar chart of the top 25 metabolites significantly associated with the 
disease effect, ranked by their partial eta squared (𝑛!")	 values. The bars represent the 
magnitude of effect, with red points indicating parameter estimates (beta coefficients) 
and error bars showing the 95% confidence intervals. The table includes metabolites' 
names and their corresponding effect sizes. 
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Figure 2: Exposure Effect on Metabolites 

 
Panel A: Volcano plot for the exposure effect, showing the relationship between the beta 
coefficients (effect size) and the -log10(p-value) of metabolites. Red points represent 
metabolites with significant positive associations, and blue points represent significant 
negative associations with the exposure effect. The vertical green line indicates a beta 
coefficient of ±	0.301, and the horizontal blue line indicates a significance threshold of p 
= 0.05. Panel B: Pathway analysis bubble plot for exposure effect, highlighting the 
significance and impact of various metabolic pathways. Pathways with high impact and 
significance include "Alanine, aspartate and glutamate metabolism" and "Glyoxylate and 
dicarboxylate metabolism." The color gradient represents the FDR corrected p-value, with 
pathways above the red dashed line (p-value = 0.05) considered statistically significant. 
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Figure 3: Interaction Effect on Metabolites 
 
 

 
Panel A: Volcano plot for the interaction effect, showing the relationship between the beta 
coefficients (effect size) and the -log10(p-value) of metabolites. Red points represent 
metabolites with significant positive associations, and blue points represent significant 
negative associations with the interaction effect. The vertical green line indicates a beta 
coefficient of ±	0.301, and the horizontal blue line indicates a significance threshold of p 
= 0.05. Panel B: Bubble plot of the top 25 enriched metabolite sets for the interaction 
effect. The size of the bubbles represents the enrichment ratio, and the color gradient 
indicates the p-value. More significant pathways are highlighted with larger and darker-
colored bubbles. 
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Figure 4: Volcano Plots and Bar Charts for Lipid Effects 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Panel A: Volcano plot for disease effect on lipids, showing the relationship between the 
beta coefficients (effect size) and the -log10(p-value) of lipids. Significant positive 
associations are marked in red, and negative associations are marked in blue. The 
vertical green line indicates a beta coefficient of ± 0.301, and the horizontal blue line 
indicates a significance threshold of p = 0.05. Panel B: Bar chart of the top 25 lipids 
significantly associated with the disease effect, ranked by their partial eta squared (𝑛!")	 
values. Red points indicate parameter estimates (beta coefficients), and error bars show 
the 95% confidence intervals. Panel C: Volcano plot for exposure effect on lipids, like 
Panel A, highlighting significant associations with the exposure effect. Panel D: Bar 
chart of the top 25 lipids significantly associated with the exposure effect, with rankings 
and visual representation like Panel B. Panel E: Volcano plot for interaction effect on 
lipids, showing the combined impact of disease and exposure on lipid levels. Panel F: 
Bar chart of the top 25 lipids significantly associated with the interaction effect, 
presented similarly to Panels B and D. 
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Table 2: Summary of Significant Metabolites and Pathways for Disease, Exposure, and 
Interaction Effects 
 

This table provides an overview of the significant metabolites and pathways associated 
with the disease, exposure, and interaction effects. The rows categorize the findings into 
metabolomics and lipidomics, while the columns delineate the specific effects. 
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