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ABSTRACT The vast majority of environmental microbes have not yet been cultured,
and most of the knowledge on coral-associated microbes (CAMs) has been generated
from amplicon sequencing and metagenomes. However, exploring cultured CAMs is
key for a detailed and comprehensive characterization of the roles of these microbes
in shaping coral health and, ultimately, for their biotechnological use as, for example,
coral probiotics and other natural products. Here, the strategies and technologies that
have been used to access cultured CAMs are presented, while advantages and disad-
vantages associated with each of these strategies are discussed. We highlight the
existing gaps and potential improvements in culture-dependent methodologies, indi-
cating several possible alternatives (including culturomics and in situ diffusion devices)
that could be applied to retrieve the CAM “dark matter” (i.e., the currently undescribed
CAMs). This study provides the most comprehensive synthesis of the methodologies
used to recover the cultured coral microbiome to date and draws suggestions for the
development of the next generation of CAM culturomics.

KEYWORDS coral microbiome, coral metaorganism, culturomics, culture-dependent
techniques, microbial dark matter, coral-associated microbes, coral probiotics, culturing

Beneficial microbes are essential members of the coral holobiont (i.e., the coral host
plus the associated microbiome, including their endosymbionts) (1, 2) as they can

contribute to energy and nutrient input, remediation of toxic compounds, and mitiga-
tion of environmental and/or pathogenic impacts (3, 4). Exploring the diversity of cul-
tured coral-associated microbes (CAMs), both in terms of taxonomy and functionality,
is therefore an important step to fully characterize and elucidate the roles these
microbes play in shaping host health. Such baseline information is also useful for bio-
technological and experimental applications, such as the use of coral probiotics (5–11).

The vast majority of microbes are still unknown. Lagier et al. (12), for example, were
only able to assign a species ID to 51 of the 340 cultured species from the human micro-
biome. Most of the knowledge of CAMs has been generated from amplicon sequencing
based on PCR amplification of specific gene markers (16S, 18S, and 23S rDNA) (2, 13)
and/or more recently through metagenomics (14–16). Such tools have generated impor-
tant knowledge regarding coral-microbiome assemblages and environmental interac-
tions (17), microbial transmission (18), and coral holobiont plasticity and physiology (19),
as well as the microbiome response to environmental impacts (9, 10, 16, 20–24).

Multi-omics analyses have also revealed the extent of the uncharacterized and
uncultured majority of CAMs (14, 21, 25, 26), which can be orders of magnitude higher
than those culturable within laboratory settings (27, 28). In addition, molecular tools
may inform culturing strategies on how to improve the culturability of the “hidden
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diversity” that appears to be out of reach (29, 30). However, these same tools might be
insufficient to confirm specific functions, understand the physiology of unknown taxa,
and explore mechanisms associated with the complex interactions between hosts and
microbes, which highlights the importance of cultivation in the age of multi-omics.

The first big effort to pull together the current state of play of cultured CAMs was
recently performed by Sweet and colleagues (28). The authors analyzed a total of 3,055
prokaryotic isolates and 74 genomes from 52 studies (published and unpublished).
Through cultivation, 138 bacterial genera were recovered and the most abundant gen-
era isolated were Ruegeria, Photobacterium, Pseudomonas, Pseudoalteromonas, Vibrio,
Pseudovibrio, and Alteromonas; the majority of these were cultured from marine agar
(715 distinct isolates). Furthermore, only a very small fraction of the isolated strains
also had their genome sequenced. Another study by Huggett and Apprill (27), taking a
slightly different approach, highlighted similar trends; only 6.5% of the 21,100 sequen-
ces available in the Coral Microbiome Database (https://vamps2.mbl.edu/portals/CMP)
were generated from culture isolates. Indeed, 87.4% were identified as uncultured
(PCR-based methods or clone libraries) (27). Additionally, only 14 of the 41 taxonomic
groups assigned contained cultured representatives (27), which is also aligned with the
fact that less than 50% of the genes from the so-called “microbial dark matter” (i.e., the
yet-to-be-cultured microbes) can be annotated (31).

This lack of cultured representatives for many of the “known” bacterial groups reinfor-
ces the need for more efficient tools to culture these organisms, especially considering
many act to effectively repair or restore the coral microbiome to promote health and fit-
ness (3, 4, 13, 32, 33). Several strategies that have been used in other systems and organ-
isms (e.g., soil and humans) (34, 35) could now be explored to spur new developments in
coral studies. For example, innovative culture media and modifications in the incubation
parameters could be employed, as well as alternative tools such as diffusion-based devices
for in situ cultivation (36–38) and cell-targeted cultivation (39, 40).

This review aims to provide an overview of the strategies and technologies that have
been currently used to access cultured CAMs and highlights the advantages and disadvan-
tages associated with these strategies, as well as the existing gaps and improvements in
culture-dependent methodologies. We then propose several possible alternatives that
could be applied to retrieve the yet-to-be-cultured members of the coral microbiome and
thereby shed light on their potential application in ecology and biotechnology. This study
provides the most comprehensive synthesis of the methodologies used to recover the cul-
tured coral microbiome to date.

