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Approximately, 10–15% of women of reproductive age are affected by endometriosis,

which often leads to infertility. Endometriosis often has an inherited component, and

several causative predisposing factors are hypothesized to underlie the pathogenesis

of endometriosis. One working hypothesis is the theory of retrograde menstruation.

According to the theory of retrograde menstruation, components of refluxed blood,

including apoptotic endometrial tissue, desquamatedmenstrual cells, lysed erythrocytes,

and released iron, induce inflammation in the peritoneal cavity. This in turn activates

macrophage release of reactive oxygen species (ROS), leading to oxidative stress

via the respiratory burst. Refluxed blood promotes the Fenton reaction, terminating

in the production of hydroxyl radical, the most potently destructive ROS. In this

article, we review the papers that demonstrate decreased quantity and quality of

oocytes and embryos retrieved from IVF/ICSI patients with endometriosis. We discuss

literature data demonstrating that ROS are generated in endometriotic tissues that have

physical proximity to gametes and embryos, and demonstrating adverse impacts on

oocyte, sperm and embryo microtubule apparatus, chromosomes, and DNA. Data that

addresses the notions that endometriosis causes oocyte and fetal aneuploidy and that

these events are mediated by ROS species are also discussed. Literature data are

also discussed that employ use of anti-oxidant molecules to evaluate the importance

of ROS-mediated oxidative damage in the pathogenesis of endometriosis. Studies are

discussed that have employed anti-oxidants compounds as therapeutics to improve

oocyte and embryo quality in infertile subjects, and improve fertility in patients with

endometriosis.
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INTRODUCTION

Endometriosis is a disease in which endometrial cells migrate
outside the uterine cavity and form “implants” that colonize in
distal tissues. These include but are not limited to the fallopian
tube, the ovary, and peritoneum (1). Endometrial implants are
estrogen-dependent for their growth (2). Endometriosis is a
frequent finding among infertility patients. Often it takes years
before a patient knows she has it. Accurate statistics are not
available as to the actual the frequency of the disease. It is
commonly accepted that 10 to 15% of reproductive age women
are suffering from endometriosis. Twenty-Five to Fifty percent of
female patients undergoing fertility treatments are being treated
for endometriosis (3).

In infertile patients, an exact staging of endometriosis
is very important. The American Society of Reproductive
Medicine (ASRM) classification system is used world-wide. The
classification is based on laparoscopic findings. Number, location
and size of the endometriotic implants are drawn on a figure
of the pelvis and degree of adhesions and lesions and the
place of the endometriotic tissues are scored. The classification
of endometriosis is based on this point score (4). Generally,
ASRM I endometriosis is defined by only superficial lesions and
possibly a few adhesions, ASRM II endometriosis is defined
by some deep lesions in the recto-uterine pouch, ASRM III is
defined by the presence of endometriotic tissues on the ovary
resulting endometriotic cysts called endometriomas. ASRM IV
is defined by large endometriomas with extensive adhesions or
deep infiltrating the bowels, the bladder and/or retroperitoneal
tissues. Surgical treatments are performed to directly remove
endometriotic implants from extrauterine locations. Medical
treatments are comprised of long-term GnRH suppression with
GnRH agonists to shrink existing endometriotic implants and
suppress the growth of new ones. IVF is also used to abrogate
infertility caused by endometriosis. For patients with ASRM I
and II endometriosis there is a good prognosis for successful
infertility treatment using either surgical, or medical treatment
and/or assisted reproductive techniques (ART). While there is
a 60–70% cumulative clinical pregnancy rate for ASRM I/II
patients undergoing ART, the other treatments could also be
successful and to date there is no unified view as to what kind
of therapy should be recommended for these patients (5). On the
other hand, there is now unanimous consensus for stages III and
IV that only ART is effective (6). Even so, ART success rates in

Abbreviations: 8-OHdG, 8-hydroxy-2’-deoxyguanosine; AMH, anti-Müllerian
hormone; ART, assisted reproductive technology; ASRM, American Society
of Reproductive Medicine; ATP, adenosine triphosphate; CAT, catalase; CCS,
comprehensive chromosomal screening; FISH, fluorescence in situ hybridization;
FF, follicular fluid; G6PD, glucose-6-phosphate dehydrogenase; GPx, glutathione
peroxidase; GR, glutathione reductase; GSH, glutathione; GST, glutathione S-
transferase; H2O2, hydrogen peroxide; ICSI, intracytoplasmic sperm injection; IL-
6, interleukin 6; IVF, in vitro fertilization; LC, L-carnitine; MDA,malondialdehyde;
mtDNA, mitochondrial DNA; NAC, N-acetyl cysteine; O•−

2 , superoxide anion
radical; •OH, hydroxyl radical; PF, peritoneal fluid; PGS, preimplantation genetic
selection; PGT-A, preimplantation genetic testing for aneuploidy; PN, pronucleus;
ROS, reactive oxygen species; SOD, superoxide dismutase; TNF, tumor necrosis
factor; XXO, xanthine oxidase.

Stage III/IV patients remain significantly lower than for stage I/II
patients (5).

Here we provide an overview of the pathogenesis of
endometriosis. We then discuss current and emerging
understandings of the pathologic mechanisms by which
endometriosis causes infertility. We present that endometriosis
induces decreased quantities of oocytes and embryos, decreased
embryo quality, and decreased implantation and pregnancy rates
in patients with endometriosis. We then discuss evidence that
highly reactive free radical species, especially reactive oxygen
species (ROS) generated in endometriosis patients damage
intracellular structures and genomic material to adversely
impact the structural integrity and viability of oocytes, sperm,
and embryos, evaluate literature data that implicates oocyte
and fetal aneuploidy as contributing factors for infertility
caused by endometriosis, and we discuss therapeutic horizons
for treatment of endometriosis patients with antioxidant
therapies.

Part I: Overview of the Pathogenesis of
Endometriosis
Most frequently, endometriotic implants are found in the
pelvis. The common sites of endometriotic implants include the
surfaces of the ovaries, fallopian tubes, and pelvic peritoneum,
all of which have physical proximity to ovarian follicles.
The uterosacral ligaments are also common implant sites
(alternatively called the “pelvic” sites) (7). Atypical sites for
endometriosis include the gastrointestinal tract, urinary tract,
soft tissues, and within the thoracic cavity including the pleura
and the lungs (8, 9).

Retrograde Menstruation
The most frequent accepted theory that explains the pathogenic
process by which these lesions occur is the theory of retrograde
menstruation, the theory that the backup of extrinsic menstrual
tissues into the fallopian tubes, pelvis, and peritoneum is a
driving force in the formation of endometriomal implants.
From the study of Halme et al. (10) is well known that 90%
of women with patent tubes have peritoneal fluid (PF)/blood
in the cul-de-sac during the menstrual period, irrespective
of whether they are healthy or suffering from endometriosis.
PF is present only in 15% of patients with tubal occlusion.
From these data it is evident that the occurrence of retrograde
menstruation alone is not sufficient to explain the development
of endometriosis. Instead a multifactorial mechanism is likely.
This theory helps explain the occurrence of abdominal-pelvic-
peritoneal endometriosis, but it does not explain the atypical
forms of endometriosis.

