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Abstract: Galectins comprise a family of soluble β-galactoside-binding proteins, which regulate a
variety of key biological processes including cell growth, differentiation, survival, and death. This
paper aims to address the current knowledge on the unique properties, regulation, and expression of
the galectin-16 gene (LGALS16) in human cells and tissues. To date, there are limited studies on this
galectin, with most focusing on its tissue specificity to the placenta. Here, we report the expression
and 8-Br-cAMP-induced upregulation of LGALS16 in two placental cell lines (BeWo and JEG-3) in
the context of trophoblastic differentiation. In addition, we provide the results of a bioinformatics
search for LGALS16 using datasets available at GEO, Human Protein Atlas, and prediction tools
for relevant transcription factors and miRNAs. Our findings indicate that LGALS16 is detected by
microarrays in diverse human cells/tissues and alters expression in association with cancer, diabetes,
and brain diseases. Molecular mechanisms of the transcriptional and post-transcriptional regulation
of LGALS16 are also discussed based on the available bioinformatics resources.
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1. Introduction

Galectins comprise a family of soluble β-galactoside binding proteins, which regulate
key biological processes including cell growth, differentiation, apoptosis, and immune
responses [1–4]. Sixteen galectin genes have been identified in animal kingdoms, 12 of
which are expressed in humans. Galectins share a conserved carbohydrate recognition
domain (CRD) and they are subcategorized into prototype, tandem-repeat, or chimeric
type according to their number of CRDs and structural features. Prototype galectins
contain one CRD and include galectins -1, -2, -5, -7, -10, -11, -13, -14, -15, and -16. Tandem-
repeat galectins contain two homologous CRDs connected by a linker of ~70 amino acids
and include galectins-4, -6, -8, -9, and -12. The only chimera-type galectin is galectin-3,
which contains one CRD linked to a non-lectin N-terminal proline/glycine-rich domain.
Galectins form a network of proteins to perform glycan-dependent and glycan-independent
functions both intra- and extracellularly [3–5]. Intracellularly, galectins have multiple
binding partners and primarily function via glycan-independent mechanisms to regulate
processes such as cell growth, apoptosis, and pre-mRNA splicing among others [4–6].
Extracellular galectins are secreted from cells through unconventional mechanisms [3,7]
and can bind to glycoligands on the cell surface or glycoproteins in the extracellular matrix
to promote cell adhesion and migration [8] or bind to specific cell surface receptors to
facilitate their cross-linking and transmembrane signaling [3,8–10].

Galectin expression profiles vary significantly between different cells and tissues.
Some galectins are commonly expressed with low tissue specificity, e.g., galectin-1 and
galectin-3, while others are highly-tissue specific [3]. LGALS16 was characterized in pla-
cental tissue by Than and co-authors [11] and together with two other galectins (LGALS13
and LGALS14) was found to be upregulated in differentiated trophoblast cells to confer
immunotolerance at the maternal–fetal interface [12]. These three galectin genes are lo-
cated in a cluster of four human protein-coding galectin genes on chromosome 19 and
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they are proposed to have evolutionarily emerged to sustain hemochorial placentation
in anthropoids [11]. The correct expression of placenta-specific galectins is an important
part of proper reprogramming of the transcriptional activity of the trophoblast [12]. This
involves the differentiation and fusion of villous cytotrophoblasts into a multinucleated
syncytium that is in direct contact with maternal blood and is responsible for facilitating
gas, nutrient, and waste exchange between the mother and fetus, mediating hormonal
regulation, and forming an immunological barrier during pregnancy [12]. Differentiated
extravillous trophoblasts proliferate, invade, and remodel the maternal spiral arteries to
provide blood flow and nutrients to the fetus [13]. Dysregulation of this placenta-specific
gene cluster containing LGALS16 is associated with disorders such as preeclampsia, which
can be highly fatal for both the mother and fetus [12–14].

Currently, experimental studies on LGALS16 are limited, although multiple microar-
ray datasets and bioinformatics resources contain relevant information. Here, we use
experimental and bioinformatics approaches for examining expression, regulation, and
functions of LGALS16 to position this galectin within the complex galectin network in cells
and to identify directions for future studies.

