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Using the hyperglycemic and euglycemic clamp, we
demonstrated impaired b-cell function in obese youth with
increasing dysglycemia. Herein we describe oral glucose
tolerance test (OGTT)-modeled b-cell function and incre-
tin effect in obese adolescents spanning the range of glu-
cose tolerance. b-Cell function parameters were derived
from established mathematical models yielding b-cell glu-
cose sensitivity (bCGS), rate sensitivity, and insulin sensi-
tivity in 255 obese adolescents (173 with normal glucose
tolerance [NGT], 48 with impaired glucose tolerance [IGT],
and 34 with type 2 diabetes [T2D]). The incretin effect was
calculated as the ratio of the OGTT-bCGS to the 2-h hy-
perglycemic clamp-bCGS. Incretin and glucagon concen-
trations were measured during the OGTT. Compared with
NGT, bCGS was 30 and 65% lower in youth with IGT and
T2D, respectively; rate sensitivity was 40% lower in T2D.
Youth with IGT or T2D had 32 and 38% reduced incretin
effect compared with NGT in the face of similar changes in
GLP-1 and glucose-dependent insulinotropic polypeptide
(GIP) in response to oral glucose. We conclude that glu-
cose sensitivity deteriorates progressively in obese youth
across the spectrum of glucose tolerance in association
with impairment in incretin effect without reduction in
GLP-1 or GIP, similar to that seen in adult dysglycemia.

A core defect in the pathogenesis of type 2 diabetes (T2D) is
impaired b-cell function (1,2). In adults, longitudinal (2,3)
and cross-sectional (4,5) investigations have demonstrated
that b-cell function declines with increasing hyperglycemia
already within the normal glucose tolerance (NGT) range
and is further impaired with the onset of impaired glucose
tolerance (IGT) and progression to T2D. Similarly, cross-
sectional and longitudinal studies in pediatrics, using a vari-
ety of methodologies, have established that b-cell function
is impaired in prediabetes, and to a worse extent in T2D (6–
12), with evidence of rapid deterioration (13–15). Using the
hyperglycemic clamp together with the hyperinsulinemic-
euglycemic clamp, we demonstrated that b-cell function
relative to insulin sensitivity was diminished in obese youth
with IGT by ;40% and in T2D by ;80% compared with
their NGT peers (6).

Because of the important physiological role of incretin
hormones (GLP-1 and glucose-dependent insulinotropic
polypeptide [GIP]) in augmenting insulin secretion,
a frequent view is that GLP-1 secretion is deficient in
T2D patients and, in a lesser degree, in people with
prediabetes (16). However, studies in adults have yielded
conflicting results showing decreased (16,17), normal
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(16,18,19), or increased (20) GLP-1 concentrations in indi-
viduals with prediabetes or T2D. Moreover, the incretin
effect, defined as a higher insulin response to oral than
intravenous glucose at similar prevailing glucose concen-
trations, is found to be markedly reduced in adults with
T2D (21,22), but similar in IGT (23,24), compared with NGT.
At present, pediatric data are completely lacking with
respect to the incretin effect and incretin hormone secre-
tion in youth with T2D or prediabetes. Therefore, the aims
of the present investigation were as follows: 1) to examine
b-cell function, modeled from a simple 2-h oral glucose
tolerance test (OGTT), in obese adolescents across the
spectrum of glucose tolerance; and more importantly 2)
to assess the incretin effect and the relationship between
incretin hormone response during the OGTT and b-cell
function in obese adolescents with NGT, IGT, or T2D.

RESEARCH DESIGN AND METHODS

Complete data from an OGTT and a synchronized hyper-
glycemic clamp were available for 255 obese adolescents
(173 NGT, 48 IGT, and 34 T2D), as participants in the
National Institutes of Health–funded studies Childhood
Insulin Resistance and Childhood Metabolic Markers of
Adult Morbidity (7,25–27). All participants were pubertal
(Tanner II–V) and had exogenous obesity with no clinical
evidence of endocrinopathy associated with obesity except
dysglycemia. Glucose tolerance and T2D were defined
according to the 2003 American Diabetes Association
guidelines (28). Family history for diabetes was defined
as the presence of known family members with T2D in
any of three generations (siblings, parents, or grandpar-
ents) (29). Adolescents with T2D were negative for GAD
and insulinoma-associated protein 2 autoantibody (26),
with T2D duration of ,2 years except for two partici-
pants who had a 2.8- and 3.3-year duration. Youth with