ACCESSING THE CULTURED CORAL MICROBIOME

Culture-based tools are mainly focused on standardized methods, using nutrient-rich or
nutrient-poor culture media and standard incubation time, pH, salinity, oxygen, and tem-
perature (28, 41). The use of alternative approaches, such as different cultivation settings
(41, 42) and in situ cultivation using diffusion-based devices, for example (43, 44), could
overcome challenges in mimicking the natural environment and isolating “hard-to-culture”
microbes (e.g., Endozoicomonas, see Pogoreutz and Voolstra [45]). In fact, both conventional
methods and alternative culture approaches only enable the retrieval of a small fraction of
the real microbial diversity and cell abundance in any environment, due to the phenom-
enon termed “the great plate count anomaly” (46), which therefore highlights the necessity
to apply combined tools to expand our reach.

Although there is no consensus on the exact percentage of currently cultured bacteria
and archaea, most taxa are still thought to be uncultured under laboratory conditions
(reviewed in Martiny [47] and Steen et al. [48]). Moreover, a staggering 88% of those that
have been cultured are from three phyla (Firmicutes, Actinobacteria, and Bacteroidetes)
(49). The remaining taxa can therefore be classed as “microbial dark matter.” Here, we dis-
cuss most techniques and strategies adopted to overcome such “microbial unculturability.”
In addition to the difficulty of mimicking natural-growth conditions, sample processing can
also negatively affect the viability and, consequently, the culturability of microbial cells from
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samples (50), and ways to detach microbial cells from coral mucus, tissues, and skeletons
must also be considered.

Sample processing interferes with the culturability of the coral microbiome.
The first step to successfully access the culturable fraction of the CAM is to effectively
detach the microbial cells from the host. If the specific location of the isolate within
the holobiont is not relevant, no advanced skills and/or tools are necessary; whole
coral maceration (51) is simply followed by serial dilutions and inoculation on the cul-
ture media. However, if the goal is to retrieve microbes associated with specific parts
of the coral (i.e., mucus, skeleton, or tissue), specific protocols are required.

Microbes associated with mucus, for example, can be collected using sterile
syringes to extract the liquid from the coral surfaces or even from the whitish slurries
that can form around the corals (52, 53). Alternatively, corals can be placed upside
down in sterile flasks without water, from which mucus secretion can be retrieved after
20 to 30 min, sometimes referred to as coral “milking” (54). Also, a commonly used
technique for sampling mucus is swabbing the coral surface (55, 56). Additionally, the
mucus can be sampled by low-speed centrifugation (57, 58). Finally, the aptly named
“snot sucker,” an apparatus that allows for the separation of the two distinct layers of
the surface mucus, can also be used (59). Each of these protocols present associated
challenges and limitations, including the amount of biomass that is obtained, potential
microbial contamination from the surrounding seawater, and/or cross-contamination
among coral compartments. The selected technique will therefore likely rely on the
available expertise, logistics, and research goals.

For coral tissue sampling, external layers of tissue, such as the epidermis and gastroder-
mis, can be detached from the skeleton by airbrushing with sterile buffers or filtered sea-
water (59, 60). The yield recovered can vary depending on the applied pressure and rigidity
of the bristle material. Calcium- and magnesium-free seawater incubation has also been
used due to the spontaneous detachment of coral tissue from the underlying skeleton.
Intracellular microbes can be extruded by mechanical rupture of the host cells using differ-
ent strategies (61), such as sonication or vortexing with or without beads. Importantly,
severe mechanical disruptions must be avoided as they can damage microbial cells to the
extent that they are unviable for culturing. It is important to mention the potential effect of
coral holobiont compounds on the culturability of specific CAMs. The production of man-
tiporic acids by the stony coralMontipora spp. (62, 63) can, for example, affect cultured cells
(e.g., zooxanthellae), due to its antimicrobial activity and cytotoxicity (63, 64).

The symbiosome and associated Symbiodiniaceae (65) also lies within the tissue;
accessing the CAMs associated with these would require successive steps of tissue
extraction and washing, followed by filtration and fractionation using a Percoll gradi-
ent as described by Peng et al. (167). This approach, applied for proteomic analysis,
maintains the integrity of symbiosomes and associated Symbiodiniaceae. Overall,
because sample processing interferes with the culturability of CAMs, methods inducing
minimum cell damage should be employed.

Interestingly, and somewhat surprisingly, the majority of CAMs are in the skeleton,
living in porous forms in different extracts (59, 66). Dissolution of the skeleton by decal-
cification can be performed to access the entire genomic content of skeleton-associ-
ated microorganisms (SAMs). However, to maintain the viability of microbial cells for
culturing, the skeleton can be crushed with a mortar and pestle and shaken overnight
with glass beads. Using this method, small fragments typically remain intact, which
means it is unlikely that all the SAMs present will be detected. Furthermore, the coral
skeleton presents a gradient of pH, oxygen, light, and nutrients, among other parame-
ters, which forms different submicroenvironments that are occupied by their own
unique microbes (66), and many of these would not be extruded using this method
alone.