2. Materials and Methods
2.1. Bioinformatics Data and Tools

Microarray and RNA-sequencing data were extracted from the Gene Expression
Omnibus (GEO) Profiles, which contained 287 datasets for LGALS16 (accessed on 2 Novem-
ber 2021), considering the following criteria: (1) inclusion of only controls and untreated
cell/tissue samples, (2) inclusion of only cases with positive gene expression values
for matched ACTB (a housekeeping gene), LGALS1 (a low tissue specific galectin), and
LGALS16 genes, and (3) deletion of few datasets, which report enormous deviations
(>100-folds) from average expression levels of ACTB and LGALS1 genes. In silico pre-
diction of transcription factor binding sites in LGALS16 gene DNA sequence was per-
formed with PROMO version 3.0.2 software, which utilized version 8.3 of TRANSFAC
database [15,16]. The dissimilarity index for the transcription factor search was set at 0%
to limit the number of non-specific matches. Ensembl Release 104 was used to extract
the sequence of the 2 kb promoter region of the gene (accessed on 24 August 2021). Four
different online platforms were used and compared to predict putative miRNA targets
for LGALS16 including Diana Tools [17], miRabel [18], miRDB [19], and TargetScan [20].
The Human Protein Atlas (HPA) [21], GenBank [22], and Protein Data Bank (PDB) [23]
were exploited for searching the relevant structures, sequences, and expression patterns of
LGALS16 based on the gene symbol.

2.2. Cell Cultures

Placenta choriocarcinoma BeWo and JEG-3 cell lines (kindly provided by Dr. Renaud,
Department of Anatomy and Cell Biology, Western University, London, ON, Canada)
were cultured in Dulbecco’s Modified Eagle Medium/Ham’s F12 medium and RPMI-1640
medium, respectively, supplemented with 10% or 8% fetal bovine serum, 100 IU/mL
penicillin, and 100 µg/mL streptomycin. Cell cultures were maintained in a CO2-incubator
at 37 ◦C and 5% CO2. To induce trophoblastic differentiation, cells were grown in 6-well
plates and treated with 250 µM of 8-Br-cAMP (cat. # B7880, Sigma-Aldrich, Oakville, ON,
Canada) for 48 h (BeWo cells) or 36 h (JEG-3 cells). Over the time of these treatments, cell
culture media was replaced one time for BeWo cells after 24 h of growth and two times
(every 12 h) for JEG-3 cells to avoid accumulation of acidic metabolites.

2.3. Gene Expression Analysis

The total RNA pools were isolated from cell monolayers using TRIzol® reagent (cat.
# 15596018, Ambion, Carlsbad, CA, USA) and 1 µg was used for cDNA synthesis with the
Advanced cDNA Synthesis Kit (cat. # 801-100, Wisent, Montreal, QC, Canada). The conven-
tional and quantitative polymerase chain reaction (PCR) analyses were used to assess the
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mRNA expression levels for following genes: ACTB, CGB3/5 (biomarkers of trophoblastic
differentiation), and LGALS16. The oligonucleotide PCR primers for LGALS16 (forward 5′-
ATTTGCGAGTGCACTTAGGC-3′ and reverse 5′-GACACACGTAGATGCGCAAG-3′, PCR
amplicon length of 132 bp) targeting exon 3 (Figure 1) were designed using Primer-BLAST
tool at NCBI [24]. Oligonucleotide primers for ACTB (forward 5′-TCAGCAAGCAGGAGTA
TGACGAG-3′ and reverse 5′-ACATTGTGAACTTTGGGGGATG-3′, PCR amplicon length
of 265 bp) and CGB3/5 (forward 5′-CCTGGCCTTGTCTACCTCTT-3′ and reverse 5′-GGCTT
TATACCTCGGGGTTG-3′, PCR amplicon length of 109 bp) were available elsewhere [25,26].
To run conventional PCR, reaction mixes (10 µL 2X Taq FroggaMix (cat. # FBTAQM, Frog-
gaBio, Toronto, ON, Canada), 2 µL forward and reverse primer mixture from 10 µM stock,
7 µL nuclease free water, and 1 µL template cDNA) were loaded into a T100 Thermal Cycler
(Bio-Rad Laboratories, Mississauga, ON, Canada) and amplified using the following PCR
regime: 26 cycles of 94 ◦C for 3 min, 94 ◦C for 30 s, 56 ◦C seconds, 72 ◦C for 60 s, 72 ◦C
for 10 min, and held at 4 ◦C. The PCR products were separated on a 2% agarose gel as
described earlier [27] and the gel was imaged using the Molecular Imager® Gel Doc™
XR+ (Bio-Rad) to confirm the expected size of PCR amplicons. The quantitative PCR was
performed in the CFX Connect™ Thermocycler and quantified as described previously [28]
using the SsoAdvanced Universal SYBR® Supermix kit (cat. # 1725274, Bio-Rad Labora-
tories, Mississauga, ON, Canada). To assess the expression of 84 genes encoding human
transcription factors, the RT2 Profiler™ PCR Array Kit (cat. # PAHS-075ZD-2, Qiagen,
Toronto, ON, Canada) was used following the protocols provided by the manufacturer.
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Figure 1. LGALS16 gene structure and the mRNA sequence. (a) LGALS16 (4735 bp) is located on chromosomal band 19q13.2
and contains 4 exons (ENSG00000249861). (b) NCBI reference sequence of LGASL16 mRNA (NM_001190441.3). Each
exon is highlighted with red, orange, blue, and black representing exons 1, 2, 3, and 4, respectively. The protein coding
sequence (CDS) is indicated in capitals while UTRs in small characters. The oligonucleotide sequences for PCR amplification
are boxed.

