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Adhesion G protein-coupled receptors (aGPCRs) form a sub-group within the GPCR
superfamily. Their distinctive structure contains an abnormally large N-terminal, extracel-
lular region with a GPCR autoproteolysis-inducing (GAIN) domain. In most aGPCRs, the
GAIN domain constitutively cleaves the receptor into two fragments. This process is
often required for aGPCR signalling. Over the last two decades, much research has
focussed on aGPCR-ligand interactions, in an attempt to deorphanize the family. Most
ligands have been found to bind to regions N-terminal to the GAIN domain. These
receptors may bind a variety of ligands, ranging across membrane-bound proteins and
extracellular matrix components. Recent advancements have revealed a conserved
method of aGPCR activation involving a tethered ligand within the GAIN domain.
Evidence for this comes from increased activity in receptor mutants exposing the
tethered ligand. As a result, G protein-coupling partners of aGPCRs have been more
extensively characterised, making use of their tethered ligand to create constitutively
active mutants. This has led to demonstrations of aGPCR function in, for example, neuro-
development and tumour growth. However, questions remain around the ligands that
may bind many aGPCRs, how this binding is translated into changes in the GAIN
domain, and the exact mechanism of aGPCR activation following GAIN domain conform-
ational changes. This review aims to examine the current knowledge around aGPCR
activation, including ligand binding sites, the mechanism of GAIN domain-mediated
receptor activation and how aGPCR transmembrane domains may relate to activation.
Other aspects of aGPCR signalling will be touched upon, such as downstream effectors
and physiological roles.

Introduction
G protein-coupled receptors (GPCRs) are currently the most successfully targeted superfamily of
receptors in modern medicine [1]. GPCRs are classified into five main families; Glutamate,
Rhodopsin, Frizzled/Taste, Secretin and importantly for this review, Adhesion [2]. They are respon-
sible for a large variety of cellular responses with a diverse selection of stimuli, resulting in a
complex network of interactions between the ligands, the receptors and the signalling cascade.
Whilst GPCRs in general are the most targeted receptor superfamily, historically very little pharma-
ceutical research has been conducted on adhesion GPCRs (aGPCRs). Despite their importance in
adhesion, cell migration, paracrine signalling and numerous disease implications [3], aGPCR
research has been hampered by the orphan status of many receptors. Nonetheless, aGPCRs provide
an intriguing potential alternative drug target compared with many other families, in particular,
within oncology and fertility. Several recent reviews have highlighted the emerging role of these
receptors in therapeutics therefore it is not the aim of this review to reiterate these points [4,5].
Instead, here we aim to discuss the current understanding of known aGPCR ligands, their activation,
structure and function.
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aGPCR nomenclature has drastically changed since their
discovery
What we know today as aGPCRs were first characterised in leukocytes in the 1980s. They were identified as the
glycoproteins targeted by the mouse monoclonal antibody for F4/80, the mouse equivalent of the human
GPCR EMR1 [6]. F4/80, EMR1 and CD97 were the first members of the GPCR subfamily originally known as
EGF-TM7; named for the appearance of F4/80 as a chimera of 7-transmembrane receptors and epidermal
growth factor (EGF) [7,8].
A misleading alternative name for this family was LNB-TM7, denoting its long N-terminal region, but also a

close association with Class B1 GPCRs [9]. Early reviews often listed these GPCRs as a subfamily of Class B
GPCRs, due to their sequence similarity in the 7 transmembrane helix domain (7TM) [10,11]. However, ana-
lysis of the entire GPCR superfamily revealed distinctions between this family and Class B1, in particular in the
extracellular domain (ECD). This new family, with 24 members at the time, was named ‘adhesion’, for their
apparent role in cell adhesion due to the mucin-like stalks in their N-terminal region [12,13]. Subsequently, all
33 human family members were divided further into nine clusters (Table 1), with each having a relatively high
sequence similarity that the family lacks as a whole [14]. The International Union of Basic and Clinical
Pharmacology defined the family fully in 2015 [15].

Endogenous ligands of aGPCR
Due to their role in cell-to-cell adhesion, it is unsurprising that several ‘anchor points’ such as receptors and
proteins typically found in the plasma membrane can potentially activate aGPCRs [16]. A schematic represent-
ing this endogenous paracrine activation is portrayed in Figure 1. Phospholipids, such as phosphatidylserine
(PS), are an integral part of the plasma membrane, involved in numerous cell signalling events, whilst exofacial
PS is a key marker of apoptotic events [17]. PS can activate the brain specific angiogenesis inhibitor 1 (BAI1,
ADGRB1) found on microglial cell surfaces and cause engulfment of the presenting cell. Further membrane-
bound proteins associated with aGPCRs include the lysophosphatidic acid receptor (LPA1) present on the vast
majority of mammalian tissues which can bind to CD97 (ADGRE5) found on lymphoid and myelinoid cells
increasing the signalling of LPA1 [18]. Activation promotes adhesion and migration to sites of inflammation.
Aside from membrane bound proteins, secreted factors are also known to activate aGPCRs (Figure 1) [19].