Culture-based approaches. In this section, we examine the tools used for the culti-
vation of microorganisms and highlight alternative approaches to improve CAM cultur-
ability (Table 1).
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(i) Culture media and growth conditions: regular and modified media. Many
resources are required for a microbe to be cultured, such as the correct physicochemi-
cal nutrients and energy sources. The most basic approach used to culture microbes
from different sources is the use of nutrient-rich culture media (e.g., tryptic soy broth,
lysogeny broth, marine broth, nutrient broth, to name a few). These culture media
were developed decades ago (more than 50 years) and have been applied to grow and
maintain microbial cultures from different environments and hosts, including the coral
holobiont, using relatively few modifications that can increase the microbial diversity
obtained. Here, we highlight that novel approaches developed for other hosts and
samples should be adapted to increase CAM culturabilty.

Sweet et al. (28) have recently summarized the available data on the cultured frac-
tion of the coral microbiome. The authors observed that the most common culture
media used by coral microbiologists are marine agar (MA) and glycerol artificial sea-
water agar (GASW Agar), of which, according to the applied methods, coral samples,
and results obtained, MA has been proven to be the best culture medium to retrieve a
high number of unique isolates (28). Based on this study (28), the general culture
media nutrient agar seems to recover the higher diversity of CAMs, followed by R2A.
Conversely, thiosulfate-citrate-bole-salts-sucrose agar, nitrogen-free medium (NFb
256), and GASW Agar seem to provide the lowest bacterial diversity of current cultured
coral-associated bacteria (28).

In addition, the selective DMSP-enriched culture medium seems to be a good
option to increase the diversity of obtained CAMs (28), which is an example that, de-
spite the potential accumulation of selective by-products from the metabolism of cul-
ture media additives, such as sugars and or chemical compounds like DMSP (67), the
selection of the media composition should be based on the scientific goals.

General culture media enable the growth of a higher abundance of microbes, albeit
with low overall diversity (50). In contrast, selective media enable the growth of spe-
cific bacteria that would not be necessarily isolated by general media. Thus, combining
different culture media and applying variable incubation conditions will undoubtedly
increase the diversity of cultured bacteria. For example, Esteves et al. (50) used this
approach and obtained 15% of the total bacterial diversity from a sponge.

Media customization is an alternative approach that may enhance the diversity of
isolated microorganisms, such as modifications to media composition that may include
the addition of specific chemicals, the use of specific carbon sources, and use of alter-
native gelling agents. Such customizations benefit from in-depth insight into the na-
ture and characterization of samples, to better understand the factors involved in their
growth under natural conditions and potential improvements to retrieve specific mi-
crobial groups (68).

The excessive amount of nutrients from rich culture media can cause a high-nutri-
ent shock and impair the growth of microorganisms from stressful low-nutrient envi-
ronments (69). Keller-Costa et al. (70) isolated a plethora of strains associated with the
soft coral Eunicella labiata using a basic modification in marine agar, which was diluted
(1:2) in artificial seawater, aiming to deplete part of the carbon source. With this rela-
tively simple modification, 416 morphologically distinct colonies were obtained, corre-
sponding to 62% of the bacterial phylotypes associated with the gorgonian. Another
example of a relatively simple, although effective, modification is the culturing of the
first free-living representative of Candidatus Izemoplasma from deep-sea cold seeps
achieved with the addition of an enrichment step to the conventional culturing
approaches (71). In brief, sediment samples were enriched for 6 months using an an-
aerobic basal medium supplemented with 1.0 mg/L Escherichia coli genomic DNA at
28°C, as previously described by Fardeau et al. (72). The extracellular DNA was then
used as a source of phosphorus, carbon, and nitrogen to improve the culturability of
this deep-sea species.

The development of new culture media recipes that mimic the environment from
which samples are obtained has also contributed to the ability to grow previously
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uncultured bacteria. For example, the use of soil-extract agar medium (73) has enabled
new species of bacteria to grow due to the presence of soil constituents that are
required for the growth of specific groups of microorganisms (e.g., Actinomycetes)
(73). In a similar approach, Olson et al. (74) tested different conditions to improve the
culturability of microbial colonies from marine sponges and observed an increase in
microbial CFU when sponge extract was added to the regular culture media. Following
the same principle, we propose the use of a coral juice medium based on macerated
coral as a substrate that could, theoretically, allow the growth of CAMs that rely on
compounds present in the host (see detailed information in Future Prospects).

Another important and overlooked factor that can affect the culturability of
microbes is the gelling agent. This is a key driver of the structure of different cultured
communities (75). Agar, a product derived from a group of red-purple marine algae
(e.g., the genera Gelidium and Gracilaria), was introduced for microbiology in 1882 and
continues to have a major impact, being the most used gelling agent (76). However,
agar may also have negative effects on microbial culturability, such as the formation of
reactive oxygen species during sterilization of the agar. To overcome this limitation,
similar gelling properties can be found in various other agents, such as xanthan gum,
carrageenan, isubgol, gellan gum, and acetan, an exopolysaccharide produced and
secreted by the aerobic Gram-negative bacterium Acetobacter xylinum. These polymers
can be used, for example, to culture organisms that do not grow or grow poorly on
agar and may increase the number of CAMs and possibly even their respective growth
rates (77, 78).

Gellan gum, for example, is an extracellular polysaccharide secreted by the bacte-
rium Sphingomonas elodea (79) that is commercially manufactured by a fermentation
process. The unique colloidal and gelling properties of gellan gum were discovered in
1978 and present good ability to form coatings and high clarity (77, 80), and, due to its
high thermal stability, it has been often used to culture thermophiles (81, 82).
Additionally, several studies have observed that gellan gum improves the culturable di-
versity of some microorganisms, such as rare thermophilic Actinobacteria, several an-
aerobic (hyper) thermophilic marine microbes, and previously uncultured bacteria
from soil (82–84). Sugars from gellan gum (e.g., glucose, rhamnose, glucuronic acid)
may stimulate advanced microbial growth (77).