2.4. Statistical Analysis

Statistical analysis was performed using GraphPad Prism 9 for Windows, version 9.1.2
(GraphPad Software, San Diego, CA, USA) and the data were presented as mean ± SD.
One-way analysis of variance (ANOVA) was used to determine statistical significance
across treatments followed by Tukey’s honestly significant difference test to detect which
means were statistically significant at a value of p < 0.05.

3. Results and Discussion
3.1. Molecular Characteristics of Galectin-16 Gene and Recombinant Protein

The LGALS16 gene structure and molecular details were described by Than and co-
authors [11]. LGALS16 (4735 bp) is located on chromosomal band 19q13.2, spans from
bases 39,655,913 to 39,660,647, and contains 4 exons (Figure 1a,b). LGALS16 is found
only in primates and is part of the chromosome 19 gene cluster containing four protein-
coding genes (LGALS10, LGALS13, LGALS14, LGALS16) [11,12,14,29]. The diversification
and evolutionary origin of this cluster, including LGALS16, is thought to be related to
placenta development and mediated by transposable long interspersed nuclear elements
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(LINEs), which are commonly found at the boundaries of large inversions and gene
duplication units [11,30,31]. The relevant rearrangements and subsequent gains and losses
of duplicated genes and pseudogenes are proposed to have enabled anthropoids to sustain
highly invasive placentation and placental phenotypes, such as longer gestation for larger
offspring and an increased body to brain size ratio [11].

To the best of our knowledge, no studies are available on native galectin-16 at the
protein level whereas recombinant protein has been produced and tested. The crystal
structure of recombinant galectin-16 and its mutants was solved by Si and co-authors [32].
Recombinant galectin-16 is a monomeric protein, which is composed of 142 amino acids
and has a typical galectin structure of the CRD β-sandwich with two sheets formed by
six β-strands on the concave side (S1–S6) and five β-strands on the convex side (F1–F5)
(Figure 2). This group also showed that galectin-16 lacks lactose-binding ability unless
arginine (Arg55) is replaced with asparagine in S4 β-strand. In comparison, an earlier
report showed that recombinant galectin-16 and two other human galectins (galectin-13 and
galectin-14) can bind lactose–agarose beads and are efficiently and competitively eluted
by lactose [11]. More insights into this discrepancy are required considering multiple
interfering factors, mutations/replacements of amino acids within the CRD, and different
study designs. Regardless, both glycan-dependent and glycan-independent interactions
might be essential for galectin-16 similar to other galectins [3].
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strands as well as a short α-helix are showed. (b) The crystal structure was extracted from Protein Data Bank (available
online: rcsb.org, accessed on 6 September 2021), PDB ID: 6LJP.

3.2. Expression Patterns and Functions of LGALS16 in Cells and Tissues

Experimental studies focusing on LGALS16 are limited and an essential source of
relevant information about this gene is Gene Expression Omnibus (GEO), a data repository
for microarray and RNA-sequencing data [33]. Overall, 287 datasets are available on GEO
(November 2021 search) reporting LGALS16 expression in 52 types of tissues and various
cell lines based on the following platforms: Affymetrix Human Genome (n = 27), Affymetrix
Human Gene (n = 151), Agilent (n = 31), Human Unigene (n = 1), Illumina Human (n = 82),
MCI Human (n = 1), NuGO (n = 1), and Sentrix Human (n = 15). Quantification of
differences in LGALS16 expression between different platforms is challenging. However,
evaluation of gene expression values within the same GEO datasets demonstrates that
LGALS16 can be classified as a gene with relatively low expression in comparison with
LGALS1 (a widely expressed galectin with a low tissue specificity) and ACTB (a common
housekeeping gene) (Table 1). Indeed, regardless of the platform, average GEO percentile
rank of expression for LGALS16 measured with different arrays ranged 4–32% on a scale
of 1–100% while the range was 63–100% for LGALS1 and 94–100% for ACTB. Available
GEO profiles do not contain relevant datasets with LGALS16 for placenta for comparison,
however, the Human Protein Atlas (HPA) reports tissue-specific overexpression of LGALS16
in placenta followed by brain tissues and retina (Figure 3a). The biological meaning and
reasons of overexpression of LGALS16 in these diverse tissues is unknown and requires

rcsb.org
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further investigations in the context of developmental biology. For instance, the complex
mechanisms of the placenta–brain axis of cell development [34] could be addressed in
terms of the unique association of LGALS16 with these tissues.

Table 1. Comparative expression of LGALS16 in human tissues and cells from the Gene Expression Omnibus database.