T2D were treated with lifestyle only (n = 7), insulin only
(n = 4), metformin only (n = 16), or metformin plus in-
sulin (n = 7). Metformin was discontinued 36 h prior to
the OGTT. Patients did not receive long- or intermediate-
acting insulin for 24 h prior to the OGTT. The last dose of
short-acting insulin was given 6–8 h prior to the OGTT.
The same applied for the hyperglycemic clamp. Partici-
pants classified as NGT or IGT were not taking any
medications known to affect glucose metabolism. Some
participants were reported within a different context
(7,25–27). The studies were approved by our institutional
review board, and parental consent and child assent were
obtained prior to study participation.

All research evaluations were performed in the Pediatric
Clinical and Translational Research Center (Children’s Hos-
pital of Pittsburgh, University of Pittsburgh Medical Cen-
ter, Pittsburgh, PA). Body composition was evaluated with
DEXA with measurement of fat-free mass (FFM), fat mass
(FM), and percent body fat as described previously (7).
Abdominal subcutaneous adipose tissue (SAT) and visceral
adipose tissue (VAT) were assessed by MRI (n = 144) or
computed tomography (n = 100) at L4–5 intervertebral
space (30,31). Eight participants (3 NGT and 5 T2D)
are missing DEXA data, and 11 are missing abdominal
adiposity data (6 NGT, 3 IGT, and 2 T2D) due to technical
difficulties and weight exceeding the limit of measurement.
Clinical characteristics of the study participants are sum-
marized in Table 1.

OGTT
After 10–12 h of overnight fasting, participants underwent
a 2-h OGTT (1.75 g/kg, maximum 75 g) (7,26). Blood sam-
ples were obtained at 215, 0, 15, 30, 60, 90, and 120 min
for the measurement of glucose, insulin, C-peptide, gluca-
gon, total GLP-1, GIP, and pancreatic polypeptide (PP).

Table 1—Clinical phenotype

NGT IGT T2D ANOVA
NGT

vs. IGT
NGT

vs. T2D
IGT

vs. T2D

n 173 48 34

Age (years) 14.7 6 0.1 15.2 6 0.3 15.1 6 0.3 NS

Sex (male/female) (n) 68/105 19/29 16/18 NS

Race (AA/CA/Bi) (n) 89/78/6 16/31/1 18/16/0 NS

Tanner (II–III/IV–V) (n) 24/149 6/42 3/31 NS

FHD (no/yes) 38/135 10/36 1/32 0.04

BMI (kg/m2) 34.2 6 0.5 36.5 6 0.9 36.6 6 1.0 0.01 0.02 0.03 NS

BMI percentile 97.4 6 0.2 98.4 6 0.4 99.0 6 0.5 0.003 NS 0.01 NS

FM (kg) 39.7 6 0.9 45.0 6 1.8 41.2 6 2.3 0.03 0.03 NS NS

FFM (kg) 51.3 6 0.8 52.8 6 1.5 54.4 6 1.9 NS

Percent body fat 42.2 6 0.5 44.8 6 1.0 42.4 6 1.3 NS

VAT (cm2) 61.5 6 2.4 75.2 6 4.7 86.0 6 5.5 ,0.001 0.03 ,0.001 NS

SAT (cm2) 469.5 6 13.8 546.4 6 26.6 546.4 6 32.0 0.01 0.03 0.03 NS

HbA1c (%) 5.4 6 0.04 5.3 6 0.08 6.6 6 0.09 ,0.001 NS ,0.001 ,0.001

AA, African American; Bi, biracial; CA, Caucasian; FHD, family history of diabetes. Post hoc analyses using Tukey.
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Hyperglycemic Clamp
Either the day after the OGTT or on a separate visit
within a 1–4-week period, a 2-h hyperglycemic clamp
(;225 mg/dL) was performed in a subset of 198 subjects
(NGT = 122, IGT = 42, and T2D = 34) (6,7). Plasma
glucose concentration was rapidly raised to 225 mg/dL
with a bolus dextrose infusion and maintained at 225
mg/dL with a variable-rate infusion of 20% dextrose for
2 h (6,7,26).