Coelomic Metaplasia and Metastatic Spread
In 1969, Ferguson et al. demonstrated Müllerian metaplasia of
coelomic epithelia (11). The presence of metaplastic epithelia
was also found in the pelvic lymph nodes. This is an
evidence that beside the peritoneum other organs may also
contain undifferentiated cells. Based on this finding endometrial
cell transformation from these cells is theoretically possible.
With this theory, not only the pelvic peritoneal forms of
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endometriomas, but also the atypical endometriomas can be
explained.

Altered Immunity
When endometrial tissue relocates to the abdominal cavity—as
in the case of retrograde menstruation—both the cellular and
humoral immune systems are activated (12). In patients with
endometriosis the cellular mediated immune reaction does not
recognize the endometrial tissue as “foreign.” This is permissive
for endometrial cells to implant in the peritoneum (13, 14).
After implantation, macrophage and leukocyte invasion are
detected in the surroundings of the implants and in the PF.
These cells secrete cytokines and growth factors, including IL1,
IL-6, IL8, TNF, VEGF, CCL5, RANTES; and other cytokines
(14–16). This complex network of locally produced cytokines
stimulates the growth and inflammatory behavior of the ectopic
endometrial implants. Proinflammatory cytokines secreted from
endometriotic lesions enhance the inflammatory reactions that
occur in endometriosis. They promote survival and growth of
these lesions and block their demise (17).

Stem Cells
After menstruation, the endometrium regenerates from the
lower basal layer. The basal layer contains adult stem cells and
a small population of epithelial and stromal stem cells (18).
Recently, Cousins and Gargett (19) identified several types of
stem/progenitor cells in the basal layer of the endometrium. It
is logical to postulate that these types of cells could also reach
the abdominal cavity during the menstrual period via retrograde
menstruation, to thereby play a key role in the pathogenesis
of endometriosis. The notion has also been advanced that
non-endometrial stem cells, such as blood-borne bone marrow
derived cells, may also reach the abdominal cavity, differentiate
into endometrial cells, and implant in the peritoneum and the
surfaces of organs in the abdominal cavity (20).

Genetics and Altered Gene Regulation in

Endometriosis
Familial inheritance of endometriosis has been widely reported
in the literature (21). Saha et al. (22) reported that the
incidence of endometriosis in monozygotic twins is double that
of dizygotic ones. Based on these data, the best-fitting model
revealed a contribution of 47% by additive genetic factors and
the remaining 53% attributed to environmental effects. More
recently, based on meta-analysis of 17,045 endometriosis cases,
Fung and Montgomery (23) suggested that the most common
genetic factors contributing to endometriosis risk are located in
regulatory DNA sequences that control gene transcription. Genes
with altered gene regulatory sequences include LINC00339,
VEZT CDC42, and CDKN2A-AS1. CDC and CDK genes
encode genes that regulate cell cycle progression. It is logical to
hypothesize that dysregulation of their expression may promote
endometrial growth. This observation is most consistent with
a polygenic/multifactorial etiology, or via causation by several
alternate pathways, although alternative mechanisms cannot be
excluded.

Part II: How Does Endometriosis Cause
Infertility?
Patients With Endometriosis Have Decreased Quality

and Quantity of Oocytes and Embryos, Decreased

Implantation and Pregnancy Rates, and Increased

Rates of Spontaneous Abortion
Patients suffered from endometriosis showed lower ovarian
reserved (24). As an indicator of this phenomenon, significantly
altered level of serum AMH was reported by Seyhan et al. (25)
in endometriosis patients than healthy controls. In contradiction
with this, Kucera et al. (26) observed no differences in follicular
fluid (FF) AMH levels between women with endometriosis
and healthy control women. Several investigators have observed
decreases in fertilization rate, yields of high-quality day 3
embryos, rates of blastocyst formation, and rates of implantation
and pregnancy in IVF endometriosis patients compared to
control subjects, and also in a mouse model of endometriosis
embryotoxicity (24, 27–30). A concomitant increase in the rate
of spontaneous abortions is also observed (24). Moreover, the
severity of alterations depends on the stage of endometriosis:
patients with Stage III-IV endometriosis have fewer retrievable
oocytes, fewer fertilizable and fertilized oocytes, fewer embryos
poorer quality embryos, lower rates of implantation, and fewer
fetuses than the group of patients with Stage I-II endometriosis
or without endometriosis. The published decrement in the
embryological parameters is probably the consequence of
oxidative stress processes leading to genetic instability. This will
be explained in details in the further sections.

Multiple Factors in the Pathogenesis of

Endometriosis-Associated Infertility: An Overview

Mechanical factors
Multiple factors have been implicated as contributing to
infertility of patients with endometriosis. Mechanical factors play
important roles. Occlusion of the fallopian tubes and peritoneal
adhesions impede fertilization and implantation by mechanically
blocking the transfer of oocytes, sperm, and embryos through
the fallopian tubes. In addition, gamete transfer is inhibited
due to impedance of tubal motility due to elevated levels of
cytokines (31).

Hormones
Hormonal status is altered significantly in patients with
endometriosis. Endometriosis is associated with an increased
aromatase enzyme activity in granulosa cells, resulting in elevated
follicular estradiol secretion (32). While normal menstrual
cycle levels of estradiol promote the healthy development and
receptivity of the endometrium, the high estradiol levels of
endometriosis patients elicit pathologic changes in the eutopic
proliferative and secretory endometrium. Elevated estradiol is
also key to the pathogenic process of endometriosis because it
drives the growth of extrauterine endometriotic implants.

Endometriosis patients frequently have elevated
prostaglandins (33). This causes uterine contractions,
which are detrimental to the maintenance of pregnancy.
Hyperprolactinemia is another frequent finding, although the
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cause is not yet clear. Hyperprolactinemia causes corpus luteum
dysfunction, which increases rates of spontaneous abortion,
the rates of which are significantly higher in patients with
endometriosis (34).

HOXA10
The homeobox genes encoding HOXA10/HOXA 10
transcription factors have key roles in embryogenesis,
endometrial regeneration, and endometrial receptivity (35).
Patients with endometriosis exhibit a failure to increase
expression of HOXA10 in the mid luteal phase, at the peak of the
implantation window. This is correlated with increased rates of
implantation failure.