Names of Cells or Tissues GEO Accession Number ACTB LGALS1 LGALS16 Sample Size

Acetabular labrum cells GDS5427 a 12.682 ± 0.150 12.057 ± 0.107 2.949 ± 0.0093 3
Acute lymphoblastic leukemia cell

line RS4;11 GDS4043 b 13.861 ± 0.017 11.487 ± 0.033 0.4023 ± 0.607 2

Acute myeloblastic leukemia cell
line Kasumi-1 GDS5600 a 11.965 ± 0.025 6.455 ± 0.299 2.918 ± 0.036 3

Acute promyelocytic leukemia cell line NB4 GDS4180 a 13.130 ± 0.035 10.823 ± 0.031 3.650 ± 0.108 3
Adipocyte progenitor cells (subcutaneous) GDS5171 a 13.523 ± 0.038 13.397 ± 0.112 4.597 ± 0.251 6

Adipocyte progenitors from deep neck GDS5171 a 13.469 ± 0.057 13.208 ± 0.177 4.505 ± 0.094 6
Bone marrow CD34+ cells (chronic

myeloid leukemia) GDS4756 a 13.524 11.137 3.050 1

Bone marrow plasma cells GDS4968 a 11.990 ± 0.226 8.714 ± 0.515 3.052 ± 0.257 5
Brain frontal cortex GDS4758 a 13.402 ± 0.125 96.333 ± 0.840 4.632 ± 0.249 18
Brain hippocampus GDS4758 a 13.477 ± 0.130 11.133 ± 0.375 4.659 ± 0.300 10
Brain hippocampus GDS4879 a 12.113 ± 0.409 9.076 ± 0.232 3.177 ± 0.177 19

Brain temporal cortex GDS4758 a 13.560 ± 0.131 11.189 ± 0.280 4.749 ± 0.193 19
Breast cancer cell line MCF-7 GDS2759 b 15.884 ± 0.030 13.752 ± 0.153 6.053 ± 0.237 2
Breast cancer cell line MCF-7 GDS4972 a 13.029 ± 0.038 12.439 ± 0.083 3.892 ± 0.066 3
Breast cancer cell line MCF-7 GDS4090 a 13.087 ± 0.019 9.566 ± 0.100 2.827 ± 0.405 3

Breast cancer cell line MDA-MB-231 GDS4800 a 13.875 ± 0.007 13.565 ± 0.042 5.189 ± 0.085 3
Bronchial smooth muscle primary cells GDS4803 a 11.629 ± 0.175 11.533 ± 0.041 3.181 ± 0.095 3
Bronchopulmonary neuroendocrine cell

line NCI-H727 GDS4330 a 11.978 5.715 3.808 1

Burkitt lymphoma cell line Namalwa GDS4978 a 13.468 ± 0.187 8.005 ± 0.073 3.916 ± 0.297 3
Burkitt lymphoma cell line Raji GDS4978 a 13.367 ± 0.093 8.052 ± 0.141 3.962 ± 0.019 3

Colorectal adenocarcinoma cell line SW620 GDS5416 e 16.400 ± 0.362 17.280 ± 0.043 2.766 ± 0.554 2
Embryonic kidney cell line HEK-293 GDS4233 a 10.330 ± 0.050 7.109 ± 0.098 3.757 ± 0.328 4

Endothelial progenitor cells GDS3656 c 15.397 ± 0.174 13.845 ± 0.457 8.018 ± 0.103 11
Esophagus biopsies GDS4350 a 12.617 ± 0.230 8.062 ± 0.507 3.255 ± 0.208 8

Gastrointestinal neuroendocrine cell
line KRJ-1 GDS4330 a 12.135 9.592 2.859 1

Germinal center B cells GDS4977 a 9.793 ± 0.373 8.438 ± 0.225 6.723 ± 0.538 5
Gingival fibroblasts GDS5811 a 13.628 ± 0.101 13.770 ± 0.174 3.674 ± 0.140 2
Heart (left ventricle) GDS4772 a 11.293 ± 0.361 10.672 ± 0.377 2.941 ± 0.030 5
Heart (left ventricle) GDS4314 a 12.142 ± 0.365 11.052 ± 0.223 3.344 ± 0.154 5

Heart (right ventricular) GDS5610 a 11.930 ± 0.255 10.934 ± 0.044 3.637 ± 0.181 2
Hepatocellular carcinoma cell line HepG2 GDS5340 a 13.259 ± 0.039 11.256 ± 0.054 4.281 ± 0.327 3

Microglia cell line HMO6 GDS4151 a 13.545 12.231 2.979 1
Keratinocytes GDS4426 a 12.679 ± 0.056 11.147 ± 0.236 3.804 ± 0.138 6