Additionally, a “selective medium-design algorithm restricted by two constraints
(SMART)” can be applied (85) and is based on two selective agents: (i) a specific carbon
source, enabling the proliferation of the target microorganism, and (ii) antimicrobials,
suppressing unwanted microorganisms. Described in 2011, this method was again
used to facilitate the development of selective media targeting key specific soil micro-
biota, such as Burkholderia glumae, Acidovorax avenae, Pectobacterium carotovorum,
Ralstonia solanacearum, and Xanthomonas campestris (85).

Another strategy adopted by some microbiologists is changing growth conditions
that are important for microbial cultivation, such as the incubation period, inoculum
size, temperature, pH, and atmospheric conditions (CO2/O2 level). One such strategy is
lowering the temperature and increasing the incubation period, as well as incubating
plates in the absence of light or inside polyethylene bags to avoid desiccation (41, 70).

For slow-growing bacteria, different strategies of modified “culturomic” approaches
can be applied to improve their recovery, especially due to the bias in cultivation by
competition with fast-growing bacteria (86). To recover a greater diversity of slow-
growing bacteria, the use of low-nutrient composition media (41) and supplementa-
tion with water from the sample source (87) has also been used. As long periods of
incubation are required for the growth of slow-growing bacteria, the use of antibiotics
(e.g., Amphotericin B) is also indicated to prevent fungal contamination. Additionally,
incubation in the absence of light and at temperatures of approximately 12°C is useful
(41).

Extracellular signaling molecules, such as cyclic AMP and acyl homoserine lactones
(AHL), can also be successfully used as supplements to enhance the culturability of
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some groups of microbes (75, 88). However, in other cases signaling molecules (i.e.,
AHLs) have negatively impacted the number of viable counts recorded (75, 89).

(ii) Coculture.Mimicking naturally occurring biological interactions can also help over-
come limitations associated with traditional cultivation (90). Complex networks are com-
monly observed in natural environments, where microbes can cooperate through the
exchange of metabolites and signaling molecules, as observed in changeling environments
and biofilms (91). Several obligate symbionts are hard to culture in laboratory conditions
because they have coevolved with their host or microbial partners (91, 92). A strategy to
overcome this limitation is coculturing interdependent microbes.

Coculture methods are widely used in synthetic biology and for the production of
bioactive secondary metabolites (93). In addition, coculturing may activate genes that
are not expressed under normal laboratory conditions, thus stimulating metabolic
pathways that are not active in pure cultures (94). Several studies have successfully
used the coculture strategy, allowing the recovery of several previously uncultured
bacteria, for example, microorganisms from marine invertebrates and algae, marine
sediments (95, 96), and sponge-associated bacteria (97, 98). To the best of our knowl-
edge, studies applying coculture on coral samples have not been undertaken to date.

(iii) Alternative approaches. Efforts to improve the culturability of environmental
microorganisms by using cocultures, alternative culture media, and incubation strat-
egies appear to have contributed to increase the recovery of some microbial groups.
Nevertheless, most bacterial groups remain uncultured. Here we summarize innovative
approaches that have been developed to overcome bacterial culturability limitations.

(a) Culturomics. Following some adaptations and new strategies proposed in the
early 2000s, in 2012, Lagier et al. (99) initiated the “microbial culturomics” approach
and paved the way for the next generation of microbial cultivation techniques.
Culturomics may be defined, by analogy with metagenomics, as an approach allowing
extensive assessment of microbial composition by high-throughput culture (100). This
includes exploring the aforementioned improvements to culture methods/techniques
(e.g., low-nutrient media, addition of host-tissue extracts and/or substrates, signaling
compounds, coculture, variations in pH, temperature, light incidence, salinity, oxygen
demand, etc.), and the use of high-throughput approaches (e.g., matrix-assisted laser
desorption ionization–time of flight mass spectrometry and 16S rDNA sequencing) to
retrieve large numbers of microbial colonies. This combined use of modified culture
conditions and high-throughput approaches has allowed the recovery of 384 previ-
ously unknown microbial species (12) and the retrieval of 497 hitherto species in stud-
ies of the human gut (101).

High-throughput cultivation pipelines are also becoming available, such as the so
called “Culturome” designed for the culturing of plant root-associated bacteria using
limiting dilution in 96-well plates (102). The culturome effectively guarantees the
growth of axenic colonies, enabling the retrieval of slow-growing bacteria, ensuring in-
dependence from those that are fast growing (102). Moreover, this approach describes
an integrated workflow to facilitate the identification of colonies using marker-gene
amplicon sequencing (102) and could be also adapted for marine samples.