Endometrial receptivity vs. egg quality
Elevations in estradiol, prostaglandins, HOXA10 expression,
and prolactin, as well as progesterone resistance (36) may
reduce endometrial receptivity in endometriosis patients, thereby
impeding implantation and contributing to their infertility (32,
34, 35). However, while implantation rates are clearly diminished,
it is still unknown which impairments in endometrial receptivity
are causative factors for infertility in endometriosis patients. In
a key study, Simón et al. reported that donor egg recipients
with endometriosis receiving eggs from fertile donors had
the same rates of implantation and pregnancy as recipients
without endometriosis (37). Conversely, donor egg recipients
who received eggs donated by patients with endometriosis
had significantly reduced implantation rates compared to other
patient groups. These data indicate that compromised egg and
embryo quality rather than endometrial receptivity plays a
principal role in diminished rates of implantation and fecundity
in patients with endometriosis.

Immune and inflammatory factors
Immune and inflammatory factors are thought to play key roles
in the pathogenesis of infertility in patients with endometriosis,
by reducing gamete quality and rates of gamete transport
and implantation, and by increasing rates of pregnancy loss.
Invasion of macrophages and other leukocytes into the PF and
the vicinity of endometriotic implants are thought to play an
important role in the pathogenesis of endometriosis infertility
by releasing potent, highly reactive free radical species that
directly damage sperm, oocytes, and embryos (14). Elevated
levels of inflammatory cytokines, growth- and angiogenic factors
have toxic effects on sperm, oocytes, embryonal development,
gamete transportation, and implantation. Elevated levels of anti-
endometrial antibodies are detectable in the blood serum and PF
from patients with endometriosis compared to healthy controls.
This is correlated with increased frequencies of miscarriages (38).
It is reasonable to hypothesize that that these antibodies attack
the integrity of the endometrium by compromising sustained
implantation and increasing the likelihood of spontaneous
abortion. In addition, immune cells generate ROS during this
inflammatory process through the respiratory burst NADPH
oxidase system (39). Levels of ROS produced by these
inflammatory responses in the environments of endometriomal
implants are significantly higher in comparison with their healthy

counterparts (40). The pathological increase in NADPH oxidase-
mediated superoxide (O•−

2 ) and peroxide production from
inflammatory phagocytic cells in the course of this inflammatory
reaction acts as source of oxidative stress. Not only the oxidative
burst is responsible for oxidative stress. From the refluxed blood,
erythrocytes may lose their integrity and iron releases. In the
presence of this kind of transition metals other ROS can be
produced (29).

Part III: Oxidative Stress and Its Role in
Infertility in Patients With Endometriosis
Overview of Oxidative Stress and the Antioxidant

Response
Free radicals are ions, atoms or molecules containing a free
unpaired electron in the outer electron shell. The free radical
state is highly unstable, thus highly reactive in capturing
electrons from other molecules. Levels of free radical species in
healthy tissues exert important intracellular signal transduction
and regulatory functions in folliculogenesis, maturation of
oocytes, dissolution of corpora luteal, implantation, and embryo
development (40, 41). While free radical species are normal by-
products of cellular metabolism, they are produced copiously in
the context of inflammation. Due to their chemical instability
and reactivity, free radicals in excess do indiscriminate damage
to cellular organelles and molecular components, including
DNA, RNA, proteins, lipids, carbohydrates, and their building
blocks (nucleotides, amino acids, etc.). This results in aberrations
in cellular structure and function, and mitotic and meiotic
inheritance, and even cell death. Therefore levels of free
radical species are closely controlled by endogenous antioxidant
molecules that quench their reactivity. The most biologically
important types of free radicals in mammalian systems are
“reactive oxygen species” (ROS). “Oxidative stress” occurs in cells
when there is an unbalanced state of ROS excess compared to
available antioxidant activity. This can be caused by excessive
production or exposure to ROS, inhibition of antioxidant
synthesis, or depletion of antioxidants (42).

Reactive Oxygen Species in vivo
The predominant ROS species are O•−

2 , hydrogen peroxide
(H2O2), and, hydroxyl radical (•OH) (43). These potent ROS
are predominantly the products of incomplete reduction of
molecular oxygen in the mitochondrial electron transport
system, where electrons leak from the NADH-ubiquinone
oxidoreductase to molecular oxygen (44).

Superoxide anion
Approximately, 1–5% of molecular oxygen is converted into O•−

2
by mitochondrial complexes during normal respiration (45).
O•−

2 is a highly reactive radical that does significant intracellular
damage. O•−

2 is capable of oxidizing cytochrome c in the
respiratory chain. It can oxidize polyphenols, tocopherol, and
thiol (i.e., cysteine, methionine). Furthermore O•−

2 may be able
to inactivate catalase (CAT) a major antioxidant enzyme that is
most abundant in peroxisomes.

O•−

2 is able to either reduce or oxidize transition metals (e.g.,
iron, copper) (46), which function as catalysts for redox reactions
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that produce reactive oxygen species. Through the reduction
of Fe(III) shown in Reaction 1, O•−

2 destroys the Fe-S clusters
of proteins, and the reduced iron undergoes additional redox
reactions that cause more injuries, as described below (44).

Fe3+ +O2
•−

⇄ Fe2+ +O2 (1)

Fe2+ + 2H+
+O2

•−
⇄ Fe3+ +H2O2 (2)

Hydrogen peroxide
As shown in Reaction 2, Fe(II) returns to the oxidized
Fe(III) state, in the process catalyzing the production of
H2O2. Aerobic respiration is also a major source of H2O2 in
mitochondria. Every system that generates O•−

2 also produces
H2O2 via a dismutation reaction by the enzyme superoxide
dismutase (SOD). Mitochondrial respiration and peroxisomal
lipid metabolism are the primary sources of H2O2 in eukaryotic
cells (47). H2O2 is highly reactive in its own right. It forms
adducts with various cellular components. It reacts with cysteine
and methionine amino acid side chains causing protein damage.
However, the greatest damage that is done by H2O2 derives from
its ability to form hydroxyl radical •OH, the most pernicious and
reactive of the ROS species.

Hydroxyl radical
The reactivity of O•−

2 and H2O2 are significantly lower than that
of •OH. Intracellular production of •OH from H2O2 is driven by
the Fenton reaction, shown in Reaction 3 (43, 44, 48):

Fe2+ +H2O2 ⇄ Fe3+ +
•OH+OH− (3)

As the most reactive known ROS, •OH reacts with nearly all
intracellular building blocks and macromolecules (amino acids,
nucleic acids, phospholipids, sugars, proteins, RNA, DNA, lipids,
polysaccharides). Hence the physiological concentration in cells
is about zero. No enzymatic defense against •OH is known.
The only protection is realized via the strict control of iron
metabolism (49).

Antioxidant Defenses
Antioxidants comprise the principal means of intracellular
protection from free radical damage (48). The term “antioxidant”
is used to describe molecules that directly react with and
inactivate ROS species. The term also refers to molecules that
function indirectly, either by activating downstream antioxidant
protection systems, or by inhibiting pro-oxidant systems that
generate ROS. The antioxidants are in two major groups: non-
enzymatic systems, and enzymatic systems.

