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Abstract

Dynamic contact data can be used to inform disease transmission models, providing insight into 

the dynamics of infectious diseases. Such data often requires extensive processing for use in 

models or analysis. Therefore, processing decisions can potentially influence the topology of the 

contact network and the simulated disease transmission dynamics on the network. In this study, 

we examine how four processing decisions, including temporal sampling window (TSW), spatial 

threshold of contact (SpTh), minimum contact duration (MCD), and temporal aggregation (daily 

or hourly) influence the information content of contact data (indicated by changes in entropy) as 

well as disease transmission model dynamics. We found that changes made to information content 

by processing decisions translated to significant impacts to the transmission dynamics of disease 

models using the contact data. In particular, we found that SpTh had the largest independent 

influence on information content, and that some output metrics (R0, time to peak infection) were 

more sensitive to changes in information than others (epidemic extent). These findings suggest 

that insights gained from transmission modeling using dynamic contact data can be influenced by 

processing decisions alone, emphasizing the need to carefully consideration them prior to using 

contact-based models to conduct analyses, compare different datasets, or inform policy decisions.
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1. Introduction

The nature and intensity of the type of contact that facilitates disease transmission is 

one of the defining features of the epidemiology of infectious diseases and inherently 

influence disease dynamics in populations as well as efforts aimed at control. Contact 

variation is one of the most important sources of transmission heterogeneity (Bansal et al., 

2007). However, mathematical models have often assumed homogeneous contact patterns 

in which individuals have the same number of random contacts (Begon et al., 2002). 

The incorporation of realistic heterogeneous contact structures into disease transmission 

models alters infection dynamics relative to when homogeneous contact structure is assumed 

(Bansal et al., 2007; Duncan et al., 2012), and has provide insights into disease dynamics 

historically obscured by omission of contact data (Craft, 2015). Thus, using contact structure 

in disease models can contribute to greater model realism and potentially better model 

applicability (Masuda and Holme, 2013). In addition to disease models, network theory has 

also been applied to social contact data to identify network features that are associated to 

particular patterns of disease spread (Christley et al., 2005; Cross et al., 2012; Hamede et al., 

2009).

Most of the work incorporating contact structures in disease modeling uses static networks 

in which the interactions among individuals remain constant over time (Holme, 2013; 

Keeling and Eames, 2005). More recently, empirical contact data has become available 

to model disease transmission on dynamic networks of contacts, thus providing insights 

on how contact timing and variation overtime influence disease dynamics (Barrat et al., 

2014; Karsai et al., 2011; Masuda and Holme, 2013). In particular, telemetric technologies 

have facilitated the collection of empirical contact data at a very high spatial and temporal 

resolution (Chen et al., 2014a; Craft, 2015; Duncan et al., 2012), which we refer here 

as dynamic contact data. Dynamic contact data are generally collected in two ways: with 

proximity sensors or radio telemetry (RT) within a sensor field. With proximity sensors, 

individuals are outfitted with devices that detect other devices within a particular proximity 

and record durations of contacts between individuals (Barrat et al., 2014; Isella et al., 2011; 

Stehlé et al., 2011). In RT systems, individuals are outfitted with devices that transmit a 

radio signal to be received by sensors that provide information on locations of individuals 

over time (Böhm et al., 2018; Chen et al., 2014b; Perkins et al., 2009).Then, contact 

structure is inferred by temporally aligning the locations of individuals and applying a 

proximity threshold of contact.

Insights on transmission gained from telemetric technologies rely upon the assumption that 

the record of empirical contacts reflects potential transmission events (Eames et al., 2015). 

However, processing dynamic contact data in preparation for analysis can itself influence 

the resulting structure of the data (Eames et al., 2015; Haddadi et al., 2011), making disease 

transmission in a model more or less likely to occur. In particular, in situations where 

there are shared resources such as discrete food or water locations, short, frequent contacts 

between individuals during which transmission may not occur (i.e., “non-effective contacts”) 

may inflate and obscure effective contacts for transmission (Psorakis et al., 2012; Spiegel 

et al., 2016). On the other hand, if contact criteria are too stringent, effective contacts can 

be under predicted. Despite the importance of processing decisions on defining the contact 
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structure (Craft, 2015), few studies have explicitly considered their influence (Haddadi et al., 

2011). Furthermore, processing decisions are often not explicitly explained or justified.

Here, we consider four types of dynamic contact data processing decisions that may 

influence contact and transmission dynamics in RT-based data: 1) temporal sampling 

window (TSW), 2) the spatial threshold for contact (SpTh), 3) the minimum duration 

of contact (MCD), and 4) scale of temporal aggregation. Table 1 provides a graphical 

explanation of each processing decision and its potential implications for disease 

transmission. In brief, data is first temporally aligned to determine if individuals shared 

spatial locations contemporaneously into TSWs of the same length (e.g. 10 s). An 

individual’s location during the window is determined by taking an average of recorded 

locations during the specified time length (Haddadi et al., 2011). The SpTh refers to the 

proximity at which an effective contact is considered possible, and is obtained by calculating 

distances between individuals at each TSW (e.g., with Euclidean methods (Chen et al., 

2013)), then applying the SpTh as a filter. The MCD is the minimum number of sequential 

TSWs in which the SpTh has been breached before pathogen transmission is possible. 