(b) Diffusion-based devices in microbial cultivation. To culture marine sponge-
associated bacteria, Steinert et al. (43) notably used diffusion chambers for in situ cultiva-
tion in 2014. The chambers were bound by two membranes that enable diffusion of
growth factors present in the natural environment. Samples of diluted marine sponge tis-
sue (Rhabdastrella globostellata) were loaded in the chambers and returned to the habi-
tat. Sequencing of 16S rRNA and phylogenetic analyses showed that this approach
enabled an increase of 339% in sponge-associated bacterial culturability. Moreover,
19.6% of sequences were from previously uncultured bacteria, mainly Proteobacteria and
Bacteroidetes. A similar approach was applied for the cultivation of Actinobacteria (103).
In this case, one of the two membranes had a pore size that selectively allows penetration
of filamentous Actinobacteria, while simultaneously preventing penetration of other
microorganisms. Once the devices are incubated in the soil, Actinobacteria grow into the
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chambers and facilitated by the assimilation of specific growth factors naturally present in
the environment (103). This trap allowed higher retrieval (200%) of Actinobacteria in com-
parison with traditional culture media, including rarely cultured genera. While traps
loaded with agar enabled the isolation of 69 Actinobacteria from four genera (81%
Streptomyces), those loaded with gellan gum allowed the isolation of 81 strains from 11
different genera. In comparison, Petri dishes containing agar and gellan gum inoculated
with samples from the same source as the trap, allowed the recovery of only 25 and 41
Actinobacteria, respectively (103).

Isolation chips (iChips), developed by Berdy and colleagues (44) in 2017, are another
example of a diffusion-based device that can increase the number of microbial isolates
by up to 300-fold, while also recovering previously uncultured microbes. iChips have
many wells inside from which it is possible to grow axenic colonies from loaded micro-
bial cells. This technology has allowed the recovery of a strain of Eleftheria terrae, which
produces an antibiotic named teixobactin (104). This antibiotic was the first new class
of antimicrobials found after 30 years, representing a promising alternative chemother-
apeutic agent to control infections caused by multidrug-resistant bacteria. Other stud-
ies have shown the applicability of iChip-like devices to culture microbes from aquatic
environments and organisms, such as from mangroves (105) and sponges (37).

Early limitations associated with the quantification and sorting of the microbial cells
loaded into iChip wells have recently been addressed by Liu et al. (106) through the
development of the FACS-iChip, which is a flow cytometry-based and fluorescence-
activated cell sorting (FACS) integration of a modified iChip. This method, with a single
microbial cell per well, increased the culture recovery at up to 40% (106).

Another example of a diffusion-based approach was developed relatively recently
by Chaudhary and colleagues in 2019 (36), who designed a diffusion bioreactor and
used it to analyze soil samples. Briefly, a sample was loaded in a container wrapped
with a polycarbonate membrane (0.4 mm) filled with culture media, and the chamber
was surrounded by soil. Similar to other diffusion-based tools, the membrane enables
exchange of growth factors and key compounds with the environment, thus allowing
growth of incubated microbes.

Multiwell microbial culture chips are another microbial culturing alternative which
use a ceramic plate with a million microwells, enabling the growth of separate micro-
colonies (98). This high-throughput system has been shown to promote the rapid
growth of novel bacterial species with biotechnological applications (107). Similarly,
Palma Esposito et al. (108) developed a Miniaturized Culture Chip (MCC), which con-
sists of a microscreen plate. The authors used this device to grow microbes from
Antarctic sediment samples and isolated the rare genus Aequorivita sp., strain 23L, able
to produce substances with biotechnological value (108).

A gelatin sphere composed of culture medium and the microbial sample, coated
with natural or synthetic polymer, forming a polymeric membrane was also developed
for in situ incubation in natural environments (109). This approach avoids the use of
support materials, such as metals, that can negatively affect the environment and in-
hibit cell growth. Similarly, Zengler et al. (110) loaded single cells into microcapsules
that were exposed to a continuous flow of culture media under in vitro conditions,
resulting in the recovery of approximately 10,000 microcolonies of environmental
microbes. Recently, Alkayyali et al. (111) designed a platform called a Microbe
Domestication Pod (MD Pod). The MD Pod has been used to load agarose microbeads
containing marine bacteria and prepared by microfluidics, which serve as substrate for
single-cell growth. Pod devices are chambers bound and sealed by membranes that
allow the passage of growth factors from the natural environment. Once assembled,
MD Pods can be incubated in situ (marine sediments) (111).

Other examples include an in situ hollow-fiber membrane platform coupled with
injectors to maintain flow of substrates, which has been shown to improve the cultur-
ability of inoculated cells from aquatic environments by up to 12.3%, in contrast to
2.1% of the microbial cells inoculated in Petri dishes (112). The use of transwell plates
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to allow the diffusion of nutrients from the environment is another method which, for
example, has been used for the recovery of methane-oxidizing bacteria (113). Finally,
the so-called “I-tip,” a simple adaptation using a 200-mL pipette tip and glass beads (50
to 212 mm in diameter), loaded with culture medium R2A, has been used to enhance
the growth of sponge-associated bacteria (38). All the diffusion-based alternatives dis-
cussed above could be adapted and employed for the recovery of CAMs, both in aqua-
ria or the natural environment, by attaching these devices around or inside coral
colonies.