Non-enzymatic-Defense
The glutathione tripeptide molecule (GSH; L-ϒ-glutamyl-L-
cysteinylglycine) is a key peptide component of intracellular
anti-oxidant defense (50). Other classes of non-enzymatic
components include vitamins (e.g., ascorbic acid, α-tocopherol),
enzymatic cofactors (e.g., Coenzyme Q10), nitrogen compounds
(e.g., uric acid), carotenoids (e.g., ß-carotene, lutein), and
minerals (e.g., zinc, selenium). There are two forms in cells:
reduced (GSH) and oxidized (glutathione disulfide: GSSG).
GSH protects cells against oxidative stress by hydrogen or

electron donation. The ratio of these two forms is a good
indicator of oxidative stress. GSH serves as a cofactor for
several detoxification enzyme (e.g., glutathione peroxidase: GPx),
assists in the transport of amino acids through the plasma
membrane, and is able to regenerate the C- and E-vitamins
and direct scavenger of •OH and singlet oxygen (42, 47). GSH
is a “universal” antioxidant molecule, because it can quench
nearly every kind of ROS, including O•−

2 , H2O2, •OH, and
peroxidized lipids (51, 52). The balance between GSH and GSSG
is maintained by GSH homeostatic enzymatic defense enzymes.

Enzymatic Defense

SOD and catalase
Like GSH, superoxide SOD neutralizes superoxide anion O•−

2 .
In eukaryotes there are two species of SOD enzyme, copper-zinc
SOD and manganese SOD (SODCuZn and SODMn). Conversion
of O•−

2 to H2O2 is performed by the cyclic oxidation of the
Cu2+ or Mn2+ transition metal ion localized in the SOD active
site (42, 47). Enzymatic antioxidant defense cannot rely solely
on SOD, because that would result in markedly increased tissue
damage due to high accumulated levels of intracellular H2O2,
the substrate for production of •OH via the Fenton reaction.
Terminal transformation of H2O2 to H2O circumvents H2O2

accumulation, and is performed by the CAT enzyme.

Homeostatic regulation of GSH levels
Glutathione peroxidase (GPx), glutathione reductase (GR),
glutathione S-transferase (GST), and glucose-6-phosphate
dehydrogenase (G6PD) are responsible for recycling of oxidized
glutathione (GSSG) back to reduced glutathione (GSH). It is
by these means that the GSH molecule neutralize attacks by
additional ROS (42, 43).

Reactive Oxygen Species-Mediated
Damage to Intracellular Macromolecules
In this section we provide an overview of the types of cellular
macromolecules that are damaged by ROS in mammalian cells
including endometriotic cells, sperm, oocytes, and embryos, and
other cell types.

Point Mutations
Genomic DNA, mitochondrial DNA, and cellular RNA species
can be attacked by •OH (53, 54). O•−

2 and H2O2 do not
attack DNA. •OH reacts with purine and pyrimidine bases in
DNA and RNA (43). •OH attacks thymine or deoxyguanosine
bases to generate 5-hydroxy-6-hydrothymine or 8-hydroxy-2’-
deoxyguanosine (8-OHdG). Measurements of 8-OHdG levels
are among the most widely utilized indices of DNA oxidation.
Oxidative DNA damage results in mutations that generate
dysfunctional protein gene products and altered replication and
transcription of crucial genes (44, 53–55).

Oxidative Stress-Induced Lipid Peroxidation
Lipid peroxidation occurs primarily via peroxidation of
unsaturated fatty acids, although saturated fatty acids and
membrane cholesterol can also undergo peroxidation. The lipid
peroxidation process is primarily initiated by ROS (mostly •OH)
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(56). The peroxidized lipid radical reaction product is very
unstable and covalently reacts with oxygen to create peroxyl
radical. This triggers a chain reaction when the peroxyl radical
takes hydrogen from another fatty acid, producing a new lipid
radical and a lipid peroxide, and on in a sequence, a process
termed propagation. The reaction is only terminated once two
radicals react with one another or with an antioxidant molecule
(43, 44, 57, 58).

Damage to Proteins
ROS reacts with proteins and disrupts protein folding (44). This
results in perturbations in biochemical activities of enzymes,
transport proteins, structural proteins, receptors and other
proteins such as enzymes that control iron and calcium
homeostasis. •OH is the predominant ROS species that causes
oxidative damage to proteins. It attacks the α hydrogen atom
of an amino acid residue to form a carbon-centered radical
that reacts with oxygen to generate an alkyl-peroxyl radical and
then in two steps an alkoxyl radical. Amino acid side chains of
proteins can be also attacked. Cysteine and methionine residues
are specifically susceptible to oxidation.

ROS Damage to Oocytes, Sperm, and
Embryos, and Prevention by Antioxidants
Oocytes
Aberrations in microtubule integrity, abundance, and alignment
at the metaphase plate have been shown to increase susceptibility
to errors in meiotic chromosome segregation in animal oocytes,
and may do so in human oocytes, and embryos (59–64). ROS
damages oocyte spindle microtubules and also blocks formation
of new spindle microtubules (65). Several pathways have been
found by which ROS promotes damage and disassembly of
meiotic spindle microtubules in oocytes (64):

(i) Stability of the spindle is dependent on maintaining the
dynamic equilibrium between polymerization (assembly)
and depolymerization (disassembly) of tubulin subunits to
maintain intact spindle microtubules. ROS inactivate protein
kinases that phosphorylate microtubule-associated proteins
(MAPs) that maintain this dynamic equilibrium (65).

(ii) ROS impedes mitochondrial respiration, reducing the rate of
ATP synthesis via destruction of mtDNA (65, 66). This can be
expected to result in GTP depletion. GTP is an essential co-
factor for microtubule assembly (67). ROS is thereby expected
to impede microtubule assembly.

(iii) A high intracellular ratio of reduced glutathione to oxidized
glutathione (GSH/GSSG ratio) is protective of microtubules
in their polymerized state by the preventing oxidation of
cysteine residues in tubulin subunits. Conversely, a low
ratio is permissive for tubulin subunit oxidation, and thus
favors microtubule disassembly. Fewer intact microtubules
are available to faithfully orchestrate the process of meiotic
chromosome segregation in the oocyte (65).

Experimental evidence for oxidative stress-induced chromosome
segregation errors in Drosophila melanogaster oocytes was
published by Perkins et al. (68). Knock-down of the SOD
genes encoding SOD1 and SOD2 induces meiotic chromosome

nondisjunction. Zuelke et al. demonstrated that GSH plays an
important role in hamster oocyte spindle function. Depletion of
GSH with the GSH oxidant diamin disrupted the meiotic spindle
apparatus (69). A number of studies have shown chromosome
and spindle misalignments and aneuploidy in oocytes of mice
exposed to ROS (70–74). For example, germinal vesicle (GV)
mouse oocytes were treated with different H2O2 concentrations
during in vitro maturation displayed concentration dependent
increased incidences of misaligned chromosomes, spindle
abnormalities, and aneuploidy (75).