Lastly, fully processed dynamic contact data (i.e. TSW, SpTh, and MCD have been applied) 

are often aggregated into proximity-based social networks (Spiegel et al., 2016) at specific 

temporal scales (e.g. hours or days) to characterize contact structure or disease transmission 

functions prior to use in transmission models.

The objective of our study was to evaluate the effect of processing RT data on the 

information content of the data and simulated disease dynamics. For that purpose, we 

processed a set of dynamic contact data of cattle locations in a feedlot pen, collected 

via RT methods, varying the TSW, the SpTh, the MDC, and temporal aggregation in a 

factorial manner. We then adapt and expand upon previously suggested methods (Haddadi 

et al., 2011) that calculate changes in information content of datasets, as indicated by graph 

entropy, to quantify the effect of processing decisions on information content of the data. 

Next, we explicitly examine how decisions influence transmission dynamics by using the 

processed datasets in a network-based simulation model of transmission and relate changes 

in information content to changes in disease dynamics. Lastly, we propose a generalized 

methodology to determine processing criteria for the processing decisions investigated.

2. Methods

2.1. Data acquisition

Positional data were collected from research facilities affiliated with the Kansas State 

University College of Veterinary Medicine. Data consisted of locations of 70 beef cattle 

calves within an approximately rectangular feedlot pen (28 m2 in area per calf) continuously 

monitored from May 5th to May 25th, 2016 (21 days). Each calf was labeled with a radio 

transmitting ear tag (Smartbow, Austria) designed to transmit a signal to receivers positioned 

around the pen, and had a maximum temporal resolution of 5–10 s. System software then 

used triangulation methods to calculate x–y position for observation and logged the position 

data to a central server.
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2.2. Data processing

Prior to processing, raw locational data underwent several pre-processing procedures for 

quality control purposes. See Supplemental Materials (S1.1) for further details of these 

procedures. After pre-processing, data processing consisted of four main parts: temporal 

interpolation, averaging data into consecutive temporal windows (TSW), contact estimation 

at particular spatial thresholds (SpTh), and restriction of contact records to those meeting 

minimum contact duration criteria necessary for disease transmission (MCD) (see Fig. 1 

for an overview). For a detailed account of each step, see Supplemental Materials (S1.2). 

In addition, R-scripts that process generalized spatiotemporal contact data (i.e., spatial 

locations and timestamps) for individual animals are supplied in the Supplemental Materials 

(S2). In brief, discontinuous locational data (received every 5–10 s) were used to interpolate 

a value to every second of the dataset, creating a continuous temporal record for each day 

of the dataset. Then, these values were averaged into TSWs. Next, distances between cattle 

at each temporal window was calculated, followed by the application of first a SpTh, and 

then a MCD to determine whether a contact occurred in a given TSW. After these steps, the 

processed data was routed in the form of adjacency matrices towards analyses of how either 

contact information or disease transmission dynamics change with processing decisions.

2.3. Contact data information loss

We characterized the amount of information loss resulting from processing methodologies 

by quantifying the entropy of dynamic contact data, as suggested by Haddadi et al (2011). 

Entropy is a measure of the uncertainty or potential information associated with a value of 

a random variable (Stone, 2015). In the context of networks, the entropy rate characterizes 

the ease of information flow (e.g. disease transmission) and uncertainty of movement path 

as it diffuses via contacts through the network (Gómez-Gardeñes and Latora, 2008). Larger 

entropy rates represent greater efficiency of diffusion and therefore greater uncertainty as to 

which paths information may take through a network (Gómez-Gardeñes and Latora, 2008; 

Sinatra et al., 2011). Our approach to calculate information loss included three steps. First 

we calculated entropy for each TSW. The resultant time series of entropy values were then 

converted from the time scale to the frequency scale and an average spectral density was 

calculated (per unit of temporal aggregation(hour or day)). Finally, we calculated the percent 

of frequency content relative to the maximum. These procedures follow those proposed by 

Haddadi et al. (2011), but were applied to each factorial combination of data processing 

decisions considered, and were modified to weight TSW-based contacts (i.e., contact = 1 or 

0) by the number of sequential contact durations where contacts occur (i.e., contact = 1).

In the first step, we calculated the entropy rate for each adjacency matrix (a) at each TSW­

based time step, creating a time series of entropy values for each generated dynamic contact 

data. Time series ranged in length from 181,440 steps, when TSW was 10 s, to 10,080 steps, 

when TSW was 180 s. The entropy rate (h) for a graph is the sum of contributions from each 

node in the network, and is calculated as:

ℎ = − ∑
i, j, k

πji × wikln πji (1)
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where πji is a transition matrix of aij of a random walk (a random walk Laplacian (Haddadi 

et al., 2011)), and w is the stationary distribution of the Markov chain of a random walk 

started in each connected graph k of πji. The transition matrix (πji) was calculated similarly 

as described in (Gómez-Gardeñes and Latora, 2008):