Biochemical Measurements
At each sampling point, blood was collected in chilled
aprotinin/EDTA tubes for insulin, C-peptide, and gluca-
gon measurement. Dipeptidyl peptidase-4 (DPP-4) inhib-
itor (10 mL, catalog no. DPP4; Millipore, St. Charles,
MO) was added before sampling to the aprotinin/EDTA
tubes to prevent the enzymatic degradation of GLP-1
(7-36) and GLP-1 (7-37). Blood samples were immediately
separated in a refrigerated centrifuge. Plasma samples
were divided into aliquots and stored at 280°C until
analysis. Plasma glucose was determined, at the bedside,
by the glucose oxidase method using a glucose analyzer
(Yellow Springs Instrument Co., Yellow Springs, OH), and
plasma insulin, C-peptide, and glucagon by commercially
available radioimmunoassay (Millipore), as reported by us
before (26). HbA1c was measured by high-performance
liquid chromatography (Tosoh Medics). Total GLP-1 was
measured on a microplate reader (BioTek, Winooski, VT)
using a multispecies total GLP-1 ELISA Kit (catalog no.
EZGLP1T-36K; Millipore). This assay specifically detects
both active and inactive forms of GLP-1 (7-36 and 9-36),
with no detectable cross-reactivity with GLP-2, GIP, glu-
cagon, or oxyntomodulin. Total GIP and PP were mea-
sured on the Luminex 200 IS (Luminex, Austin, TX)
using a two-plex human gut hormone MILLIPLEX Kit
(catalog no. HGT-68K-02; Millipore). The antibody pairs
in the panel are specific only to the desired analyte and
exhibit no or negligible cross-reactivity with other analy-
tes in the panel.

Calculations
Area under the curve (AUC) was calculated with the use of
the trapezoidal method. During the OGTT, early-phase
responses were calculated as the AUC for the first 30 min
and late-phase responses as the AUC for the last 90 min
after the glucose challenge (32). b-Cell function parame-
ters were assessed using a mathematical model describing
the relationship between insulin secretion and glucose
concentrations, reported in detail by Mari and colleagues
(33,34). b-Cell function parameters included b-cell glucose
sensitivity (OGTT-bCGS) (in pmol $ min21 $ m22 $ mM21)
and rate sensitivity (in pmol $ m22 $ mM21). OGTT-bCGS
reflects the ability of the b-cell to respond to changes
in prevailing plasma glucose concentration at any time
point during the OGTT through a dose-response func-
tion relating the two variables (34). This dose-response is
modulated by a potentiation factor, which encom-
passes several potentiating mechanisms (release of

endogenous incretin hormones, neuronal inputs, and
changes in incremental plasma glucose concentration af-
ter ingestion of the glucose load), all of which increase the
sensitivity of the b-cell insulin secretory response to sub-
sequent plasma glucose concentration (34). Potentiation
was quantified as the ratio between the 2-h and the base-
line value and denoted as the potentiation ratio. Rate
sensitivity, related to early insulin release, refers to the
magnitude of the b-cell response to the rate of change in
plasma glucose concentration (34). The AUC of insulin
secretion during the 2-h OGTT was denoted as total in-
sulin output (expressed in nmol $ m22). A model-based
index of insulin sensitivity (oral glucose insulin sensitivity
[OGIS]) was calculated using the plasma glucose and in-
sulin concentrations measured during a standard 2-h
OGTT (35); this index has been validated against the
hyperinsulinemic-euglycemic clamp (36).

During the hyperglycemic clamp, insulin secretion was
obtained from C-peptide levels by deconvolution (37).
Acute insulin response (AIR) was calculated as the mean
incremental insulin secretion between 0 and 5 min, when
insulin secretion rate had fallen from the initial peak to
a nadir in all subjects. Rate sensitivity was then the ratio
of AIR to the corresponding glucose increment. An em-
pirical estimate of bCGS (clamp-bCGS) was obtained as
the increment in insulin secretion during the last 40 min
of the clamp above basal insulin secretion, divided by the
corresponding glucose increment (see the Supplementary
Data for details). The clamp- and the OGTT-bCGS thus
represent an average slope of the relationship between
insulin secretion and glucose concentration, obtained
with intravenous and oral glucose administration, re-
spectively. Of note is that bCGS, as the mean slope of
a dose-response relationship, is independent of absolute
insulin secretion. As previously shown (23,24), the incre-
tin effect is exerted not only on absolute insulin secre-
tion but also on bCGS. In the present studies, the
incretin effect was estimated as the OGTT-bCGS/
clamp-bCGS ratio.