A number of studies have shown the ability of antioxidant
treatments to protect mouse oocytes from chromosome and
spindle misalignments and aneuploidy. Vitamin C, vitamin E, α-
lipoic acid and acetyl-carnitine, resveratrol, and N-acetyl cysteine
protect oocytes from genomic DNA damage, mitochondrial
dysfunction, abnormal spindle morphology, and chromosome
misalignments (73–78).

He et al. reported that mouse oocyte mitochondria produce
the antioxidant melatonin (79). Treatment of IVM mouse
oocytes with melatonin reduces ROS production and inhibits
8-oxodG formation. It increases mitochondrial mtDNA
copy number, decreases the fraction of oocytes with spindle
aberrations and blastocysts from fertilized oocytes that were
treated with melatonin are of higher quality.

Sperm
The coupled pro-oxidant enzyme system xanthine-xanthine
oxidase (XXO), generates O•−

2 and H2O2 (80). Human
spermatozoa treated vitro with XXO show significantly increased
DNA fragmentation by TUNEL analyses. Co-incubation with
antioxidants significantly reduced rates of DNA fragmentation.

Dietary antioxidant supplementation of men improves their
semen parameters. Vitamins A and E reduce sperm DNA
fragmentation, pyncogynol improves sperm quality and increases
testosterone levels, and alpha lipoic acid improves spermmotility
(81–83). These data point to ROS damage as an important
determinant of genomic integrity and viability of the male
gamete.

Burruel et al. found that XXO increases lipid peroxidation
of Rhesus Macaque sperm and it decreases sperm motility
(84, 85). They also found adverse outcomes for the embryos
from the sperm exposed to ROS damage. MII embryos from
macaque oocytes fertilized with these sperm displayed lower
rates of embryo development than those that had been fertilized
with control sperm, and the embryos ultimately underwent
fragmentation and permanent mitotic arrest. In preliminary
observations, abnormal mitotic spindles and DNA fragmentation
of embryos was also observed, and Burruel et al. suggest that these
abnormalities may play roles in causing arrest of the embryos.
In a similar study with bull sperm, Barbato et al. also found
that XXO increased sperm DNA fragmentation, and it decreased
sperm motility and fertilization rates. Blastocysts grown from
oocytes fertilized with sperm that had been exposed to XXO
displayed decreased blastocyst developmental competence by
increasing blastomere DNA fragmentation (86). Treatment with
antioxidant Coenzyme Q10 and cofactors mitigated these effects.
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Embryos
ROS impedes embryo development and causes embryotoxicity
and teratogenesis. Cultured mouse zygotes were treated with
H2O2 in dose response studies (87, 88). H2O2-treated zygotes
had elevated levels of ROS, as well as increased oxidative
damage, activation of the G2/M checkpoint, decreased cleavage
and blastocyst rates, and increased rates of apoptosis. In other
studies, phenytoin was used as a reagent to treat mouse
embryos because it causes oxidation of DNA, proteins, and
lipids, likely due to increased production of •OH radicals
(89, 90). Cultured gestational day 9.5 mouse embryos treated
with phenytoin displayed substantially higher levels of 8-OH-
2′-dG DNA modifications than vehicle-treated control embryos
and significant developmental damage. Media supplemented
with SOD and CAT enzymes reversed 8-OH-2′-dG DNA
modifications and prevented morphological anomalies. GSH,
vitamin E, and iron chelators also reduce macromolecular
embryonal damage and teratogenicity (90).

Part IV: Reactive Oxygen Species and
Oxidative Damage in Endometriosis
Proximity of Gametes and Embryos to ROS From

Inflammatory Response
ROS are in female oviductal fluid and PF and function as normal
signaling modulators of ovulation, embryo development and
implantation (91, 92). Endometriomal implants with proximity
to the ovary include those that are directly on the surface of the
ovary itself, and those that reside in the peritoneum and in the
fallopian tubes. These explants have the potential to expose the
growing follicle, the oocyte, sperm, and embryos to high levels of
ROS that are generated by inflammation.

Endometriomas create physical blockages and can impede
normal fluid flow andmotility in the oviduct, the peritoneum and
the vicinity of the ovary, facilitating the buildup of refluxed blood
and its components. These include apoptotic endometrial tissue
and desquamated menstrual cells. They trigger an inflammatory
response that activates macrophages and neutrophils (93).
Elevated serum IL-6 and TNF-α levels indicative of increased
inflammatory activity have been observed in patients with
endometriosis. Singh et al. found elevation of numerous
cytokines within follicles of endometriosis patients compared
to those of normal ovulating women, with intrafollicular IL-
8, IL-12, and adrenomedullin inversely correlated with rates
of oocyte maturation and embryo grade (94). Elevated pro-
inflammatory cytokines IL-1β, TNF-α, and IL-6 are indicative of
an inflammatory microenvironment for the follicles and gametes
and embryos of endometriosis patients (95–98). IL-6 and TNF-
α, activate intracellular signal molecules to induce production of
O•−

2 and H2O2 during the pathogenesis of endometriosis (99) via
the respiratory burst NADPH oxidase system (39). Superoxide
anion is converted to peroxide by local SOD enzymes (29,
100). Levels of O•−

2 and H2O2 produced by these inflammatory
responses in the peritoneal, ovarian and oviductal environments
of endometriomal implants are significantly higher than those
which are generally encountered in their healthy counterparts
(40, 93). Elevated ROS levels are also observed in granulosa cells

from endometriosis patients (101). Pathological increases in local
concentrations of ROS cause oxidative stress (102).

Pernicious Effects of Refluxed Blood and the Balance

of Pro-Oxidant and Antioxidant Forces: The Fenton

Reaction
In addition to inflammatory components, accumulated refluxed
menstrual blood contains numerous lysed erythrocytes. In serum
of women with endometriosis, the concentration of iron is
significantly increased by 1.98-fold (103), and it is highly likely
that the iron concentrations at local implant sites are elevated
even further. This along with the elevated level of peroxide is
a “perfect storm” for generation of hydroxyl radical, the most
reactive and destructive form of ROS. Peroxide is converted
to hydroxyl radical •OH, which is catalyzed by the excess
localized iron via the Fenton reaction. It is by these means that
the interplay of these free radical sources is thought to cause
ROS damage by •OH to the surrounding tissues including the
peritoneum, oviduct, ovary, and the follicle, oocyte, sperm and
embryos (29, 84, 85, 103–113).

Other Types of Oxidative Damage in Endometriosis
Lipid peroxidation is a sensitive index of oxidative stress
induced by ROS. Levels of the peroxidized lipid malondialdehyde
(MDA) are significantly elevated in FF of patients suffering
from endometriosis compared to control patients with tubal or
minimal male infertility (29, 103, 105, 106, 111). Glutathione-
S-transferase (GST) enzymes exert antioxidant effects by
coupling ROS to glutathione (114). GST concentrations decline
significantly in serum and PF as a function of increased severity
of endometriosis (115). Indeed, a decrease in total antioxidant
capacity is observed in sera of patients with endometriosis (111,
113).