πji = aijfij
Σjaijfij

(2)

with aij representing a contact on the adjacency matrix (aij = 1 if contact, 0 if no contact) 

between node i and node j, and fij was the number of contact durations in which the 

time-step based contact between i and j was currently involved. For example, if a single 

time-step based contact (i.e., 1) between node i and j was part of a two-sequential-TSW 

duration contact, then fij = 2. fij was incorporated to account for the fact that many contacts 

persisted across time steps. Contacts with longer durations could bias a random walk, 

reducing entropy. Isolated nodes were assigned a value of 1 where i = j, such that each 

column summed to 1. In each connected subgraph, there is a stationary Markov distribution 

wk representing the stationary distribution of long-term probabilities of a biased random 

walker being on the nodes of the graph if a random walk is initiated at any particular 

node in the subgraph k (Gómez-Gardeñes and Latora, 2008). To calculate wik values, 

connected subgraphs (k) greater than size 2 were identified in the overall graph (isolated 

nodes and subgraphs of length 2 contribute no entropy), and an index vector representing 

the start of a random walk at a particular node in k was iteratively multiplied against π 
(1000 times was shown to be sufficient during method development) to produce wk. Some 

subgraphs existed as linear chains or non-triad cycle graphs, causing the stable Markov 

chain to oscillate between two sets of probabilities. In these cases, the two sets of distinct 

probabilities over 1000 iterations were weighted by 0.5 (the relative probability of each set 

occurring during a random walk), and combined to construct wk. Lastly, h for a graph was 

computed by summing the individual entropy values contributed from each subgraph using 

the appropriate wk. The result of this were time series of h values over the total 21-day 

length for each set (n = 80) of processed data.

To condense graph information for comparison over the entire temporal span of contact 

data, entropy time series were converted to the frequency domain by applying the Fast 

Fourier Transform, producing the discrete Fourier transform of each time series. Then, each 

Fourier transform was summarized by the calculation of its power spectral density (Stoica 

and Moses, 2004):

Power Spectrum Density = ∑
ℎ = 1

N
1/N X[ℎ]

2
(3)

in which N = total samples in set, h = entropy time series, and X[h] is the Discrete Fourier 

Transform of h. The power spectrum density (or simply, spectral density) of a Fourier 

transform is a single value that represents the total power of a signal averaged across its 

component frequencies (Stoica and Moses, 2004), and thus serves as reasonable proxy of 

information content captured by the time series of entropy values in a dataset. Fourier 

transform operations, as well as pre-(de-trending and tapering entropy values prior to Fourier 
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transform) and post-(smoothing frequency spectra via a Daniell kernel) processing steps, 

were carried out using the spectrum function in the stats package (R Core Team, 2017).

Upon conversion to the frequency scale, we compared the effect of the different processing 

decisions (SpTh, TSW and MCD) on information content at the hourly and daily scales 

as follows. As an initial parsing methodology, we first conducted partial ranked correlation 

coefficient analyses (PRCC) to determine how the three parameters individually contributed 

towards spectral density considered at hour and day scales (Marino et al., 2008; Wu et al., 

2013). This analysis showed that SpTh was the most influential independent parameter 

of the three, so spectral densities of factorial datasets were considered based on bins 

of SpTh (0.1665, 0.333, 0.666, 0.999 m). Within SpTh bins, the average percentage of 

the maximum spectral density per hour or day in each dataset (always the dataset with 

highest information content, i.e. TSW = 10 s and MCD = 1) was calculated. Percentages of 

maximum spectral density were also visualized over spans of 24 h and 21 days, respectively 

to allow for daily and hourly patterns in information change to be ascertained. An R-script 

that performs the above procedures on a generalized, processed contact dataset is supplied 

in the Supplemental Materials (S3). Lastly, to provide a point of comparison with the 

entropy-based metric considered here, two typical metrics of contact (average per capita 

contact durations, average per capita contacts) were calculated on an hourly and daily basis.

2.4. Pathogen transmission dynamics

The influence of SpTh, TSW and MCD on potential transmission dynamics was investigated 

by simulating transmission of a organism similar to the enteric pathogen Escherichia 
coli 0157 on a network-based Susceptible-Exposed-Infected-Recovered type transmission 

model. Though not pathogenic in cattle, E. coli 0157 is an important pathogen of humans 

that is commonly reported in cattle herds in various production systems (Ekong et al., 

2015; Hussein, 2007; Hussein and Bollinger, 2005). To compare the influence of temporal 

aggregation, the model was simulated using a time series of adjacency matrices aggregated 

at either the hourly (504 h) or daily (21 days) scale for each parameter combination (n 

= 80). Individual cattle could be in one of four epidemiology states including susceptible, 

exposed (infected but latent), infectious, and recovered. Although partial immunity in cattle 

is more likely (Peterson et al., 2007; Thornton et al., 2009), for simplicity we assumed 100% 

immunity with recovery. Infectious individuals had a level of infectiousness represented 

by the colony forming units (CFU) (See Supplemental Materials: S4) associated with a 

contact. Dose received by one individual through contacts with infectious individuals were 

accumulated and evaluated at each hour or day. The probability of colonization was a 

dose-dependent function:

pcol = 1
1 + K /CFUcum

(4)

where CFUcum is the dose accumulated over the evaluation period (hour, or day) contributed 

by infectious individuals. CFUcum was calculated as the cumulative duration of contact 

periods with infectious individuals (of length of the TSW) * CFU per contact duration 
(CFUpcd). K was the dose that yields a 50% probability of colonization (Gadagkar and 

