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Bacterial survival on inanimate surfaces: 
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Abstract 

Objective:  Environmental surfaces may serve as potential reservoirs for nosocomial pathogens and facilitate trans‑
missions via contact depending on its tenacity. This study provides data on survival kinetics of the most important 
nosocomial bacteria on a panel of commonly used surfaces. Type strains of S. aureus, K. pneumoniae, P. aeruginosa, A. 
baumannii, S. marcescens, E. faecium, E. coli, and E. cloacae were suspended in 0.9% NaCl solution at a McFarland of 1 
and got then plated via cotton swabs either on glass, polyvinyl chloride, stainless steel, or aluminum. Surfaces were 
stored at regular ambient temperature and humidity to simulate routine daycare conditions. Sampling was performed 
by contact plates for a time period of four weeks.

Results:  The longest survival was observed for A. baumannii and E. faecium on all materials (at least four weeks). S. 
aureus remained viable for at least one week. Gram negative species other than A. baumannii were usually inactivated 
in less than two days. Nosocomial transmission of the above mentioned bacteria may easily occur if no appropriate 
infection control measures are applied on a regular daily basis. This might be of particular importance when dealing 
with outbreaks of A. baumannii and E. faecium.

Keywords:  Nosocomial transmission, Bacterial survival, Environment, Inanimate surface

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​
mmons​.org/licen​ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/publi​cdoma​in/
zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
Frequently touched environmental surfaces are described 
as a major factor of nosocomial transmission [1, 2] and 
the probability of nosocomial spread in those events may 
be influenced by the tenacity of the particular type of 
microorganism. Bacteria may highly differ in their poten-
tial to survive on such surfaces, but up to now there are 
only few data available on this topic.

There are some reports on estimations of survival 
times, but those vary extensively with respect to the inoc-
ulum, ambient conditions, and the mode of sampling [3]. 
So for a better understanding of the true risk of nosoco-
mial transmission, there is a need to better characterize 
bacteria with respect to environmental survival in a more 
standardized matter.

The Worldwide Outbreak Database [4] is the largest 
collection of nosocomial outbreaks and contains cur-
rently (August 2020) 3,632 nosocomial outbreak reports. 
According to this database, the following bacteria play 
the major roles in outbreak events: S. aureus (431 out-
breaks; 11.9%), K. pneumoniae (288; 7.9%), P. aeruginosa 
(259; 7.1%), A. baumannii (253, 7.0%), S. marcescens (168, 
4.6%), E. faecium (131, 3.6%), E. coli (86; 2.4%), and E. clo-
acae (82; 2.3%).

This study was carried out to determine the capabil-
ity of those most relevant nosocomial bacteria to per-
sist over a prolonged period of time on various surface 
materials.

Main text
Bacteria
Test organisms were obtained either form the American 
Type Culture Collection (ATCC) or from the Deutsche 
Sammlung von Mikroorganismen (German Collection 
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of Microorganisms; DSM). The following type strains 
were used in the study at hand: S. aureus ATCC25932, 
K. pneumoniae ATCC700603, P. aeruginosa ATCC27853, 
A. baumannii DSM30011, S. marcescens DSM12485, E. 
faecium ATCC19434, E. coli ATCC25922, and E. cloacae 
ATCC13047.

Bacterial suspensions were prepared for each of those 
eight test organisms from fresh overnight cultures at 
37 °C under standard conditions on Columbia 5% sheep 
blood agar (Becton Dickinson GmbH, Heidelberg, Ger-
many). Colonies from the agar were transferred to the 
liquid suspension until a McFarland turbidity of 1.0 was 
reached. Bacteria were suspended in 0.9% NaCl solution 
in order to avoid potential toxic components that may 
lead to an accidental primary inactivation. In pre-exper-
iments this amount of microorganisms proved sufficient 
for growing as a bacterial lawn on contact plates used 
immediately after plating the suspension.

Surfaces
Survival of the bacteria was tested on glass, polyvinyl 
chloride (PVC), stainless steel, and aluminum as these 
materials are frequently used as surfaces in the hospital 

setting. PVC and other plastic materials are com-
monly found in form of light switches, shelf spaces for 
patients, cupboards in bathrooms, bed rails and alarm 
buttons at the patient´s site. Aluminum may be use for 
manufacturing hand rails or buttons of elevators. Stain-
less steel surfaces are very common in doorknobs and 
levers or in surfaces for the preparation of intravenous 
infusions or disposal of excretions. Glass surfaces are 
found on tablet PCs, mobile phones and other touch 
screens.