Heat shock proteins (HSPs) play a role of central importance
in protecting cells from damage by inflammation, oxidative
stress, and other causes (116). Dysregulation of HSPs is
implicated in endometriosis. Heat shock chaperone proteins
such as Hsp70 carry out key functions in the repair of cellular
injury including reversal of protein misfolding that occur due
to oxidative damage. Elevated serum HSP70 levels are found in
women with endometriosis compared to control women (117).
Apoptosis is triggered when ROS-mediated cellular injury is
sufficiently severe that it cannot be repaired.

Balance of Pro-Oxidant and Anti-oxidants in

Endometriosis
Epithelial cells from deep endometriotic lesions proliferate more
rapidly than their normal endometrial counterparts. They too
are sources of ROS (112). This includes increased proliferation
of endometriotic stromal cells. These proliferating cells produce
significantly more O•−

2 and H2O2 than their normal epithelial
and stromal counterparts (108, 112). Treatment with the potent
anti-oxidant N-acetyl cysteine (NAC), a precursor of reduced
glutathione (GSH), significantly inhibits proliferation of human
endometriotic cells. This may implicate ROS as an autocrine
growth factor that promotes the pathogenesis of endometriosis.
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Endometriotic stromal and epithelial samples display a
significant increase in levels of SOD and GSH. This would be
expected to produce an excess of peroxide (112). Singh et al.
found 1.9-fold lower specific activity of CAT enzyme in FF
of women with endometriosis (29). Singh et al. also found
significantly reduced specific activity of CAT (1.9-fold lower),
glutathione peroxidase (GPx; 2.7-fold lower), and glutathione
reductase (GR; 5-fold lower) in endometriosis tissue samples
from patients with endometriosis. Given that CAT, GPx, and GR
catalyze the terminal reduction of peroxide to water to prevent
accumulation of hydroxyl radicals, this is a potentially ominous
finding. Taken together these results suggest another perfect
storm, whereby levels of •OH are markedly increased in FF,
risking increased damage to the follicle and the oocyte, although
as discussed above, intracellular hydroxyl radical concentration
is not directly measurable due to its extreme chemical reactivity.

Oxidative Stress Caused by the
Microenvironment in Endometriosis and Its
Effects on the Quality of Oocytes, Sperm,
and Embryos
As discussed above, the data from the literature demonstrate
lower implantation rates, lower pregnancy rates, and higher
miscarriages rates in IVF patients with endometriosis. These
patients exhibit lower numbers of retrieved oocytes, lower
quality of oocytes, lower number of embryos and quality of
embryos, and lower rates of blastocyst formation (24–30).
Key aspects of the pathogenesis of endometriosis including
diminished fertility have been recapitulated in surgically-induced
rodent models of endometriosis (118–120). The mice ovulates
the same number of MII oocytes, but a lower percentage is
morphologically normal, and the yield of zygotes per dam is
diminished. Rats with surgically induced endometriosis have
reduced fecundity, develop fewer ovarian follicles, and have
morphologically abnormal MII oocytes with increased rates
of meiotic chromosome and spindle misalignments compared
to sham-operated rats. Day 3 embryos have higher rates of
fragmentation and cleavage delayed or arrested cleavage (121).
One would predict that semen parameters would also be
adversely affected in these models, although Pubmed searches
indicate that this study has yet to be performed.

A key hypothesis we are studying here is that in endometriosis,
a pro-oxidant microenvironment in the local vicinity of the
follicle created by an unbalanced redox state detrimentally
impacts the quality of oocytes, sperm, and embryos, hampering
their cellular function, jeopardizing their viability, and that this
is a fundamental underlying cause of diminished fertility with
endometriosis. Since FF and PF comprise key constituents of
the local environment to which gametes and preimplantation
embryos are exposed, a number of studies have investigated
ROS activities and oxidative stress response to FF and PF from
IVF patients with endometriosis, and their abilities to damage
gametes and embryos.

Mass spectroscopy proteomics of FF from women with
endometriosis indicates elevated oxidative stress status (122).
Pro-inflammatory cytokines in FF and PF from women with

endometriosis are elevated compared to PF and FF of control
women (40, 123–126). FF from women with endometriosis
has significantly higher levels than FF from control women of
advanced oxidation protein products, novel markers of oxidative
stress (127). 8-OHdG modifications in DNA are elevated in
FF and PF from women with Stage I/II and Stage III/IV
endometriosis compared to control patients (54, 105, 128). 8-
OHdG elevation may be due to both increased load of ROS and
decreased expression of OGG1, the base excision repair gene
that excises and repairs single base mutations, which in fact was
found in endometriosis patients (105). Studies by Da Broi et al.
and by Huang et al. found less antioxidant activity in FF of
patients with endometriosis than in control patients with tubal
infertility (129, 130). Some controversy remains, however, since
a single study by Nakagawa et al. found no elevation of total
oxidative stress indices in FF between patients with a unilateral
endometrioma and healthy patients (131).

Bovine and mouse IVM MII oocytes were incubated in PF
and FF from women with endometriosis vs. from control women
to compare their effects on oocyte quality. Oocytes were from
animals due to ethical prohibitions against studies that could
purposefully damage human oocytes. PF and FF from women
with endometriosis caused significantly greater chromosome and
spindle misalignments in bovine and mouse MII oocytes than PF
and FF from control women (109, 110, 128, 132, 133).

Sperm from healthy men was co-incubated with PF from
patients with endometriosis vs. healthy control patients. TUNEL
analyses showed significantly more DNA fragmentation of
the DNA from sperm incubated with PF from endometriosis
patients than from control patients (109). There was no effect
on morphology by conventional criteria. In other studies,
sperm motility was not impacted by PF from endometriosis
patients (134). Fertilization rates of mouse oocytes by mouse
sperm co-incubated in PF from endometriosis patients declined
significantly from their fertilization rates in PF from control
patients (135). Mouse embryos cultured in PF or FF from
endometriosis patients show decreased cell number and rates of
growth, decreased cleavage and blastulation rates, and increased
rates of DNA fragmentation, developmental arrest, embryo
toxicity, and apoptosis than mouse embryos cultured in PF or FF
from control patients (109, 110, 135–141).

Peritoneal and follicular fluids are complex mixtures with
thousands of diverse components. If elevated ROS and/or lower
antioxidant activities are responsible for the damage done to
gametes and embryos incubated in PF and FF of endometriosis
patients, then the addition of antioxidants to PF and FF
incubation medium should decrease rates of gamete and embryo
damage. Supplementation of PF and FF media from women
with endometriosis with N-acetyl cysteine (NAC) or L-carnitine
(LC) antioxidants reduced rates of chromosome and spindle
abnormalities in mouse and bovine MII oocytes (110, 132).
LC also prevented apoptosis of mouse embryos incubated in
PF of endometriosis patients (110, 142). The data with NAC
indicate that antioxidants can improve egg quality and they
support the hypothesis that pro-oxidant activity in FF comprise
key components responsible for its detrimental effects on egg
quality. As L-carnitine has diverse biological activities, additional
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studies will be required to determine whether its beneficial
effects are attributable to its antioxidant properties. Future
studies investigating impacts on oocyte and embryo quality
by additional anti-oxidant supplements will be illuminating,
as will experiments to determine whether antioxidants can
prevent detrimental effects of PF and FF on sperm motility and
morphology.