Statistical Analysis
ANOVA with Tukey post hoc correction for quantitative
variables and x2 test for categorical variables were used to
examine subject characteristics, b-cell function parame-
ters, and early- and late-phase incretin response among
the three groups. ANCOVA models were used to assess
between-group differences adjusting for covariates as ap-
plicable, such as VAT or BMI. Log transformations were
used to normalize the distribution for glucose, insulin,
C-peptide, and GLP-1. All other variables were normally dis-
tributed. To assess the relationships between b-cell func-
tion parameters and incretin response, bivariate Pearson
or Spearman correlations were applied according to data
distribution. Unless otherwise stated, data are presented as
mean 6 SEM. Statistical significance was set at P , 0.05,
and the statistical analyses were performed using PASW
Statistics (version 20; SPSS Inc., Chicago, IL).
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RESULTS

Participant Characteristics
There were no significant differences in age, sex, race,
Tanner stage, FFM, or percent FM between the groups.
Compared with NGT, participants with IGT and T2D had
higher BMI, SAT, and VAT. As expected, HbA1c was higher
in the T2D group compared with NGT and IGT (Table 1).

Glucose and Hormone Responses to the OGTT
Fasting glucose and insulin concentrations increased from
NGT to IGT to T2D as did 2-h plasma glucose levels
(Supplementary Table 1). Two-hour insulin and C-peptide
were higher in IGT compared with NGT, whereas they
only tended to be lower in T2D. Among the incretin hor-
mones, both fasting and 2-h GLP-1 were higher in IGT
compared with NGT. Fasting concentrations of PP tended
to be higher in IGT and T2D compared with NGT,
whereas GIP showed no significant differences across
groups.

In Supplementary Fig. 1, early-phase (0–30 min) insulin
response (expressed as the ratio of insulin to glucose AUC)
was lowest in T2D compared with NGT and IGT (2,403 6
403 vs. 3,221 6 179 vs. 2,963 6 343 pmol $ mmol21,
respectively, P = 0.017); the same was true of early-phase
C-peptide response (P = 0.012). In contrast, early-phase
glucagon response (as the product of glucagon and glu-
cose AUC) was highest in T2D as compared with NGT
and IGT (3,005 6 259 vs. 2,154 6 65 vs. 2,465 6 158
mg2 $ mL22 $ min2, respectively, P , 0.001). Late-phase
(30–90 min) insulin response showed the same pattern as
early-phase insulin response, decreasing from NGT to
T2D through IGT (14,512 6 1,279 vs. 12,661 6 674
vs. 10,046 6 1,520 pmol $ mmol21, P , 0.001); late-
phase C-peptide response tracked with insulin (P ,
0.001). Late-phase glucagon response increased from
NGT to IGT to T2D (6,131 6 214 vs. 7,456 6 561 vs.
10,542 6 1,008 mg2 $ mL22 $ min2, P , 0.001) (Supple-
mentary Fig. 1).

Incretin hormone responses are shown in Fig. 1. Be-
cause of baseline group differences in GLP-1 and PP, in-
cremental AUCs (iAUCs), rather than total AUCs, were
calculated. iAUC for GIP (2,613 6 101, 2,611 6 193,
2,301 6 229 pmol $ L21 $ h, P = 0.45) was not different
among NGT, IGT, and T2D, whereas iAUC for GLP-1 (183.46
25.3, 139.4 6 48.1, 461.1 6 57.1 pmol $ L21 $ h, P = 0.08)
and PP (510 6 44, 597 6 83, 752 6 99 pmol $ L21 $ h,
P = 0.07) showed a trend. Early-phase GLP-1 iAUC was
not different among the three groups (data not shown),
whereas late-phase GLP-1 iAUC was significantly different
among the NGT, IGT, and T2D (105.6 6 19, 67.7 6 36.1,
326.0 6 42.9 pmol $ L21 $ h, respectively, P = 0.005).
Furthermore, there were no significant differences in
fasting GLP-1 (14.3 6 1.8 vs. 15.9 6 3.3 pmol $ L21,
P = 0.55), 2-h GLP-1 (13.66 2.5 vs. 11.36 2.6 pmol $ L21,
P = 0.57), or GLP-1 iAUC (428.8 6 138 vs. 528.6 6
286 pmol $ L21 $ h, P = 0.77) in T2D youth prescribed
metformin (n = 23) versus those not prescribed metformin

(n = 11). Early-phase and late-phase GIP did not differ
significantly according to glucose tolerance status. Both
early-phase PP iAUC (193 6 19 vs. 273 6 35 vs. 267 6
42 pmol $ L21 $ h, P = 0.06) and late-phase PP iAUC
showed a trend (317 6 32 vs. 324 6 60 vs. 485 6 72
pmol $ L21 $ h, P = 0.10) among NGT, IGT, and T2D,
respectively.