Lung carcinoma cell line A549 GDS4997 a 10.970 ± 0.044 12.187 ± 0.049 2.418 ± 0.072 3
Lung carcinoma cell line H460 GDS5247 a 12.504 ± 0.043 11.111 ± 0.063 3.439 ± 0.117 3

Lung microvascular endothelial cell
line CC-2527 GDS2987 b 32,061 ± 7366 15,158 ± 2227 8.100 ± 9.051 2

Lymphoblastoid cell line TK6 GDS4915 a 13.365 ± 0.061 11.161 ± 0.323 4.005 ± 0.327 2
Lymphoblastoid cell line TK6 GDS4916 a 13.940 ± 0.058 12.023 ± 0.130 4.061 ± 0.357 2

Medulloblastoma tumor tissue GDS4469 a 13.099 ± 0.302 9.490 ± 0.801 4.005 ± 0.839 15
Melanoma cell line A-375 GDS5085 a 13.888 ± 0.011 13.474 ± 0.101 4.618 ± 0.045 3

Melanoma cell line FEMX-I GDS3489 d 16.04 ± 0.354 16.04 ± 0.354 0.550 ± 1.061 2
Melanoma cell line Hs294T GDS5670 a 11.353 ± 0.245 10.349 ± 0.097 2.149 ± 0.585 2
Microglia cell line HMO6 GDS4151 a 13.545 12.231 2.979 1

Myotubes from musculus obliquus internus GDS5378 a 13.224 ± 0.099 12.925 ± 0.114 2.840 ± 0.057 4
Pancreatic neuroendocrine cell line QGP-1 GDS4330 a 12.057 5.749 3.031 1

Peripheral blood CD34+ cells (chronic
myeloid leukemia) GDS4756 a 13.414 ± 0.049 11.144 ± 0.578 2.974 ± 0.140 2

Peripheral blood CD4+ T cells GDS5544 a 13.598 ± 0.053 9.707 ± 0.247 4.584 ± 0.126 4
Peripheral blood cells GDS4240 a 11.825 ± 0.084 7.307 ± 0.154 1.506 ± 0.112 7

Renal adenocarcinoma cell line 786-O GDS5810 a 12.902 ± 0.030 12.809 ± 0.015 5.753 ± 0.031 2
Retinal pigment epithelia primary cells GDS4224 a 13.407 ± 0.110 11.842 ± 0.449 3.468 ± 0.367 4

Retinal pigmented epithelium cell
line ARPE-19 GDS4224 a 13.288 11.946 3.646 1

Skeletal muscle (vastus lateralis)
primary cells GDS4920 a 13.649 ± 0.084 13.385 ± 0.114 4.609 ± 0.136 12
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Table 1. Cont.

Names of Cells or Tissues GEO Accession Number ACTB LGALS1 LGALS16 Sample Size

Skeletal muscle tissue GDS4841 a 9.400 ± 0.190 11.486 ± 0.247 2.786 ± 0.355 5
Skin cancer cell line RT3Sb GDS5381 a 13.409 ± 0.062 8.775 ± 0.114 3.539 ± 0.252 4

Skin epidermis GDS3806 c 15.139 ± 0.141 9.534 ± 0.370 7.909 ± 0.469 7
Visceral adipose tissue (omentum) GDS4857 a 11.875 ± 0.352 11.488 ± 0.416 4.666 ± 0.754 8

Notes: The means ± SD of available gene expression values are shown. The GEO datasets originated from different platforms: a Affymetrix
Human Gene 1.0 ST Array, b Sentrix Human-6 Expression BeadChip, c Sentrix HumanRef-8 Expression BeadChip, d MCI Human
HEEBOChip 42k oligo array, and e Agilent-014850 Whole Human Genome Microarray 4 × 44K G4112F.
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is one of the biomarkers of placenta and trophoblastic differentiation, our results suggest 
classifying LGALS16 to the same category of biological molecules. Other studies also re-
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Figure 3. The normalized expression of LGALS16 mRNA in human tissues and cells from HPA
datasets. (a) LGALS16-positive cases out of 55 tissue types; (b) LGALS16-positive cases out of 69 cell
lines. The data were retrieved on 28 November 2021.

In comparison with tissues, HPA reports the expression of LGALS16 mRNA only in
two human cell lines including placental choriocarcinoma cell line BeWo and testicular
teratoma cell line SuSa, which probably can be used as appropriate systems to explore
the biological role of LGALS16 gene (Figure 3b). Human syncytiotrophoblasts, which are
terminally differentiated placental cells, can also serve as a strong positive control for
LGALS16 overexpression [10–12].