(c) Paper-based analytical devices. A simple paper-based analytical device (PAD) for
in situ cultivation and screening of Escherichia coli human infections was designed using wax
and Whatman No. 1 filter paper combined with a cotton sheet, with the addition of agar to
allow the growth of microbial cells (114). This platform also enables testing for the presence
of nitrite, which indicates E. coli infection. The principle of this device may be applied to
other microorganisms and hosts, including those from the marine environment, where PAD
may be adapted to identify coral infection with Vibrio coralliilyticus or other pathogens using,
for example, selective media and biochemical traits.

(d) Winogradsky columns. Winogradsky columns consist of transparent cylinders
filled with particles forming a solid matrix (e.g., sediment or soil with microorganisms of
interest, or even sterile silicate sand), plus a liquid phase (115, 116). These columns are
commonly incubated under light regimes, and these conditions confer an ideal meso-
cosm for enrichment cultures (115). Biotic and abiotic processes inside the columns
drive the formation of a plethora of stratified microhabitats, forming a chemical gradient
suitable for different microbial-growth demands (115, 116). Recently, in 2020, this tool
has been employed to improve the culture of sponge-associated bacteria (116). The
authors observed that the oxygen gradient inside the columns enriched different taxa
according to specific oxygen demands. Moreover, other cultivation conditions were
tested including a simple dilution of culture medium up to 50 times, which notably
improved microbial growth. A similar stratified matrix using components of coral skele-
ton, specific mucus-enriched polysaccharides from different coral species, tissue, and
seawater could be used to culture CAMs.

(e) Cell-targeted cultivation. Many strategies have been developed for host-
associated microbial-cell sorting, although they have never been applied to explore
CAMs. “Reverse Genomics,” for example, is a method that uses specific antibodies previ-
ously known to be associated with certain microorganisms, to select and culture a target
microbe (39). Purified antibodies are loaded into the host to target a specific strain and
isolate it from complex microbial communities for culturing and genome sequencing.
Cross et al. (39) applied this method to isolate and culture three previously uncultured
Saccharibacteria (TM7) lineages from the human oral cavity. Similarly, Live-FISH, a meth-
odology that couples a modified pipeline of fluorescence in situ hybridization (FISH)-la-
beled DNA with probes and FACS, allows the recovery of target microbes from mock
and natural communities (35).

Several methodologies using micromanipulators or laser manipulation systems (e.g.,
optical tweezers and laser microdissection) have now also been developed with the aim
of sorting, culturing, and isolating single bacterial cells. These techniques utilize micros-
copy to visualize, trap, collect, and transfer a single cell out of a mixed microbial commu-
nity (117–119). More recently, Lee et al. (40) proposed a similar technique labeling living
microbes using stable-isotopes to select targeted cells by Raman microspectroscopy.
This method allows cell sorting by functional traits before isolation or single-cell genome
sequencing. Microbial-targeted culturing techniques using genome-informed probes
that have been developed for other hosts and environments represent alternatives to
sort and isolate specific and uncultured microbes from the coral microbiome. Although
choosing the cultivation approach will depend on several variables, including the goals
and available infrastructure and material, the use of multiple strategies can increase the
diversity of microbes recovered from marine samples by up to 45% (120) and is therefore
highly recommended when a wider diversity of microbial cultures is desired.
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Combination of culture-dependent and culture-independent methods. Several
studies have shown that culture-dependent and culture-independent methods often
deliver different results, where each approach has its own biases and limitations (121,
122). Combined molecular and traditional approaches can, however, optimize the re-
covery of bacterial cultures (123, 124). Microbial communities and genomes (including
those from the microbial dark matter fraction) can be, for example, characterized at a
functional level using culture-independent approaches and bioinformatic tools (125–
127). Such information can inform the development of specific culturing conditions to
recover yet-to-be-cultured groups. The use of molecular tools to elucidate isolation
patterns and improve the enrichment and cultivation processes was demonstrated for
the bacteria Campylobacter jejuni, targeted from chicken feces (128).

Additionally, Sweet et al. (28) suggested the formulation of culture media with tau-
rine to cultivate and recover obligate microbial symbionts from coral hosts. The authors
observed enrichment of TauD (the gene for taurine dioxygenase) in genomes of CAMs,
mainly in Oceanospirillales (28). TauD is related to the assimilation of host-derived tau-
rine, a sulfur compound that is widespread in animal tissues and can be a marker gene
of obligate symbionts in marine hosts such as coral and sponges (28, 129).

FUTURE PROSPECTS
Uncovering the hidden diversity of the coral microbiome. To date, as discussed

above, attempts to increase the culturable diversity of CAMs have had limited success,
but the adaptation of some of the mentioned methods could overcome this. Diffusion-
based approaches have been used to culture marine sponge-associated microbes (37,
43) through incisions made in the sponge tissue where the cultivation chambers (43)
and iChips (37) devices are inserted into the holobiont. Although these incisions would
not be as straightforward in corals (due to potential rejection, difficulties of inserting
the devices into the skeleton, and the slow growth and regeneration of coral tissue),
the devices could be placed near the coral colony in contact with the coral mucus, for
example, without deleterious effects on the host. In addition, some adaptations to the
manufacturing of the diffusion-based devices should be considered, in terms of the de-
vice composition and size. Large devices can disrupt the water flow surrounding corals
and impact the incidence of light, consequently causing dysbiosis. Moreover, some
materials (e.g., metals) can be toxic for corals and their symbionts. The use of inert
polymers (for example polytetrafluoroethylene) would therefore be recommended.