Insulin sensitivity, as estimated by OGIS, was signif-
icantly, and to a similar extent, impaired in IGT and T2D

Figure 1—Incretin peptides during the OGTT; early- and late-phase
responses in GLP-1 (A), GIP (B), and PP (C) in obese adolescents
with NGT (n = 173), IGT (n = 48), and T2D (n = 34). Plots are mean6
SEM. P values are for group differences by ANOVA.
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as compared with NGT (Supplementary Table 1), the dif-
ference remaining significant after adjusting for BMI or
VAT.

b-Cell Function and Incretin Effect
During the OGTT, basal insulin secretion rate was higher
in IGT and T2D compared with NGT. Total insulin output
was higher in IGT compared with the other two groups
(Table 2). The insulin secretion to plasma glucose dose-
response functions was progressively shifted to the right
and downward from NGT to IGT to T2D (Fig. 2). Conse-
quently, bCGS was progressively lower, whereas rate sen-
sitivity was lowest only in youth with T2D. These group
differences remained statistically significant after adjust-
ing for BMI or VAT (data not shown).

During the hyperglycemic clamp, insulin secretion
rates followed the expected biphasic pattern, with an
early peak followed by a second phase of increasing
insulin release (Supplementary Fig. 2). AIR was mark-
edly impaired in T2D (381 6 119 vs. 1,968 6 104

pmol $ min21 $ m22, P , 0.001) but only marginally
reduced in IGT (1,639 6 154). Coherently with this,
rate sensitivity was significantly reduced in T2D (225 6
85 pmol $ m22 $ mM21, P , 0.001, vs. 1,174 6 54
in NGT) and slightly impaired in IGT (938 6 92). During
the second phase, insulin secretion between 80 and
120 min averaged 657 6 25, 698 6 43, and 255 6 40
pmol $ min21 $ m22 in NGT, IGT, and T2D, respectively,
being significantly reduced only in T2D (P , 0.0001)
(Table 3 and Supplementary Fig. 2). Figure 3A depicts
OGTT- and clamp-bCGS. Unlike OGTT-bCGS, where
reduced bCGS was observed in both IGT and T2D
compared with NGT, clamp-bCGS was similar between
NGT (93 6 4) and IGT (101 6 6) youth but lower in
T2D youth (53 6 7 pmol $ min21 $ m22 $ mM21) (P ,
0.001 for both). Moreover, clamp-bCGS between IGT
youth in the upper half (9.4–11.0 mmol/L) versus lower
half (7.8–8.9 mmol/L) of the glucose concentration of
the 120 min of the OGTT was not different (73.8 6 9.6
vs. 106.7 6 8.0 pmol $ min21 $ m22 $ mM21, P = 0.13);
however, OGTT-bCGS was significantly lower (82.2 6 8.8
vs. 133.56 8.0 pmol $ min21 $ m22 $ mM21, P = 0.008) in
IGT youth in the upper half of glucose concentration.

In the whole group, OGTT-bCGS and clamp-bCGS were
strongly correlated with one another (r = 0.70, P, 0.0001),
but the relationship was significantly (P , 0.02) different
across glucose tolerance status. Thus, a clamp-bCGS of 100
pmol $ min21 $ m22 $ mM21 predicted an OGTT-bCGS of
181 pmol $ min21 $ m22 $ mM21 in NGT, 122 in IGT, and
119 in T2D (Fig. 4). Consequently, the ratio OGTT-bCGS/
clamp-bCGS, an estimate of the incretin effect, was signif-
icantly reduced in IGT and T2D compared with NGT, with
no difference between IGT and T2D (Fig. 3B). Dividing T2D
youth into those with short (,6 months) and those with
longer disease duration (.6 months) revealed no significant
difference in OGTT-bCGS/clamp-bCGS (1.2 6 0.15 vs.
1.2 6 0.19, P = 0.94).