Call, 2015). A random sample drawn from a Bernoulli distribution (1, p = pcol) determined 
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transmission success or failure. When multiple infectious individuals contributed CFU’s to 

cause a single infection, the individual contributing the most CFU’s was selected as the 

infecting individual. Successfully colonized individuals were transferred to exposed status, 

while non-successfully colonized individuals remained as susceptible. All contacts between 

infectious individuals and susceptible ones were assumed temporally independent. The 

evaluation of the function over a time interval used only the accumulated CFUs transferred 

during contact with infectious individuals over that interval. Thus, cattle did not have 

a memory of CFU’s accumulated prior to the current evaluation period (hour or day). 

Colonized individuals were transferred to recovered status after their time to recovery (i.e., 

their infectious period) had elapsed, and they were no longer infectious. All simulations 

started with a single, randomly selected infectious individual, and ran through either the 

entire time series, or until no infectious individual remained.

Constant model parameters included the time of latency (24 h), time to recovery (240 h), K 
(10,000 CFUs), and the CFUpcd (100 CFUs). The first three model parameter values were 

based on those reported for E. coli 0157 (Besser et al., 2001; Cray and Moon, 1995; Kulow 

et al., 2012; McGee et al., 2004). The value of K was within the range of inoculation doses 

for E. coli O157 reported to be infectious in cattle (Besser et al., 2001; Cray and Moon, 

1995). The CFUpcd was determined through preliminary analysis to be sufficiently high to 

reduce the influence of highly connected individuals on subsequent transmission dynamics 

(S4.1), and was within a range at which transmission-dynamics metrics were relatively 

insensitive to it (S4.2). A more detailed description of the process used to determine 

CFUpcd and an R-script that simulates disease transmission over a temporal sequence of 

contact networks is supplied in the Supplemental Materials (S4,5).

2.4.1. Transmission model analysis—The influence of processing decisions on 

transmission dynamics was considered for three simulation metrics, including R0 (the total 

number of new cases caused by the initially infected individual during its infectious period 

in an otherwise susceptible population), the time (in hours) to peak infection, and the 

number of total cattle infected at the end of the simulation. To relate these outputs to 

information content, output values were averaged over all simulation replicates of each 

combination of processing criteria, and then plotted against log-transformed spectral density. 

Lastly, to understand how individual processing criteria related to each metric, separate 

statistical models were constructed for each response variable using temporal aggregation 

(daily or hourly), SpTh, TSW, and MCD as predictor variables. See Supporting Information 

(S8) for details of these models.

3. Results

3.1. Contact data information content

SpTh was the most influential processing criteria in determining the amount of spectral 

content of contact data, followed by TSW and MCD for data aggregated both by both 

hour and day (Table 2). The PRCC for SpTh was strongly positive, consistent with the fact 

that more contact information is gathered as the SpTh around an individual increases. The 

PRCCs for TSW and MCD were negatively correlated with spectral content, consistent with 
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the fact that information decreases as the opportunity for contacts decreases due to either 

reduced sampling, or more stringent contact criteria.

For a given SpTh value, the percent spectral density decayed monotonically with increases 

in both TSW and MCD, and had similar patterns of decay when aggregated at either the 

hourly (Fig. 2) or daily (S6) level. In general, the change in percent of spectral content was 

predictable between TSWs at a particular MCD, scaling with information content of the 

lowest TSW. Spectral content decay with increasing MCD was generally characterized by 

a large drop in percent spectral content from MCD = 1 to MCD = 2, followed by a more 

gradual loss of information content as MCD further increased. However, the quantity of 

decrease in spectral density with increases in MCD depended upon SpTh, with larger drops 

occurring as SpTh decreased.

Visualizing spectral density as a time series of hours or days revealed how daily and hourly 

patterns of contact information are preserved. First, spectral density and the effect of MCD 

on spectral density varied over hours in a manner that appeared to correspond to periods 

of low and high daily activity (Fig. 3). During periods of low activity (21:00 h–5:00 h, 

when cattle are behaviorally inactive, typically lying down), percent spectral density was 

similar across levels of MCD. During periods of higher activity (when cattle are eating, 

drinking, and socializing), the percent spectral density varied widely across hours, and large 

differences were apparent between when MCD = 1 and when MCD > 1 (Fig. 3). Two 

temporal patterns of note were a short spike around 6:00 h (feeding time), and then a long 

peak that begins around 7:30 h, reaches its zenith around 15:00 h and reaches its nadir 

shortly after 20:00 h. In general, as SpTh increased and TSW decreased, patterns of percent 

spectral density largely converged across all MCD. Conversely, as TWS increased and SpTh 

decreased datasets with MCD > 1 contained increasingly less information. In the most 

extreme case (SpTh = 0.1665 m, TSW = 180 s, MCD > 1), datasets contained almost no 

spectral density relative to a MCD = 1. At the daily scale a similar pattern of differences in 

spectral density with processing decisions was found (Fig. 4), and a cyclical pattern emerged 

in which a peak in percent spectral density occurred approximately every 5 days of the 

21-day period.