We also propose the use of a coral-based culture medium for cultivation of CAMs
(Fig. 1). The coral juice culture medium could be composed, for example, of ground
coral nubbins (5 g) and then resuspended in 45 mL of saline solution at 2.5% wt/vol (to
mimic the average salinity of seawater) and the addition of 5 mm glass beads.
Suspensions would be incubated overnight in an orbital shaker at 120 rpm at room
temperature. After incubation, this suspension would be centrifuged at 10,000 � g for
5 min and then the supernatant would be collected. Use of an autoclave is not recom-
mended due to the composition of the mucus, which is rich in sugars that can caramel-
ize during this process. Therefore, successive filtration steps, from 1- down to 0.22-mm
pore size, would be required for purity. The filtered supernatant, the coral juice, should
be added to autoclaved Marine Minimal Medium (see formulation described by Solano
et al. [130]) at around 70°C. We recommend the use of approximately 5% of coral juice
in 1,000 mL of media, followed by mixing the blend and plating 20 mL in each Petri
dish. Coral juice will be the sole carbon source and a small concentration of glucose
could be added. To ensure sterility, we recommend keeping the plated Petri dishes
with coral juice culture medium at room temperature for at least 24 h before use.

Another example of a nature-based solution to improve the culturability of CAMs is
to use the chemical composition of the coral mucus to selectively favor the growth of
mucus-associated microbes (Fig. 2). Arabinose, fucose, mannose, C6 sugars, glucose, N-
acetylglucosamine (GalNAc), xylose, galactose, and rhamnose are examples of compo-
nents of coral mucus that appear to be species specific (67, 131, 132) and drive the
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microbial composition of the host-associated microbiome. In corals, GalNAc and glu-
cose changes seem to be related to the increase of Alphaproteobacteria, fucose and
mannose are associated with decreases of Gammaproteobacteria, and arabinose and
xylose can upregulate Cyanobacteria populations (67). Therefore, specific sugars could
be used to compose selective media to isolate CAMs.

The unacknowledged importance of coral-associated fungi. Although over a
decade of research has focused on the coral microbiome, efforts tend to favor coral-
associated bacteria and the microalgal Symbiodiniaceae. There are fundamental gaps
related to the diversity and potential functions of microeukaryotes (e.g., fungi and pro-
tists) in coral reef microbiomes (133, 134). The symbiotic relationships between coral
and fungi, as well as fungal identity and diversity, are poorly understood and fre-
quently accessed through culture-independent tools (134, 135). Here, we highlight the
studies covering cultured coral-associated fungi and uphold the necessity to deeply
explore the culturable fraction of this taxon.

To date, the known coral-associated fungi include members of the Ascomycota (domi-
nant phylum), Basidiomycota, Mucoromycota, and Chytridiomycota phyla, with Aspergillus
and Penicillium being the most frequently found genera (134, 136–138). Fungal associa-
tions with the coral species Palythoa caribaeorum, Zoanthus sociatus, Palythoa variabilis,
and Favia gravida from shallow waters of southern Brazil were investigated by Paulino et

FIG 1 “Coral juice” preparation for cultivation of coral-associated microorganisms. First, a 5-g coral fragment of interest (A) is macerated (B) to obtain a
homogeneous mixture. Then, the mixture (C) is then added to an Erlenmeyer flask with 45 mL of saline solution (2.5%) and 5-mm glass beads for
overnight incubation. After incubation, the contents are transferred into a centrifuge tube (D), centrifuged at 10,000 g for 5 min (E), and the supernatant is
collected (F). Subsequently, successive filtration steps must be performed (G), starting with membranes of 1 mm (for debris retention) and ending with
0.22-mm pore size (for sterilization). The sterile supernatant is the coral juice. Then (H) 5% vol/vol of coral juice is loaded into autoclaved Marine Minimal
Medium at 70°C, followed by mixing the blend and plating 20 mL in each Petri dish. Coral juice is the sole carbon source in the medium, favoring the
growth of coral-associated microbes. After the seeding of samples of interest, plate dishes can be incubated under different oxygen demand conditions, for
different periods of incubation and temperatures. Created using Biorender.com.
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al. (137); 50 strains were isolated and molecularly identified as Aspergillus, Candida,
Cladosporium, Clonostachys, Cordyceps, Hyphopichia, Microsphaeropsis, Neopestalotiopsis,
Penicillium, Pestalotiopsis, Phoma, Pyrenochaetopsis, Talaromyces, Trichoderma, and Xylaria.
Similarly, these genera were also isolated from coral specimens collected in the Red Sea
(136). The culture media used for isolation were dextrose yeast extract agar, rose bengal
agar (136), and seawater malt extract agar supplemented with chloramphenicol (137).
Both studies reported rapid growth genera; the assessment of slow-growing or hard-to-
culture fungi is still necessary to ensure a broader view of the diversity of cultured fungi.
Focusing beneath the coral surface, endolithic fungi (e.g., representatives of Ascomycota
and Basidiomycota) were found to penetrate the calcium carbonate microstructures and
interact with the coral cells (138–140).