To develop experimental models for studying LGALS16 functions and regulation,
we examined the gene expression in BeWo cells and an additional placental cell line
JEG-3 in the context of trophoblastic differentiation. The expression of LGALS16 mRNA
was significantly increased in both cell lines after 36 h (JEG-3 cells) and 48 h (BeWo
cells) treatment with a potent cell-permeable and metabolically stable activator of cAMP-
dependent protein kinase 8-Br-cAMP (250 µM), which coincided with upregulation of
CGB3/5, genes encoding chorionic gonadotropin subunits 3 and 5 (Figure 4). As chorionic
gonadotropin is one of the biomarkers of placenta and trophoblastic differentiation, our
results suggest classifying LGALS16 to the same category of biological molecules. Other
studies also reported significant upregulation of LGALS16 in association with processes
of cellular differentiation, even if the basal levels were relatively low. Thus, treatment of
BeWo cells with forskolin, an inducer of cyclic adenosine 3′,5′-monophosphate (cAMP),
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stimulated trophoblastic differentiation and simultaneous LGALS16 overexpression [12].
An interesting example of LGALS16 upregulation was reported in a model of intestinal
differentiation of Caco-2 cells induced by a combined treatment with dexamethasone and
p44/42 MAPK inhibitor PD98059 [35]. Therefore, LGALS16 may deserve further attention
as a factor associated with processes of cellular differentiation and tissue development.
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Figure 4. LGALS16 expression in human placental choriocarcinoma cell lines, BeWo and JEG-3. Cells were treated with
8-Br-cAMP (250 µM) for different periods of time to induce syncytiotrophoblast differentiation. (a) BeWo cells (n = 4);
(b) JEG-3 cells (n = 3). Agarose gels on the left confirm the expected size of PCR amplicons. Bar graphs show the fold
changes in the expression of LGALS16 and CGB3/5 genes obtained by qPCR, which were quantified by the Livak method
(2−∆∆CT) using ACTB as a reference gene. Data are presented as means± SD; means with the same letter are not significantly
different from each other (Tukey’s post hoc HSD test, p > 0.05).

An important function of galectin-16 as well as placental galectin-13 and galectin-14
is the ability to induce apoptosis of CD3+ T cells, which was detected by flow cytometry
of cells double-stained with annexin-V-FITC and propidium iodide [11]. Considering the
high expression of galectin-16 in differentiated trophoblasts, the apoptotic mechanism
might contribute to the immune tolerance at the maternal-fetal interface reducing the
danger of maternal immune attacks on the fetus and enabling anthropoid primates to
evolve long gestation periods while retaining highly invasive placentation. The details of
this regulation are obscure since there are no studies addressing the secretion of galectin-
16 from trophoblasts. However, intracellular EGFP-tagged recombinant galectin-16 was
readily localized in the nucleus and cytoplasm of transfected cells including, HeLa, 293T,
HCT-116, SMMC-7721 and Jurkat cells [32]. In fact, the nuclear staining was much stronger
than in the cytoplasm suggesting that the transport of galectin-16 into the nucleus might
play a role in regulating intranuclear processes. These authors showed that the binding
partner of galectin-16 is c-Rel, a member of the NF-κB family of transcription factors (TFs),
which is involved in the regulation of multiple processes such as apoptosis, inflammation,
immune responses, tumorigenesis, cell growth and differentiation [32,36]. All NF-κB
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family members, including c-Rel, have a conserved N-terminal DNA-binding/dimerization
domain, known as the Rel homology domain (RHD) [37]. Recombinant galectin-16 strongly
binds to the RHD which might inhibit c-Rel and prevent activation of anti-apoptotic genes,
such as Bcl-2 and Bcl-xL, promoting T-cell apoptosis during pregnancy [32]. An additional
aspect of LGALS16 functions may contribute to the rescue of glucose restriction-induced
cell death in a model of a whole genome gain-of-function CRISPR activation using human
mitochondrial disease complex I mutant cells [38].

3.3. Transcriptional and Post-Transcriptional Regulation of LGALS16
3.3.1. Transcription Factors

Multiple TFs can be involved in the regulation of LGALS16 expression based on
the presence of specific response elements in the promoter regions of the gene. Original
analysis of retrotransposons within the 10 kb 5′ UTR by Than and co-authors demonstrated
that the LGALS16 promoter has binding sites for GATA2, TEF5, and ESRRG, which are also
involved in the regulation of important trophoblast-specific genes such as ERVWE1 (marker
of cell fusion), CGA, and CGB3 (markers of chorionic gonadotropin production, a hormone
released by differentiated trophoblasts to maintain pregnancy) [12]. The contribution of
these TFs in regulating LGALS16 expression was claimed to vary, especially with decreased
regulation from GATA2, due to the specific layout and properties of transposable elements
(L1PA6 and L1PREC2) within the 5′UTR of this gene as compared to two other placental
genes, LGALS13 and LGALS14. Additional shared TFs for the placental galectin gene
cluster include TFAP2A and GCM1, which have binding sites within ALU transposable
elements next to L1PREC2. Experimental evidence of this regulation was confirmed in a
model of forskolin-induced differentiation of primary trophoblasts, which revealed time-
dependent upregulation of LGALS16 in parallel with the expression of TEAD3, ESRRG,
GCM1, and ERVWE1 [12]. It is interesting to note that this study did not reveal the effect
of 5-azacytidin on LGALS16 expression in BeWo trophoblast cells as compared to other
upregulated placental galectins, which suggested a minor role of DNA methylation in the
context of LGALS16 regulation.