A comparison to more typical contact metrics, average per-capita contact duration (number 

of contact durations per animal) per hour/day and average per-capita contacts (number of 

discrete contacts per animal) per hour/day (S7), showed that similar patterns were found 

with changes in processing decisions; that is, rates decreased as SpTh decreased, and 

as TSW and MCD increased. However, the decay of average per-capita contact duration 

(as a percent of the maximum for the SpTh level) occured more slowly than the decay 

of information via spectral density. For example, the percent spectral density for the 

combination (SpTh = 0.1665, TSW = 15, MCD = 2) aggregated at an hourly level was 8.5%, 

while the percent of maximum per-capita contact duration rate for the same combination 

was 25%. In contrast, the entropy measure was more robust to data loss than rates of 

contacts per hour/day. For example, at the same processing level, (SpTh = 0.1665, TSW = 

15, MCD = 2), the percent of the maximum per capita contact rate was 7.9%. Thus, while 

the entropy-based metric was more sensitive to information loss than rates of per capita 

contact duration, it was less sensitive than rates of per capita contacts.
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3.2. Transmission dynamics

R0 was approximately linearly related to information content, increasing as (log) spectral 

density increased (Fig. 5), and particularly within a SpTh. A generalized linear model of 

R0 (S8) showed that this pattern was due to large main effects of, and relatively small 

interactive effects between processing decisions and R0. In contrast, the total number of 

infected individuals and time to peak infection were related in more complex ways with 

information content. The total number of infected individuals had a logistic relationship 

with information content, rapidly rising as log information spectral density increased, 

before leveling out at approximately complete infection once a particular threshold was 

reached (Fig. 6). A logistic regression of the probability of an epidemic conducted on 

total dichotomized total infected data (major epidemic (> 65 individuals infected) and 

minor epidemic (< 5 individuals infected)) demonstrated that this pattern was created 

via interactions between processing parameters. Namely, while increasing SpTh increased 

the probability of an epidemic, negative interactions with TSW and MCD caused it to 

rapidly fall (S8). Lastly, time to peak infection changed non-monotonically with information 

content, increasing with information content to a point, before decreasing (Fig. 7). A 

proportional hazards model(S8) showed that the first half of this pattern was produced 

by a positive interaction between TSW and MCD that reduced peak infection times as 

higher TSW and MCD values combined with low SpTh to reduce information content. This 

corresponded to simulations that failed to produce epidemics (Fig. 5) or had only minor 

outbreaks (Fig. 6). The second half of this pattern was due to the reduction of peak infection 

time with increasing SpTh (S8), and largely corresponded to major epidemics (Figs. 5 and 

6).

Similar relationships between changes in information content and model metrics were found 

using daily aggregated data (S9.1) compared to hourly aggregated data, but quantitative 

differences in output parameters due to temporal aggregation existed. For R0, effect sizes of 

processing effects (calculated as: mean valuedaily-mean valuehourly/st.dev.pooled) (Nakagawa 

and Cuthill, 2007) ranged from −1.43 – 0.99 (i.e., higher R0 using hourly aggregated data 

with negative effect size), with R0 values higher using daily aggregated when information 

content was low, and higher with hourly aggregated data when information content was 

high (S9.2, Fig. 4). There was little difference in total cattle infected when information 

content was high (effect size = −0.14), and more cattle infected using daily-aggregated data 

when information content was low (effect size = 1.61) (S9.2, Fig. 5). Lastly, simulations 

using hourly aggregated data generally had lower (i.e., faster) times to peak infection 

(effect sizes −0.48–2.09), while most cases of higher peak infection time using hourly data 

were produced with datasets of lower information content (S9.2, Fig. 6). Statistical models 

showed that these patterns were due to variation in the magnitudes of main and interactive 

effects of temporal aggregation with processing parameters. For R0, interactive terms of 

similar magnitude were larger than the main effect for temporal aggregation, resulting in 

a pattern that depended on other processing parameters (S8). In contrast, main effects of 

temporal aggregation were larger than interactive effects for models of major epidemic 

occurrence and time to peak infection (S8), contributing to a range of effect sizes more tilted 

more towards daily or hourly aggregated data overall.
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4. Discussion

4.1. Entropy and spectral density

Although processing decisions have been recognized previously as an important challenge 

when dealing with contact data (Eames et al., 2015; Haddadi et al., 2011), few researchers 

have approached the problem from the perspective of information loss (Haddadi et al., 

2011). We extended the methodology proposed by Haddadi et al. (2011) by applying it 

in a factorial approach to consider how information content decays as a factor of multiple 

processing decisions. Entropy is a measure of the uncertainty of, and therefore the new 

information provided by, a value of a random variable (Stone, 2015). The entropy of 

adjacency matrices as calculated here reflects the uncertainty of the path of diffusion (of 

say, pathogens) over a graph (Gómez-Gardeñes and Latora, 2008; Sinatra et al., 2011), with 

greater entropy indicating easier diffusion (i.e., more paths). By converting time series of 

entropy values to a frequency basis and calculating an average spectral density per dataset, 

information captured over a time span was condensed into a single metric of information 

per period of temporal aggregation that allowed for a ready comparison between data 

processing methodologies (Haddadi et al., 2011). It showed that the information content 

of contact datasets drastically changed with differences in processing decisions (Fig. 2), 

but that temporal patterns tended to converge as entropy values increased (Figs. 3 and 4). 