Surfaces were thoroughly decontaminated using  
70 Vol-% ethanol directly prior usage. For artificial sur-
face contamination, a volume of 25 µL of the bacterial 
suspensions circulated by pre-soaked cotton swabs was 
used per spot to ensure that the entire volume remained 
on the surface. Ten spots per species and surface were 
prepared for multiple sampling options at different 
time points (Fig. 1). Surfaces were stored uncovered on 
the top of wall cupboards at room temperature (21 °C) 
at a relative humidity of 31 to 35% in order to maintain 
conditions as given in the routine daycare of patients 
on a hospital ward.

Fig. 1  Arrangement of the sampling spots on the various test surfaces. Every bacterial species was sampled at ten different time point on each 
type of surface (SAU = S. aureus; KPN = K. pneumoniae; PAE = P. aeruginosa; ABA = A. baumannii; SMA = S. marcescens; EFA = E. faecium; ECO = E. coli; 
ECL = E. cloacae)
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Sampling
Replicate Organism Dectection And Counting 
(RODAC; Oxoid Deutschland GmbH, Wesel, Ger-
many) contact plates with a contact surface of 25 cm2 
each were used for sampling over a total period of four 
weeks. Sampling was primary performed immediately 
after plating and complete drying of the suspension 
(day 0) and thereafter on day 1, day 1.5, day 2, day 2.5, 
day 3, day 7, day 14, day 21, and day 28. Contact plates 
were then incubated overnight at 37 °C.

Evaluation
The number of recovered colony-forming units (CFU) 
was determined visually on each plate. If necessary, 
subcultures of colonies were prepared on an additional 
Columbia 5% sheep blood agar in order to differenti-
ate between relevant species and environmental con-
taminants. The experiment was independently carried 
out thrice (overall 960 samples) and the mean number 
of CFU from each sampling spot was calculated. For a 
conservative calculation of the survival time, a value 
of only 250 was used for further calculation whenever 
observing a bacterial lawn (uncountable number of 
CFU).

Results
Figure  2 shows the survival kinetics of the test organ-
isms on the four different types of surfaces. Note that A. 
baumannii and E. faecium showed the highest survival 
capability regardless of the material of the surface. Viable 
bacteria of those two species remained detectable even 
at the end of the entire observation time period of one 
month. In contrast, survival of all other species was lim-
ited to a few days only.

However, there were also differences within this rather 
short surviving panel of species. Gram negative bacteria 
other than A. baumannii presented with shortest survival 
times, e.g. P. aeruginosa was completely inactivated in 
less than two days, while S. aureus remained viable for at 
least a week on all surface materials tested.

Discussion
Obviously, the length of bacterial survival in the envi-
ronment impacts the risk of spread. The corresponding 
time frame depends on multiple factors among them 
the bacterial species [5] and overall bioburden  [6, 7], 
the source of isolation [5], the type of surface material 
[8, 9], the ambient temperature [8, 10–13], the extent 
of UV radiation [14], the local pH [13], the relative air 
humidity [8, 11], the availability of water and nutrients 
[8], the presence of chemical noxa [15], the company by 

additional (concurrent) bacterial species [11] and other 
factors like pigmentation [16], and biofilm formation 
[17].

Table 1 provides a summary of studies on survival times 
of bacteria in  vitro under various conditions. However, 
most of the results from such previous experiments rely 
on a rather artificial environment setting, while the study 
at hand determined the tenacity of nosocomially highly 
relevant species under conditions as existent in routine 
daycare of patients. Doing so, we could show that espe-
cially A. baumannii and E. faecium are prone for envi-
ronmental spread in the hospital. This is of importance 
as antibiotic resistant strains of those two particular spe-
cies were recently classified as high priority (E. faecium) 
of even critical priority (A. baumannii) for health-care 
settings by the WHO [18]. Long-term transmission via 
environmental contamination in the endemic setting and 
several outbreaks caused by A. baumannii [19–22] and E. 
faecium [23–25] are extensively described in the medical 
literature. Furthermore, D’Sousa et  al. identified that A. 
baumannii and E. faecium even establish synergistic bio-
films in vitro when co-cultured [26], which increases the 
likelihood of prolonged persistence and will facilitate fur-
ther spread. Thus, our findings confirm the importance 
of proper infection control measures with emphasis on 
surface disinfection and/or decontamination procedures.