Relationship of b-Cell Function Parameters to
Glycemia and Incretin Hormones
OGTT 2-h glucose correlated negatively with OGTT-bCGS
(r = 20.41, P , 0.001), rate sensitivity (r = 20.22, P ,
0.001), and OGIS (r = 20.40, P , 0.001) and correlated

Table 2—OGTT-modeled parameters of b-cell function

NGT IGT T2D ANOVA NGT vs. IGT NGT vs. T2D IGT vs. T2D

Basal insulin secretion rate
(pmol $ min-1 $ m22) 141 6 5 166 6 9 188 6 11 ,0.001 0.03 ,0.001 NS

Total insulin output
(nmol $ m22) 58 6 2 72 6 3 57 6 4 0.001 0.001 NS 0.01

bCGS
(pmol $ min21 $ m22 $ mM21) 178 6 8 125 6 15 64 6 17 ,0.001 0.01 ,0.001 0.02

Rate sensitivity
(pmol $ m22 $ mM21) 1,788 6 100 1,608 6 190 1,095 6 226 0.02 NS 0.02 NS

Potentiation ratio 1.1 6 0.03 1.1 6 0.05 1.1 6 0.06 NS

Post hoc analyses using Tukey.

Figure 2—Dose-response of insulin secretion rates and plasma
glucose concentrations in obese youth with NGT, IGT, and T2D.
Plots are mean 6 SEM; the mean slope of the dose-response func-
tion is bCGS.
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positively with 2-h GLP-1 (r = 0.22, P, 0.001) and GLP-1
AUC (r = 0.18, P = 0.005). Multiple linear regression anal-
yses models assessing the independent effects of age, sex,
race, VAT, insulin sensitivity, clamp-bCGS, incretin effect,
OGTT-bCGS, and rate sensitivity are presented in Table 4.
Insulin sensitivity, incretin effect, clamp-bCGS, and rate
sensitivity explained 69% of variance in OGTT glucose
AUC and 44% of the variance in OGTT 2-h glucose concen-
tration. Including family history of diabetes into the model
made no significant independent contribution.

DISCUSSION

The current study adds to the scarce literature in pediatric
T2D by 1) providing novel information on the incretin
effect and incretin concentrations during the OGTT in
obese adolescents across the spectrum of glucose toler-
ance from NGT to IGT to T2D, and 2) further document-
ing the abnormalities in b-cell function and insulin
sensitivity in these obese adolescents. The key finding
of the current studies is that youth with IGT or T2D
have a reduced incretin effect compared with their NGT
peers without reductions in GLP-1 and GIP concentra-
tions. In these youth, the incretin effect is an important
determinant of the glycemic response to oral glucose.

b-Cell function is a key determinant of T2D (1,2) as it
declines with the onset of IGT and progression to T2D in
adults (2–5). In the current study, we demonstrate that
bCGS was 30 and 65% lower in IGT and T2D, respec-
tively, compared with NGT, with a 40% lower rate sensi-
tivity in those with T2D. These results are in agreement
with protocols involving intravenous glucose administra-
tion in both adults (2,3,5) and youth (6–12), and with
OGTT-modeled data in adults (38–40). In particular, com-
pared with obese NGT, bCGS was 40 and 85% lower in
IGT and T2D adults, respectively, and rate sensitivity was
significantly lower in T2D, consistent with the current
data in youth. In another study (39), total insulin output
was significantly higher in adults with impaired glucose
regulation compared with NGT, whereas bCGS was 42%
lower. A decline in bCGS, but not rate sensitivity, was also
reported in Mexican American adults with IGT compared
with NGT (40).

Figure 3—bCGS (A) and incretin effect (B) in obese adolescents
with NGT (n = 173), IGT (n = 48), and T2D (n = 34). Differences
among the three groups within each of the OGTT-bCGS and
clamp-bCGS were analyzed with ANOVA. Tukey post hoc test for
significant (P < 0.05) differences between any two groups is indi-
cated with the same letter. Paired Student t test P values between
the OGTT-bCGS and clamp-bCGS are shown above the bar
graphs.