As expected, a comparison to more straightforward contact metrics (rates per hour/day of 

average per-capita contact durations and discrete contacts) (S7) showed similar patterns of 

change with processing decisions. The entropy approach, however, explicitly accounts for 

network complexity, and is therefore less influenced by single pairwise contacts of long 

or short duration. Therefore, this technique provides a convenient method of assessing and 

comparing how processing decisions influence the information content of contact datasets 

and the potential for disease transmission over contact networks.

4.2. Relating processing decisions, spectral density, and disease transmission metrics

The disease model outputs considered here represented several measures of transmission 

dynamics, including the minimum threshold of contacts allowing major epidemics (R0), 

and the intensity (R0), rapidity (time to peak infection), and extent of epidemics (total 

cattle infected). Each was variably influenced by processing criteria, and whether or not a 

successful outbreak occurred. Successful epidemics occurred (e.g., R0 > 1 (Figs. 5 and 6)) 

over a wide range of processing parameter combinations, suggesting transmission threshold 

was remarkably robust to information loss. For example, R0 was only reduced to < 1 when 

> 92% of spectral density had been lost at the smallest SpTh (0.1665). At the largest SpTh 

(0.999 m), average R0 did not fall < 1 over the entire range of MCD and TSW considered, 

despite an information content of < 1% at the highest TSW and MCD combinations (Fig. 

5). Additional simulations show that these conclusions generally hold across a wide range of 

dose rates (See S4.2).

When epidemics did occur, R0 increased in an approximately linear manner (Fig. 5) with 

log spectral density over a range from 1 – 42. Meanwhile, times to peak infection decreased 

in a logistic fashion from ≈ 429 h to a plateau of ≈ 100 h as information increased 

(Fig. 7). Thus processing decisions had a substantial effect on the rapidity and intensity 
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of epidemics, with R0 more sensitive to changes in processing decisions than time to 

peak infection, particularly when information content is high. This is likely because model 

structure imposes a minimum time to when peak infection can occur (given an epidemic), 

regardless of information content. In contrast to R0 and time of peak infection, the final 

size of the outbreak was relatively insensitive to changes in processing parameters, with 

the majority of epidemics either major (> 65 individuals) or minor (< 5). Further, major 

outbreaks would likely result for epidemics of intermediate extent given a longer time. The 

implications of this are that particular attention should be paid to how contact data used in 

the model is processed if sensitive outputs like R0 are used to inform policy decisions.

Lastly, aggregating data at the hourly or daily level did result in differences in disease 

model outputs (S8, S9). Particularly when information content was higher (S9), faster 

epidemics (lower peak infection time) of higher intensity (higher R0) resulted with hourly 

data compared to daily data, likely due to the transmission function being evaluated more 

times with hourly (504) vs daily (21) datasets (Brouwer et al., 2017). However, when 

information content was lower, daily aggregation increased the number of contacts included 

in individual (i.e. daily) transmission trials, increasing R0 relative to hourly aggregated data 

(S9.2). Overall, however, the pattern of changes in output metrics with changing processing 

parameters was very similar between hourly and daily aggregated data (S9.1). Thus, our 

results are generally in concordance with Stehle et al. (2011) that reported aggregated 

contact data to be a good approximation to dynamic data. As suggested by Stehle et al. 

(2011), this may be due to the temporal scales of the epidemiological stages (days) being 

much longer than contact events (seconds to hours). In the case of quickly spreading 

pathogens, where the temporal scales of contact and transmission overlap, the level of 

temporal aggregation would be expected to have a larger influence on network topology and 

subsequent model dynamics.

One implication of our results is that since the quantity of information is influenced by 

processing decisions, epidemic patterns produced via modeling may be, in part, due to 

processing decisions alone. Therefore, networks created from different contact datasets, 

and subsequent model-based insights into disease dynamics derived from them may be 

less comparable if the datasets are processed in divergent ways. Previous research using 

dynamic contact data have employed a wide range of SpTh values as thresholds for contact. 

Thresholds for GPS-based data are often the largest (4–100 m) (Koen et al., 2017; Lavelle 

et al., 2014; Tosa et al., 2015; Vazquez-prokopec et al., 2013), and are due to technical 

limitations on ground-based readings. In the case of proximity sensors and real-time 

locations (such as the one in this study), thresholds typically have a much smaller range (0–2 

m) (Barrat et al., 2014; Chen et al., 2014a; Drewe et al., 2012; Machens et al., 2013; Toth 

et al., 2015; Voirin et al., 2015). However, both contact structure (as indicated by spectral 

density) and disease dynamics in our study was shown to be very sensitive to changes 

in SpTh over a narrow range (0.1665–0.999 m), with its effect mediated by TSW and 