Part V: Could the Altered
Microenvironment in Endometriosis Lead
to Oocyte and Fetal Aneuploidy?
Aberrations in oocyte spindle integrity and chromosome
misalignments at the metaphase plate are predictive of
impending aneuploidy (143). Given that PF and FF from
women with endometriosis cause chromosome and spindle
misalignments in bovine and mouse oocytes, does this mean that
endometriosis causes oocyte and fetal aneuploidy?

There are several limitations to the conclusions that can
be drawn from the studies with PF and FF. Some studies
employed relatively small sample sizes. Experiments analyzed
impacts of endometriotic human fluids on healthy oocytes
from heterologous animal species. The experimental design is
ethical by not exposing human oocytes to treatment that is
expected to have an adverse effect. However, it is possible that
human oocytes will not be sensitive to the same treatments
as animal oocytes. Finally, whereas chromosome and spindle
misalignments are likely correlated with impending meiotic
aneuploidy, the correlation with aneuploidy is not universal
(144).

Rajani et al. found that human IVF-ET patients with
endometriosis (n = 56) had comparable numbers of retrieved
oocytes, mature MII oocytes, and rates of visualized spindles,
vs. invisible spindles, to women with tubal infertility (n = 63)
(145). This is significant since the visualization of a spindle
is predictive of embryonic developmental competence (146).
However, suitable methodology for visualization of spindles was
not demonstrated since no pictures of oocyte spindles were
presented. In addition, spindle misalignments were not scored,
so the question of aneuploidy was not addressed. Fertilization
rates, yields per patient of fertilized embryos, and embryo grades
were also comparable between the test groups. While there
was no significant difference between pregnancy rates, there
was a trend toward lower pregnancy rates in patients with
endometriosis. These data suggest no significant differences in
oocyte or embryo quantity or quality or pregnancy achievement
between the test groups. However, we suggest that patients with
male infertility would have been a better control group than
patients with tubal infertility, given a theoretical potential for
pathogenic processes in the ovarian microenvironment for the
latter group. In addition, the numbers of patients per test group
were small enough that even robust differences may have been
missed, according to a chi square power analysis of proportions
performed by the authors of this review.

Gianaroli et al. performed PGS analyses of polar bodies
biopsied from oocytes from patients undergoing IVF treatment
for diverse infertility conditions, including endometriosis (147).

Oocytes were retrieved from patients from diverse age groups
with different infertility conditions and stimulation protocols.
FISH analyses were performed six for chromosomes for which
trisomies are most commonly observed –chromosomes 13, 15,
16, 18, 21, and 22. A total of 3,816 oocytes from 544 patients
were analyzed. Multivariate regression analyses were performed
to evaluate which input variables (i.e., type of infertility,
treatment protocol, age group) are most strongly associated with
chromosomal abnormalities compared with a control group.
Regression coefficients were calculated for the proportion of
normal oocytes for each group divided by the number of
diagnosed oocytes. A significant relationship was observed
between the incidence of endometriosis and the occurrence of
errors in any of the six chromosomes (Regression coefficient =
−12.223; P < 0.01).

Direct comparison of the fraction of oocytes with one or
more aneuploid chromosomes was performed for PB1 from
patients in this study with endometriosis (38 cycles) vs. control
subjects (58 cycles). The control group was primarily comprised
of patients with male factor or idiopathic infertility. 210 of
228 biopsied oocytes were diagnosed in the endometriosis
group and 382 of 426 oocytes were diagnosed in the control
group. A significantly higher fraction of polar bodies in the
endometriosis group exhibited aneuploidy compared to the
control group, with 112/210 polar bodies (53%) with a one or
more aneuploid chromosomes in the endometriosis group vs.
159/382 polar bodies (42%) in the control group (P= 0.0075, two
sided Fisher exact test; L. Gianaroli, personal communication).
In control studies with 100 donated oocytes, there was 95%
concordance between FISH results between PB1 polar bodies
and the oocytes from which they were derived. There was no
significant difference in age between the test groups (34.5 years
for the endometriosis group and 34.4 years for the control
group, P > 0.05). These data indicate with 67% power a higher
rate of aneuploidy in oocytes from patients with endometriosis
than control patients (chi square test of two proportions). Four-
hundred oocytes per test group would be needed to achieve
80% power. Comprehensive chromosomal screening (CCS) of
all 24 human chromosomes might have discerned significant
differences with the number of oocytes that were available for
biopsy.

A very large IVF-ET study by Juneau et al. (148) compared
preimplantation embryos by preimplantation genetic testing for
aneuploidy (PGT-A). It compared patients with endometriosis
(n = 305 patients, 1,880 blastocysts analyzed) to an aggregate
population of patients without endometriosis who suffered
all other forms of infertility (n = 3,798 patients, 23,054
blastocysts analyzed). Endometriosis patients had fewer oocytes,
fewer 2PN embryos, and a nearly significant decline in usable
blastocysts (regarded suitable for transfer). Blastocyst PGT-
A for all 24 human chromosomes revealed no significant
difference in the rates of aneuploidy between all tranched
age groups for endometriosis vs. control patients (P >

0.05).
The results of the Juneau et al. study are validated by its

large sample size, with the substantial ability to detect differences
in aneuploidy rates between test groups, with well over >80%
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statistical power (Chi square test of two proportions). An
actual incidence of oocyte aneuploidy that is higher in the
endometriosis patients cannot be ruled out, because attrition of
a fraction of aneuploid embryos at earlier growth stages would
not have been detected by PGT-A of blastocysts. The control
group was a heterogeneous patient population with a variety of
infertility disease processes including uterine factor, anovulatory
infertility, and tubal factor, each of which could have their
own pathogenic process, some perhaps including aneuploidy.
PGT-A of blastocysts from women with primarily male factor
infertility may have provided a better control. For both
Gianaroli et al. and Juneau et al., the severity of endometriosis
was not clarified, and without laparoscopic confirmation, the
control groups may have included a number of patients with
endometriosis.

Overall, the data in the literature demonstrate that
endometriosis causes a decline in the quality of oocytes and
embryos. Gianaroli et al. provide evidence that endometriosis
may cause aneuploidy in the human oocyte, although larger

sample sizes are needed to substantiate this. The best data
that are available demonstrate that endometriosis is not
associated with aneuploidy of embryos that reach the blastocyst
stage.