The cultured fraction of coral fungi remains underexplored, and existing studies are
mostly related to coral diseases, focused on either parasitic or opportunistic interac-
tions. Several studies have identified pathogenic fungi (140–143), in which Aspergillus
sydowii is the most studied and characterized fungus present in healthy and diseased
corals and is involved in the emerging fungal disease Aspergillosis, which drastically
affects coral reefs (139, 144). On the other hand, evidence indicates that fungi may be
related to complex metabolic activities in coral holobionts, as well as modulating coral
health and resilience (135, 142, 145, 146).

In addition to the relevance of fungal pathogens in coral health, fungi are an impor-
tant player in the symbiotic relationship with the metaorganism, capable of driving key
steps of the biomineralization of the coral skeleton, in biological nitrogen and carbon
cycling, as well as providing antimicrobials and antioxidant substances or inducing the
host to produce them (136, 139, 145, 146). It is known that antimicrobial substances
play a crucial role in the modulation of the coral microbiome, preventing the settle-
ment and proliferation of potential pathogens (4, 139, 140). Antiradical antioxidants
are important for the maintenance of host-Symbiodiniaceae relationships under coral
stress (4). Coral fungi can also produce protective molecules, such as mycosporine-like
amino acids (147), and can enhance the survival of skeletogenic cell types against UV
irradiation (148).

FIG 2 Overview of the current knowledge of culture-dependent methods being used in coral microbiology, in addition to novel and alternative strategies
that can be applied for culturing coral microbiomes. Created using Biorender.com.
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Coral-associated fungi are also important producers of bioproducts with many bio-
technological implications. For example, they can synthesize polyketides with antibacte-
rial and antifouling activity (149, 150), different bioactive peptides (151, 152), terpenoids
(153, 154), and even neuronal modulators (153, 155), among other secondary metabo-
lites. Furthermore, coral fungal diversity can be utilized in water bioremediation because
of its ability to degrade contaminants. Filamentous fungi (species belonging to the gen-
era Aspergillus, Cladosporium, Penicillium, and Trichoderma) isolated from Mussismilia his-
pida, Palythoa caribaeorum, Palythoa variabilis, and Zoanthus solanderi were able to
efficiently degrade Remazol Brilliant Blue R (textile dye) (156). Additionally, a multido-
main microbial consortium (including cultured the fungi Geotrichum sp., Rhodotorula
mucilaginosa, and Penicillium citrinum) was developed as a tool in bioremediation of oil
on a mesocosm scale, in which the consortium significantly helped to mitigate the
impacts of crude oil, substantially degrading the polycyclic aromatic and n-alkane fractions
and maintaining the physiological integrity of the hydrocoralMillepora alcicornis (10).

Based on the putative role of coral fungi in the symbiotic relationship and great
potential of exploiting fungal diversity for biotechnology, we suggest that studies on
the cultivation of coral-associated fungi be expanded. The goal would be to populate
culture collections and shed light on the phylogenetics, lifestyle, genomics, and bio-
technological potential of the symbiotic relationship between the fungal community
and the coral holobiont.

FINAL REMARKS

Culturing novel microbial groups associated with corals can contribute to coral reef
preservation efforts, bioprospecting of novel microorganisms with biotechnological
potential, and improved insight into the biology and ecology of the coral holobiont.
Data from the Coral Microbiome Database show that 87.4% of coral-associated bacteria
and archaea sequences are related to uncultured microbes and only 6.5% to cultured
microbes (27).

A timely example, considering the urgent need for tools that can extend and acceler-
ate the capacity of corals to adapt to climate change (13, 157), is the use of beneficial
microorganisms for corals (BMCs) as probiotics to promote coral health (3, 4). A few stud-
ies have already demonstrated the efficacy of BMCs and microbiome manipulation to
promote health in different coral species, such as Pocillopora damicornis (7, 11),
Mussismilia hispida (9),Mussismilia hartii (158),Millepora alcicornis (10), Acropora millepora
(8), Pocillopora sp., and Porites sp (159). Although the application of coral slurry can pro-
mote coral health experimentally (159), the use of microbial isolates, or BMCs, represents
the most feasible “customized medicine for corals” currently being developed (32), and
culturing coral microbial dark matter would greatly contribute to the selection of more
potent BMCs. In addition, secondary metabolites (i.e., antimicrobial, antifouling, antitu-
mor, antiparasitic, antiviral compounds, and biosurfactants) are naturally produced by
CAMs to prevent growth of competitors and/or deter coral pathogens/disease (160–
163). Therefore, they represent interesting targets for other biotechnological applications
and pharmaceutical resources.

It is also important to acknowledge that the group of currently uncultured bacteria
covers dominant and ubiquitous taxa, resulting in knowledge gaps regarding some
symbiotic microbes of corals. Endozoicomonas, for example, is a ubiquitous genus
widely found in corals from the deep sea to shallow waters (15, 164). This bacterial
group maintains symbiotic relationships with corals, and genomic evidence shows that
they contribute to DMSP metabolism (165), vitamin B provisioning (166), carbohydrate
cycling, and conversion of nitrate to nitrite (157), all of which are key functions for the
host. However, there are just a few cultured Endozoicomonas sp. representatives
described, due to the difficulty in cultivating this genus (45, 165). Thus, most of their
capabilities and functions for the host remain unknown. Overall, culturing key micro-
bial groups is therefore a first and most crucial step to identify and, subsequently,
manipulate their symbiotic roles for corals.
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