Figure 4—Relationship between bCGS and oral and intravenous
glucose stimulation in the three study groups. The full lines are
the best fits, and the dotted lines are their 95% CIs.
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In the current study, the finding that IGT was
associated with reduced bCGS when the measure is de-
rived from the OGTT, but not from the clamp, is of
particular interest and suggests that in prediabetes, impair-
ment in incretin effect may precede defective b-cell secre-
tory response to intravenous glucose. In more advanced
stages of dysglycemia, such as T2D, both incretin effect
and b-cell function appear to be impaired since bCGS de-
rived from either the clamp or the OGTT is abnormal. The
temporal sequence with which these metabolic abnormali-
ties develop relative to one another during the different
stages of dysglycemia remains uncertain. Although the
mechanisms underlying the reduced b-cell response to
oral glucose are undefined, recent investigations suggest
that chronic exposure to higher glucose concentrations
may downregulate GIP receptor expression (41,42).
Whereas there were no significant differences in clamp-
bCGS between the IGT youth in the upper versus the lower

half of glucose concentration, OGTT-bCGS was signifi-
cantly lower in IGT youth in the upper half of glucose
concentration, consistent with the above proposed
mechanism. On the other hand, the lack of difference
in the clamp-bCGS may be due to the fact that insulin
sensitivity is not accounted for. When we compare
clamp-bCGS between NGT and IGT with OGIS as a covar-
iate, we do not see significant differences (96.3 6 3.9 vs.
90.7 6 6.8 pmol $ min21 $ m22 $ mM21, P = 1.50). This
implies that insulin sensitivity may play a role in clamp-
bCGS and that IGT may indeed have a relative impair-
ment of b-cell function compared with NGT. However,
such cross-sectional findings must be interpreted with
caution, because many individuals with IGT may never
develop diabetes, and their metabolic characteristics
may well differ from those who do.

GLP-1 and GIP have been shown to be increased
(20,43,44), decreased (16,17,45–47), or normal (16,18,19,

Table 3—Insulin secretion, bCGS, and incretin effect using different time interval of the hyperglycemic clamp

80–120 min Ratio to NGT 20–120 min Ratio to NGT

Insulin secretion (pmol $ min21 $ m22)
NGT 657 6 25 1 566 6 20 1
IGT 698 6 43 1.06 578 6 34 1.02
T2D 255 6 40 0.39 218 6 31 0.39

bCGS (pmol $ min21 $ m22 $ mM21)
NGT 93 6 4 1 79 6 5 1
IGT 101 6 6 1.09 82 6 3 1.04
T2D 42 6 6 0.45 35 6 5 0.44

Incretin effect
NGT 1.97 6 0.08 1 2.27 6 0.09 1
IGT 1.33 6 0.14 0.68 1.61 6 0.15 0.71
T2D 1.15 6 0.13 0.58 1.38 6 0.14 0.61

Table 4—Significant independent predictors of glucose AUC and 2-h glucose of the OGTT

Partial r Model r 2 Change in r 2 P

Dependent variable: OGTT AUC
Model 1
Insulin sensitivity 20.72 0.27 0.27 ,0.001
Incretin effect 20.65 0.43 0.17 ,0.001
Clamp-bCGS 20.54 0.63 0.20 ,0.001
Rate sensitivity 20.39 0.69 0.06 ,0.001

Model 2
Insulin sensitivity 20.69 0.29 0.29 ,0.001
OGTT-bCGS 20.65 0.57 0.28 ,0.001
Rate sensitivity 20.40 0.64 0.07 ,0.001

Dependent variable: 2-h glucose
Model 1
Insulin sensitivity 20.50 0.14 0.14 ,0.001
Incretin effect 20.46 0.41 0.13 ,0.001
Clamp-bCGS 20.42 0.28 0.13 ,0.001
Rate sensitivity 20.23 0.44 0.03 ,0.001

Model 2
Insulin sensitivity 20.50 0.36 0.17 ,0.001
OGTT-bCGS 20.48 0.19 0.19 ,0.001
Rate sensitivity 20.27 0.41 0.05 ,0.001