Part VI: Summary and Concluding Remarks
This last section summarizes a working model characterizing
modes of action by which ROS produced in endometriosis has
adverse impact on the quality of oocytes, sperm and embryos
to impede fertility (Figure 1). Endometriotic tissues implanted
in the peritoneal space, fallopian tube, and/or on the ovary
have proximity to follicles as they grow, and to oocytes, sperm
and embryos as they transit through the fallopian tube. These
endometriotic tissues are also in direct physical contact with
refluxed blood and tissue debris that arrive by the process
of retrograde menstruation. This combination triggers potent
inflammatory stimuli via macrophage and neutrophil activation
and accompanying release of pro-inflammatory cytokines (93,
95–97). This elicits copious production of ROS superoxide

FIGURE 1 | Schematic working model for the means by which reactive oxygen species in endometriosis promote decline in the quality of oocytes, sperm and

embryos to cause infertility. Reactive oxygen species-induced damage also includes damage to membranes, mitochondria, and other organelles (not shown).
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anion and peroxide by the inflammatory cells (102, 149).
Under these uncontrolled conditions, the concentrations of ROS
exceed the capacity of local antioxidant molecules neutralize
them (29, 112, 115, 150), resulting in a buildup of ROS
O•−

2 and H2O2, and also malondialdehyde, at the site of the
ovary and in follicular fluid and peritoneal fluid (29, 103,
105, 106, 108, 111, 112). Transitional iron Fe3+ released from
the stagnated refluxed erythrocytes magnifies the damage by
driving production of hydroxyl radical •OH. from peroxide via
the Fenton reaction (103). O•−

2 and •OH confer damage to
DNA, RNA, carbohydrates, proteins, and lipids that comprise
cellular organelles in oocytes, sperm, and embryos (43, 48, 109,
110).

Among the most pernicious effects of ROS in women with
endometriosis is the extent to which damage to gametes and
embryos can be self-perpetuating and even irreversible, by
damaging components of the cell that are responsible for
information coding and repair of cellular damage. •OH. as the
most potently reactive ROS species damages DNA by causing
•OH. causes point mutations, and DNA breaks that cause
DNA fragmentation. These damages disrupt the integrity of
the genetic code and inheritance for the mitochondrial and
nuclear genomes. •OH as well O•−

2 andH2O2, attack intracellular
proteins that maintain the fidelity of DNA replication, and
the ability of cells to repair intracellular protein damage.
Although there is a robust heat shock response of Hsp70
in endometriosis (117), ROS damages heat shock proteins
impeding HSP-mediated re-folding of polypeptides misfolded
and otherwise damaged due to oxidative stress. This disruption
of DNA replication and repair and HSP protein refolding
can trigger mitotic arrest and even apoptosis when injury is
severe.

Patients with endometriosis have reduced yields of oocytes.
A pathway by which this occurs is suggested in a recent study
by Hamdan et al., who found that ROS from human FF of
patients with endometriosis damaged mouse oocyte DNA and
triggered arrest of meiosis in MI via the DNA damage checkpoint
(151). MI resumed upon addition of ROS scavengers to the
FF oocyte incubation medium. Overall, irreparable damage to
membranous organelles, spindle microtubules, cellular DNA,
and the heat shock system itself leads to profound dysfunction
of gametes and embryos and even apoptotic cell death, all of
which adversely impact fertility (84, 85, 107, 109, 110, 152,
153).

A central role for ROS in the decline of gamete and embryo
quality in patients with endometriosis is supported by a series
of observations. (i) Eggs, sperm and embryos exhibit poorer
quality after exposure in vitro to exogenous ROS, both by
morphological and functional criteria. (ii) Gametes and embryos
from patients with endometriosis are exposed to an ROS-rich
pro-oxidant microenvironment in the fallopian tubes, the ovary,
and the follicle. (iii) The quality of sperm, oocytes, and embryos
declines significantly upon exposure to PF and FF from patients
with endometriosis. (iv) Incubation of gametes and embryos
in PF or FF supplemented with antioxidants prevents much
of this damage. These data demonstrate that ROS generated
in endometriosis is largely responsible for the adverse effect of

the endometriotic microenvironment on gamete and embryo
quality.

As cited above, a key manifestation of oxidative damage
to oocytes in endometriosis is comprised by aberrations in
the organization of oocyte meiotic spindles and chromosomes,
a key morphologic marker for ROS damage and a widely
regarded harbinger of impending oocyte and fetal aneuploidy
(62, 84, 85). However while spindle misalignments have been
widely reported in endometriosis studies involving mouse and
bovine oocytes, spindles in human oocytes from patients with
endometriosis have yet to be visualized with sufficient detail to
determine whether they havemisalignments (154). Paradoxically,
work with polar bodies from endometriosis patients indicates
increased rates of aneuploidy in patients with endometriosis,
with statistically larger sample sizes needed to authenticate this
conclusion, while definitive data demonstrate that embryos from
endometriosis patients do not (147, 148). Thus, the extent to
which endometriosis causes oocyte aneuploidy remains to be
answered definitively, and if it does, the extent to which the
aneuploidy is caused by ROS in endometriosis will need to be
addressed.

Treatment Horizons
Given the in vitro studies showing that antioxidant
supplementation of peritoneal and follicular fluids mitigates
damage to human sperm, oocytes and embryos, it is logical
to predict that in vivo treatments with antioxidants will
improve parameters of fertility in endometriosis. A number of
antioxidants have been tested. Vitamins C and E (155, 156),
N-acetyl cysteine (NAC) (112, 157), resveratrol (58–162), and
melatonin (163–166) have variously been shown to reduce the
numbers and sizes of endometrotic implants in animal studies.
A single study with insufficient statistical power was performed
testing the effects of vitamins C and E in humans, and no clinical
studies of resveratrol or melatonin effects on endometriotic
lesions in women were found in Pubmed searches as of July 2108.
However, in a studying employing the human-like SCID mouse
model, melatonin induced regression of transplanted human
endometriotic lesions (166).

To date the studies with NAC have progressed the most
toward therapeutic potential. A combination of NAC with
α-lipoic acid (also an antioxidant) and bromelain prevents
upregulation of the VCAM1 inflammatory marker, promotes
apoptosis of endometriotic but not normal uterine cells, and
reduces the size and number of endometriotic lesions in mice
(167). A promising clinical trial of women with endometriosis
showed decreased diameter and volume, decreased number, and
even disappearance of endometriotic lesions after treatment for 3
months with NAC (168). These studies demonstrate a key role
for ROS in the growth and/or maintenance of endometriotic
lesions. ROS are also essential mediators of angiogenesis,
degeneration of extracellular matrix, anti-apoptotic processes,
and cellular adhesion processes that participate in the formation
and maintenance of endometriotic implants (169). In this way,
ROS have at least an indirect impact on the quality of gametes
and embryos. As discussed earlier, NAC and other antioxidants
prevent chromosome and spindle misalignments and aneuploidy
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in mouse oocytes and embryos. Future studies will further
elucidate the roles of ROS in gametic and embryonic dysfunction
and aneuploidy in infertility caused by endometriosis, and
therapeutic regimens dedicated to mitigating the impact of ROS
on these processes will continue to be developed.
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