MCD. This suggests that diverse datasets should be re-processed to similar specifications if 

conclusions from their analyses are to be compared or datasets with different processing are 

used to inform a model.
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We suggest that a general approach for the selection of processing criteria should start with 

the selection of an appropriate SpTh. Reasons for the selection of a SpTh are not always 

stated (Blyton et al., 2014), or are done so in the context of technical optimization (Duncan 

et al., 2012; Toth et al., 2015). However, SpTh had the largest independent influence on 

information content (Table 2) in our analyses, and featured prominently in statistical models 

of output metrics (Figs. 5–7, S8). In addition, it represents a hypothesis or knowledge about 

what is understood about the ecologies of the study organisms and about the dominant 

transmission pathway of the pathogen (Eames et al., 2015). In the case of proximity-sensory 

based approaches, this decision is often made prior to data collection, and may be as a 

function of the equipment used (Drewe et al., 2012; Obadia et al., 2015; Stehlé et al., 2011; 

Voirin et al., 2015). Therefore, careful consideration of the implications of varying SpTh on 

disease transmission, as well as trialing different settings to maximize performance (Drewe 

et al., 2012) may be necessary.

Next, data should be processed at the selected SpTh under varying TSW and MCD 

conditions. Although the transmission threshold of major epidemics (R0 > 1) was found 

to be fairly robust to processing decisions, there was little direct evidence as to what 

constituted appropriate versus excess levels of non-effective contacts within our datasets. A 

solution to reducing this uncertainty is through the analysis of epidemiologic data collected 

(ideally) contemporaneously with contact information (Manlove et al., 2018; Voirin et al., 

2015). If there is a lack of comparative epidemiological data, three general strategies are 

apparent. The first is to assume that effective contacts can occur over a single temporal 

window of the shortest duration; that is, the dataset is used at its highest resolution. The 

second strategy assumes that some contacts are ineffective but there is high uncertainty as 

to reasonable level of processing stringency; thus, values for TSW and MCD are set to 

intermediate levels between their smallest and largest possible values. The third strategy 

assumes that most contacts are non-effective for disease transmission, and TSW and MCD 

are set to the largest values allowing an epidemic to occur (i.e., R0 > 1); that is, the dataset is 

used as its lowest effective resolution. Regardless of the strategy chosen to process a dataset, 

however, it appears essential that subsequent modeling efforts utilize the same processing 

methodology so that results are comparable.

4.3. Considerations

The conclusions presented here are subject to several limitations. First, our treatment of 

entropy was based on a TSW basis, wherein the entropy was calculated per time-ordered 

network snapshot at each TSW. This method did not explicitly consider how data-processing 

decisions influenced temporal correlations between particular topologies or sequences of 

contacts. However, temporal correlations can influence information flow, such as disease, 

over networks (Artime et al., 2017). An approach that takes this dependency into account 

uses “greedy” random walks to calculate entropy and quantify topological uncertainty 

(Saramäki and Holme, 2015). In greedy walks, walkers move between time steps based 

on the availability of contacts, choosing the next node at each time either randomly or a 

weighted basis. The probability of unique trajectories can be used to calculate a measure 

of entropy that represents the uncertainty of trajectories when starting from different 

nodes. When considered as a distribution, the effect of processing decisions on influencing 
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temporal correlations can be assessed (Saramäki and Holme, 2015; Song et al., 2010). This 

aspect of data-processing influence on contact networks approach should be explored in 

future work.

Next, we developed a simulation model that used constant parameter values rather than 

sampling from distributions of parameter values to make interpretations of the influence 

of processing decisions clearer. However, the influence of additional stochasticity in model 

behavior may be important (Lloyd-Smith et al., 2005; Reynolds et al., 2015). In addition, 

exposure dose (CFUpcd) was also constant, with susceptibles accumulating CFUs through 

consecutive contacts with infectious individuals. Accounting for dose effect in another way 

may have influenced the rapidity and intensity of dynamics. For example, considering 

exposure dose by unit of discrete contact regardless of duration, for each consecutive TSW 

≥ MCD, or by a variable rate depending on duration would likely have resulted in lower 

transmission.

The effect of the initially-infected individual was not explicitly considered in our main 

analysis, as the focus of the study was the effect of processing decisions on information 

content and model dynamics. Instead, we sought to reduce the effect of the initially-infected 

individual on transmission model dynamics by randomly selecting starting individuals for 

each simulation, and selecting an exposure rate (CFUpcd) that resulted in a moderate 

correlation between R0 and mean contact rate of the initially-infected individual during 

their infectious period (See S4.1). However, this correlation was based on the dataset 

with the highest information content, and further simulations (See S4.3) demonstrated that 

the effect of the initially infected individual on model dynamics is influenced by both 

infectious dose and how the dataset is processed prior to modeling efforts. In particular, 

the CFUpcd value for which the initially infected individual’s connectedness is maximally 

correlated with R0 (and therefore would be expected to have the greatest influence on 

model dynamics), changes in a non-linear way with information content, as determined by 

processing decisions (S4.3). In our simulations in which CFUpcd and starting individual 

were systematically varied (S4.2), the effects of processing decisions appear to be robust 

across a range of doses when R0 values were aggregated across all individuals within 

a factorial combination of processing decisions and dose. However, investigations into 

hypotheses on the influence of initially-infected individuals on disease dynamics should be 

cognizant of interactions between these factors.