In recent years there were innovative attempts to 
reduce the bacterial burden on frequently touched sur-
faces in hospitals, for example by coating them with lay-
ers containing direct bactericide substances or chemicals 
that diminish biofilm formation [27–29]. Another rather 
novel sanitation strategy is the  use of (non-pathogenic) 
probiotic bacteria that are capable of reducing in a stable 
way the surface load of pathogens [30] or the use of UV-C 
light for surface decontamination [14]. However, all of 
those approaches are still far from comprehensive use 
in hospitals worldwide so the significance of traditional 
cleaning and surface disinfection measures will most 
likely continue for decades.

Conclusion
Nosocomial transmission of A. baumannii and E. fae-
cium via contaminated surfaces may easily continue for 
several weeks if no appropriate infection control meas-
ures are applied. However, we could show that all noso-
comially relevant pathogens may survive for a few days 
and thus represent a relevant risk for transmission within 
the hospital. So, in an outbreak infection control per-
sonnel should thoroughly search for so far unidentified 
areas or for breaches in standard decontamination proce-
dures if pathogen spread continues despite high efforts in 
cleaning and disinfection.
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Fig. 2  Survival of different bacterial species on a glass, b stainless steel, c polyvinyl chloride, and d aluminum
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Limitations
Generalization of results
Obviously, there are some limitations to our study that 
need to be addressed. First of all we only tested one sin-
gle strain of each species. Therefore generalization of our 
findings should be done with caution. However, Jawad 
et al. compared the survival times for a total of 39 A. bau-
mannii isolates (22 strains from nosocomial outbreaks 
and 17 sporadic strains). Their results in terms of survival 
time were comparable to our findings, but they failed to 
observe statistically significant inter-lineage differences 
with respect to bacterial tenacity (26.5 vs. 27.2 days) [31]. 
On the other hand, there is some newer data suggesting 
that hydrophilic clonal lineages of A. baumannii possess 
thicker cell walls and, thus exhibited higher resistance 
to desiccation compared to hydrophobic strains. This 
could provide an advantage in environmental survival 
[32]. Drying resistance of A. baumannii may also depend 
on mutations and expression of the two-component 
response regulator gene bfmR, which is important for 
its virulence and also for the expression of stress-related 
proteins during a stationary phase [33]. This topic needs 
to be examined for A. baumannii and the other species 
alike in more detail in future studies.

Biofilm formation
Secondly, we did not check for the degree of biofilm 
formation although this may also influence the abil-
ity to survive on an inanimate surface [34]. For exam-
ple, A. baumannii may form strong biofilms on stainless 
steel surfaces and bacteria within this biofilm are sig-
nificantly more resistant to environmental noxa than 
are their planktonic counterparts [35]. E. faecium may 
also develop biofilms regardless of a concomitant drug 
resistance but more often in the presence of the esp gene 
[36–39]. Ghaziasgar et al. observed this ability even sig-
nificantly more often in nosocomial isolates while it was 
less common in wild type strains outside the hospital 
(100% vs 75.6%; p < 0.05) [40].

Adaptation and virulence of pathogens
Finally, we only measured the number of recovered bacte-
ria via contact plates. Thus, we do not know whether or not 
changes in the virulence of a pathogen occurred. Although 
such a phenomenon would not directly affect the transmis-
sibility, it would still be of clinical relevance. Chapartegui-
Gonzalez et al. tested five clinical isolates of A. baumannii 
in long-time survival experiments under simulated hospital 
conditions. All strains were able to rapidly adapt to both 
the temperature shift and nutrients availability and main-
tained their virulence factors despite starvation and des-
iccation [41]. Once again, similar circumstances apply for 

enterococci, too [42]. We therefore assume that there was 
no significant reduction of virulence in the strains used in 
our study.

Reduction of bioburden by regular decontamination 
of surfaces
If performed properly, a thorough cleaning and disinfec-
tion will significantly reduce the risk of pathogen spread 
regardless of its tenacity. Unfortunately, breaks in the cor-
rect cleaning process are commonly observed due to vari-
ous reasons. Furthermore small damages to surfaces may 
cause tiny notches that are then difficult to decontaminate. 
That is why there are several outbreaks caused by insuf-
ficient surface decontamination available in the medi-
cal literature. Therefore, this study once again stresses the 
importance of thorough and regular decontamination of 
frequently touches surfaces in the hospital for the sake of 
the safety of patients.
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