To enrich this analysis, we used human choriocarcinoma cell line JEG-3 and Qiagen
RT2 Profiler™ PCR Array to test changes in the mRNA transcript levels of 84 TFs during
trophoblastic differentiation induced by 8-Br-cAMP. Overall, 60 TFs were upregulated
in this assay including three top genes encoding Jun B proto-oncogene (JUNB), SMAD
family member 9 (SMAD9), and activating transcription factor 3 (ATF3) (Figure 5). Since
all of these three genes are expressed in placenta and brain tissues [21,39–43], which are
LGALS16-positive, this observation provides a new insight into possible transcriptional
regulation of this gene. JUNB and ATF3 belong to a family of TFs with a basic leucine zipper
DNA binding domain, with JUNB preferentially binding to the 12-O-tetradecanoylphorbol-
13-acetate response element sequence and ATF3 binding to the cAMP response element in
promoters with the consensus sequence, TGACGTCA [44]. They are subunits of activating
protein 1 (AP-1) TFs, which function as homodimers or heterodimers in association with
other members of JUN, FOS, ATF, and MAF protein families [44]. JUNB was reported to be
directly involved in processes of trophoblastic cell syncytialization [45,46], while upregula-
tion of ATF3 was associated with cellular stress responses [41,47,48], decidualization [47],
and preeclampsia [49]. In comparison, SMAD9 is activated by bone morphogenic proteins
(BMPs), a subfamily of the transforming growth factor-β (TGF-β) family [40,50]. Although
some BMPs such as BMP-4 can be regulated in a downstream manner from the cAMP path-
way [51], the connection between SMAD9 and cAMP is still unclear. GATA2 was found to
be slightly upregulated, which may suggest that the enrichment of L1PREC2 in the 5′UTR
still plays a role in regulating LGALS16 despite the insertion of L1PA6 [12]. Interestingly,
CREB1, a major regulator downstream of the cAMP pathway was not upregulated in this
RT-qPCR array analysis suggesting that post-translational modification and transcriptional
activation might be essential for this TF.
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We further analyzed the 2 kb region upstream from the transcription start site of
LGALS16 by extracting the sequence from Ensembl (Release 104) and performing in silico
analysis of TF-binding sites using PROMO virtual laboratory with a 0% dissimilarity index.
Putative binding sites for seventeen TFs were identified, which may represent specific
response elements, enhancers, or silencers (Figure 6). To reveal common patterns in the ex-
pression of the predicted TFs, we watched for their protein levels in two LGALS16-positive
tissues, the cerebellum and placenta, using the expression scores (high, medium, low)
available at HPA. Within this set of data, two TFs (CEBPβ and TFII-I) were characterized
by high protein expression levels, seven TFs had variable levels (GR, NFAT1, p53, STAT4,
TCF-4E, TFIID, and YY1), four TFs (ERα, FOXP3, Pax5, and PR A) showed low expression,
and no HPA data were available for GRα, GRβ, PR B, and XBP-1 in these tissues (Figure 7).
Thus, the role of the predicted TFs in tissue-specific transcriptional regulation of LGALS16
can be different and remains to be studied.
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3.3.2. miRNAs

Post-transcriptional control of mRNA availability for protein synthesis depends on
miRNAs which can hybridize to complementary sequences in protein-coding mRNAs at
the 3′ untranslated region and either block protein translation or induce mRNA degrada-
tion [52]. Multiple miRNAs were predicted to target the LGALS16 transcript by bioinformat-
ics tools, such as Diana Tools [17], miRabel [18], miRDB [19], and TargetScan [20], which use
different algorithms and methods. A robust application of these tools using default options
shows that five miRNAs (hsa-miR-3155a, hsa-miR-3155b, hsa-miR-4689, hsa-miR-4778-5p,
hsa-miR-6783-5p) are predicted by all four of these online platforms (Figure 8). These miR-
NAs among others can be considered as perspective candidates for regulating the stability
and/or translational potential of the LGALS16 transcripts, especially in relevant tissues
such as placenta and brain. Indeed, a significant decrease in hsa-miR-4778-5p expression
during gestation in exosomes from maternal blood was associated with preterm birth preg-
nancies [53]. Expression of hsa-miR-3155a was significantly upregulated in the anterior
cingulate cortex of deceased patients with major depressive disorder [54]. In comparison,
the expression of hsa-miR-4689 was downregulated in exosomes isolated from the plasma
of patients with mesial temporal lobe epilepsy with hippocampal sclerosis compared to
controls [55]. Differential expression of exosomal hsa-miR-4689 and hsa-miR-6783-5p was
reported in patients with intracranial aneurysms [56]. Human miRNA tissue atlas con-
firms expression of hsa-miR-3155a, hsa-miR-3155b, hsa-miR-4689, and hsa-miR-4778-5p
in brain among other tissues at variable levels [57]. Unraveling possible mechanisms of
miRNA-mediated regulation of galectin-16 in these tissues awaits future research.
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3.4. LGALS16 and Human Diseases