Finally, there is uncertainty in how the relationship between information content, influenced 

by processing decisions, and disease dynamics would be affected by disease intervention 

strategies. Two factors that should be considered when assessing the plausibility of 

intervention-strategy implementation are behavioral modifications to the host that influence 

network structure such as sickness behavior (Eames et al., 2015), and the nature and efficacy 

of the intervention. Ideally, empirical contact data that captures both these aspects can be 

collected and modeled, leading to the creation of simulated contact data accounting for these 

issues (Pellis et al., 2015). In the absence of such quantitative information, understanding 

how data processing influences information content is helpful in gauging the uncertainty 

of intervention success. For example, the use of processing parameters that result in too 

little information may overestimate intervention success. Similarly, when interventions 

Dawson et al. Page 13

Epidemics. Author manuscript; available in PMC 2019 July 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



are less than 100% effective at reducing transmission, researchers must consider whether 

data processing leads to over- or under-estimated rates of simulated disease transmission 

compared to observed transmission. For example, a vaccine that provides only partial 

effectiveness, like recently developed E.coli O157 vaccines that reduce rates of shedding 

(Cull et al., 2012), may result in overly-optimistic simulation results if processing decisions 

over-reduce information content relative to reality. However, the relative insensitivity of the 

epidemic threshold (i.e., R0 > 1) to processing decisions shown here gives credence to the 

effectiveness of interventions that prevent (i.e., reduce transmission so that R0 < 1) otherwise 

successful simulated epidemics.

4.4. Conclusions

In this study, we found that upstream processing decisions influence the information content 

of contact datasets, resulting in significant implications to the dynamics of disease models. 

Using entropy as a concise descriptor of information content, we found that R0 and time 

to peak of infections were relatively sensitive to processing decisions, while transmission 

threshold (R0 > 1) and final outbreak size were less sensitive. In addition, model dynamics 

may be more sensitive to processing decisions if the temporal scales of contact formation 

and transmission are more likely to overlap. Overall, our findings emphasize that the 

selection of processing criteria can impose a considerable influence on contact structure 

and resulting transmission model dynamics, and thus should be selected in a cognizant, and 

non-trivial manner.
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Fig. 1. 
Flow chart of data processing procedures. Flow chart components include unprocessed 

temporally dynamic contact data (light grey), processes and intermediate products (dark 

grey), final products (black), and quality control processes (white).
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Fig. 2. 
Percent spectral content per spatial threshold bin (0.1665 m, 0.333 m, 0.666 m, and 0.999 

m) for data aggregated over hours. At each bin, percent spectral density is represented on the 

y-axis, temporal sampling windows are on the x-axis, and minimum contact durations are 

represented as different colored lines.
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Fig. 3. 
Average percent spectral content aggregated by hour and displayed over 24 h for all 

combinations of spatial threshold (ST), temporal sampling window (TSW), and minimum 

contact duration (MCD). The percent spectral content is indicated on the y-axis of each 

graph, and the hour is located on the x-axis. Parameter combinations for SpTh and TSW are 

shown above each graph, and MCD is indicated by colored lines.
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Fig. 4. 
Average percent spectral content aggregated by day and displayed over 21 days for all 

combinations of spatial threshold (ST), temporal sampling window (TSW), and minimum 

contact duration (MCD). The percent spectral content is indicated on the y-axis of each 

graph, and the day is located on the x-axis. Parameter combinations for SpTh and TSW are 

shown above each graph, and MCD is indicated by colored lines.
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Fig. 5. 
R0 as a factor of the average log spectral density of differently processed datasets aggregated 

at an hourly basis. SpTh value is indicated by color (orange = 0.1665 m, green = 0.333 m, 

blue = 0.666 m, purple = 0.999 m); TSW is indicated by shape (circle = 10 s; triangle = 15 s; 

square = 30 s; cross = 60 s; x-box = 180 s); MCD value is indicated by size.
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Fig. 6. 
Total infected individuals as a factor of the average log spectral density of differently 

processed datasets aggregated at an hourly basis. SpTh value is indicated by color (orange = 

0.1665 m, green = 0.333 m, blue = 0.666 m, purple = 0.999 m); TSW is indicated by shape 

(circle = 10 s; triangle = 15 s; square = 30 s; cross = 60 s; x-box = 180 s); MCD value is 

indicated by size.
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Fig. 7. 
Peak infection time as a factor of the average log spectral density of differently processed 

datasets aggregated at an hourly basis. SpTh value is indicated by color (orange = 0.1665 m, 

green = 0.333 m, blue = 0.666 m, purple = 0.999 m); TSW is indicated by shape (circle = 

10 s; triangle = 15 s; square = 30 s; cross = 60 s; x-box = 180 s); MCD value is indicated by 

size.
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Table 2

Partial Ranked Correlation Coefficient (PRCC) analysis of Spatial Threshold (SpTh), Temporal Sampling 

Window (TSW), and the Minimum Contact Duration (MCD) on average spectral density aggregated over both 

hours and days.

Temporal Scale Parameter PRCC 95 % CI

Hour

SpTh 0.721 0.716 0.726

TSW −0.428 −0.437 −0.421

MCD −0.320 −0.329 −0.312

Day

SpTh 0.959 0.956 0.962

TSW −0.832 −0.847 −0.820

MCD −0.657 −0.679 −0.634
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