Incretin effect = OGTT-bCGS/clamp-bCGS.
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24,46–49) in adults with T2D or IGT. A detailed meta-
analysis by Calanna et al. (48,49) published very recently
further supports no reduction in GLP-1 and GIP in adults
with T2D. To our knowledge, there are no published incre-
tin data in youth comparing NGT to IGT to T2D. In the
current study, incretin hormone concentrations in re-
sponse to the oral glucose load were not different between
NGT, IGT, and T2D and were unlikely to explain the im-
paired incretin effect in IGT and T2D. However, it should
be considered that the circulating concentrations of total
GLP-1 and total GIP only partially reflect the activity of
incretin hormones (50), which work through the intact
forms only, and may also function independent of circulat-
ing levels. Furthermore, metformin has been shown to in-
crease GLP-1 secretion in vitro (51) and could have masked
a reduction in GLP-1 secretion in these subjects. However,
we did not observe any significant differences in fasting
GLP-1, 2-h GLP-1, or GLP-1 iAUC in T2D youth prescribed
metformin versus those not prescribed metformin. With
respect to the temporal pattern of incretin hormone re-
sponse, in the current study, GLP-1 concentrations dem-
onstrated an initial rise followed by a decline ;30 min
after the glucose load. As shown by a recent systematic
review by Nauck et al. (16), GLP-1 response may increase
and then slowly decline, with a biphasic pattern or a mono-
phasic pattern. Our results, however, are only relevant to
a glucose load as the incretin response to a mixed meal may
be different. Additional investigations in pediatrics are
much needed to enhance knowledge with respect to the
interplay of incretin hormones, their effect, and b-cell
function in the evolution of prediabetes and T2D. Also of
pathophysiological, clinical, and therapeutic relevance is
the current finding of an augmented glucagon response
in both IGT and T2D youth in the face of higher plasma
glucose concentrations. This relative hyperglucagonemia,
a correlate of b-cell dysfunction, further augments glucose
dysregulation. Similar observations of a-cell upregulation
were made in obese insulin-resistant youth with NGT or
IGT (52).

With regard to the incretin effect, the novel finding is
that the IGT and T2D youth both demonstrated a signif-
icantly reduced incretin effect, by 32 and 38% respec-
tively, compared with their NGT peers. Since glucose
levels during the clamp markedly exceeded the glucose
levels during OGTT in IGT and NGT, the incretin effect
may have been underestimated using this measure. In the
current study, we used the ratio of the bCGS derived from
the OGTT to the bCGS from the hyperglycemic clamp
because absolute insulin secretion is dependent on the
glucose concentrations, which were not matched. Al-
though this index has not been validated against the
gold standard isoglycemic protocol, glucose sensitivity is
the most sensitive parameter accounting for glucose levels
as its use to calculate the incretin effect from the isogly-
cemic method has been shown to be consistent with the
more classical parameter obtained from insulin secretion
(23). Furthermore, glucose sensitivity was consistent

within individuals in the two tests (Supplementary Fig.
4) and was always higher with the OGTT than the clamp
(by 95 6 10% in NGT, 33 6 8% in IGT, and 15 6 10% in
T2D). More importantly, the OGTT-bCGS/clamp-bCGS
ratio retrieves the quantitative reduction in incretin effect
(30–40%) that has been previously reported (21–23) and
more recently confirmed (53) with the use of the OGTT
and the isoglycemic protocol in adults with T2D. Our data
in youth also confirm the quantitative contribution of
the incretin effect to glucose tolerance (indexed by the
2-h plasma glucose concentration on the OGTT) (Table
4). In fact, glucose sensitivity could be estimated empiri-
cally from the ratio of incremental insulin secretion to
incremental glucose levels (as shown in the Supplemen-
tary Data).

In our subjects, the incretin defect was not associated
with a decrease in GLP-1 release in response to oral
glucose (Fig. 1), which resonates with findings in adults,
as reviewed by Nauck et al. (16), and suggests b-cell re-
sistance to GLP-1 action on the b-cell (54). Furthermore,
there is now mounting evidence that the incretin defect of
adult T2D is not a consequence of chronic hyperglycemia,
as initially argued (21), but a constitutive feature of T2D
given that antihyperglycemic treatment is not associated
with any improvement in incretin effect (53,55,56). Fur-
thermore, recently Knop et al. (57) described reduced
incretin effect in obese adults with NGT compared with
healthy, lean NGT adults. These data shed light on a pro-
gressive defect that may even precede any underlying
glucose dysregulation. Despite our limitation of not hav-
ing a healthy, nonobese control group, our finding of an
incretin defect in youths with IGT compared with obese
NGT lends support to the postulate that an incretin de-
fect may be an early, inherent part of T2D pathogenesis.
Whether an incretin defect is present in youth with sim-
ple obesity and no dysglycemia remains to be determined.

In conclusion, OGTT-based bCGS declines progres-
sively in obese youth across the spectrum of glucose tol-
erance from NGT to IGT to T2D. This is associated with
a clear deficit in incretin effect with no evidence of de-
creased circulating concentrations of incretin hormones.
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