Dysregulation of the placenta-specific gene cluster containing LGALS16 is associated
with a pregnancy complication known as preeclampsia, which can be highly fatal for
both the mother and fetus. As such, LGALS16 together with LGALS13 and LGALS14 were
confirmed to satisfy the criteria of placenta enriched genes in a comprehensive study
of RNA-Seq datasets from 302 placental biopsies [58]. However, although increasing
expression of LGALS13, LGALS14, and LGALS16 was observed during forskolin-induced
syncytialization and differentiation of primary trophoblasts and BeWo cells in culture,
only LGALS13 and LGALS14 were downregulated in preeclampsia with no significant
changes of LGALS16 [12]. Remarkably, LGALS16 does not show sex-biased expression
depending on the chromosomal sex of the fetus while LGALS13 and LGALS14 are notably
elevated in fetal male placentas based on the chorionic villus transcriptome [59]. These
aspects of galectin network regulation remain unclear in the context of placental disorders
and development.

Alterations in the expression or mutations of LGALS16 have been also reported for
several other diseases and based mostly on microarray and RNA-Seq analysis, although
the application of this gene as a biomarker is still unknown. Gene expression profiling
with RNA sequencing data revealed that LGALS16 was detected as an upregulated gene
in fusiform gyrus tissue sections of 219 autopsy-confirmed Alzheimer’s cases versus 70
neurologically normal age-matched controls [60]. LGALS16 was also recognized as a
brain tissue-specific gene within genome-wide associations with several neuroimaging
psychiatric traits [61]. Further, LGALS16 was expressed two-fold higher in chronic myeloid
leukemia granulocytes compared to controls [62]. Copy number variations were identified
in chromosome 19 for multiple genes including LGALS16 in association with clinical fea-
tures, such as histological type, ethnicity, disease stage, and familial history, of breast cancer
using tumor samples from a Brazilian cohort [63]. In addition, LGALS16 was determined
to be a moderate impact variant associated with autism spectrum disorder, consisting of a
missense single nucleotide variant (SNV), which was reported as detrimental by bioinfor-
matic tools SIFT and PolyPhen-2 [64]. LGALS16 also had greater SNVs within the 3′ flank
region with one or more mutations in patients with diffuse large B-cell lymphoma [65].
Moreover, a LGALS16 SNP was revealed to be associated with insulin secretion in a cohort
of African Americans [66]. This study also showed that interactions between this LGALS16
SNP and others, such as an intergenic SNP upstream of the LYPLAL1 gene, have also
been associated with type 2 diabetes risk. The LGALS16 transcript was one of the top 50
down-regulated mRNA present in the exosomes isolated from the cerebrospinal fluid in
patients with meningeal carcinomatosis in comparison with healthy controls [67].
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4. Conclusions

Although the galectin-16 gene was described more than 10 years ago [11], the regula-
tion, functions, and clinical aspects of this tissue-specific molecule are largely unexplored.
Primary association of LGALS16 with placental tissue has been challenged by its detection
in brain tissues and several cancer cell lines as followed from available microarray and
RNA-seq databases. There are bioinformatics indications that the expression of LGALS16
changes in association with Alzheimer’s disease, chronic myeloid leukemia, breast cancer,
B-cell lymphoma, and type 2 diabetes. Although LGALS16 was not significantly impacted
at the gene level in preeclampsia, there remain questions regarding regulation at the protein
level, which cannot be properly addressed at this time due to the absence of commercially
available specific galectin-16 antibodies. The results obtained with recombinant galectin-
16 are promising, but there is still a gap in our understanding of why the expression of
endogenous galectin-16 protein has not been reported. Nevertheless, among the possible
functions of galectin-16 in these and other tissues, its contribution to the regulation of
cellular differentiation and programmed cell death (apoptosis) warrants special attention.
Lastly, the use of proper cell culture models and the examination of multiple factors (tran-
scription regulators and miRNA) is evidently the first line of study to position galectin-16
within a complex galectin network in cells. The generation of galectin-16-specific antibody
and LGALS16 knockout cell lines using CRISPR/Cas9 technology might be required steps
to unravel the role and significance of this molecule in the context of cell biology.
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