These include secreted peptides and proteoglycans typically found in the extracellular fluid or the tissue stroma
around the body. This is where the original classification of the aGPCRs, and their most closely related family,
the Class B1 GPCRs showed their similarity with both classes activated through hydrophilic peptides. Whilst
this is the case for some aGPCRs, many other non-peptide ligands have already been documented for aGPCRs
(Table 1) [20]. Soluble aGPCR ligands are typically glycosaminoglycans, such as chondroitin sulfate found in
lung and pancreatic tissue [21]. Other soluble ligands include proteins such as glutaminase interacting protein
(GIP) as well as small molecules such as synaptamide, an endocannabinoid-like derivative [22,23]. This varied
subset of ligands suggests a multifaceted role for these receptors outside of simply cell-to-cell adhesion and
paracrine signalling. Despite their broad distribution and novel screening techniques, 17 of the 33 known
aGPCRs are still without known endogenous ligands (Table 1), membrane-bound or unbound [24], with
significant efforts focused on deorphanisation.

aGPCR structure is separated into two fragments, each
with conserved and variable regions
aGPCRs are made up of two major components: N- and C-terminal fragments (NTF and CTF, respectively).
The NTF encompasses most of the protein’s ECD, comprising the GPCR autoproteolysis-inducing (GAIN)
domain and a large, heavily glycosylated N-terminal region that varies in structure between each individual
aGPCR and aGPCR sub-group. The CTF is C-terminal to the GAIN domain’s GPCR proteolysis site (GPS),
comprising the 7TM domain and an intracellular C-terminal tail (Figure 2).

aGPCR activation mechanisms suggest stalk and
lever function
Due to the initial lack of endogenous ligands and modern techniques, initial exploration into the signalling of
aGPCRs was slow. Despite having initially been placed into the Class B1 GPCR family, the large ECD lent
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Table 1 A summary of known endogenous ligands, receptor activation mechanisms, G protein couplings and domains contained in the
NTF, N-terminal to the GAIN domain, of every human aGPCR Part 1 of 2

Cluster aGPCR Determined ligand(s)
Activation
mechanism1

Established
G proteins
couplings N-terminal domain(s) Source

I ADGRL1
(Latrophilin-1)

Teneurin-2, FLRT1,
FLRT3, neurexin-1α, -1β,
-2β

Tethered agonist
(A)/constitutively
active mutants (C)

Gs, Gi Lectin, olfactomedin, STP,
HomR

[77–86]

ADGRL2
(Latrophilin-2)

Teneurin-2, FLRT3 Unknown Unknown

ADGRL3
(Latrophilin-3)

Teneurin-3, FLRT1,
FLRT3, Unc5D

Tethered agonist
(A)

G12, G13

ADGRL4
(ELTD1)

- Unknown but not
tethered agonist
or constitutive
activity

Unknown Lectin, EGF-Like, 2× Ca2
+-binding EGF

II ADGRE1
(EMR1)

- Unknown Unknown EGF-Like, 5× Ca2+-binding
EGF

[16,40,49,53,76,87–93]

ADGRE2
(EMR2)

Chondroitin sulfate B,
FHR1

Unknown/
constitutive activity
(C)

G16 EGF-Like, 4× Ca2+-binding
EGF

ADGRE3
(EMR3)

- Unknown Unknown EGF-Like, 1× Ca2+-binding
EGF

ADGRE4
(EMR4)

- Unknown/not
expressed at cell
surface

Unknown

ADGRE5
(CD97)

CD55, chondroitin sulfate
B, integrins α5β1 and αvβ3,
CD90

Tethered agonist
(A)/constitutive
activity (C)

G12, G13, G14,
Gz

EGF-Like, 4× Ca2+-binding
EGF, RGD motif

III ADGRA1
(GPR123)

- No GAIN domain
present therefore
not tethered
agonist

Unknown - [14,22,94–97]

ADGRA2
(GPR124)

Integrin αvβ3,
glycosaminoglycans,
syndecan-1,2

Unknown Unknown LRR, IG, RGD motif,
HomR

ADGRA3
(GPR125)

- Constitutive
activity (C)

Unknown LRR, IG, HomR

IV ADGRC1
(CELSR1)

- Unknown but not
tethered agonist

Unknown EC, 5× Ca2+-binding EGF,
2× LamG, EGF-Lam,
HomR

[39,98–101]

ADGRC2
(CELSR2)

- Tethered agonist
(A)/constitutive
activity (C)

Potentially Gq

ADGRC3
(CELSR3)

Dystroglycan Tethered agonist
(A)

Potentially Gq EC, 5× Ca2+-binding EGF,
2× LamG, 2× EGF-Lam,
HomR

V ADGRD1
(GPR133)

Plxdc2 Tethered agonist
(A)/constitutive
activity (C)

Gs - [14,102–104]

ADGRD2
(GPR144)

- Unknown Unknown PTX

VI ADGRF1
(GPR110)

Synaptamide Soluble ligand
allosteric binding
(B)

Gq, Gs SEA [14,23,96,105–112]

ADGRF2
(GPR111)

- Unknown but not
tethered agonist

Unknown -

ADGRF3
(GPR113)

- Unknown Unknown HomR, EGF

Continued
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itself to the ligand-binding site theory, like Class C GPCRs [25]. However, removal of part of the ECD
increased receptor activity, contrary to the initial prediction of it decreasing due to the loss of the orthosteric
site [26]. This led to the proposition of the disinhibition model of signalling where the N-terminal domain
inhibits constitutive activity through locking to the 7-TM domain, which upon activation, moves away from the
receptor to increase signalling. This theory was challenged by the discovery of protease-activated receptor
(PAR) activation mechanisms through the tethered agonist model [27]. PARs are cleaved by a number of
endogenous proteases as well as proteases found in other species, resulting in a shorter N-terminal peptide [28]
that can fold into the activation domain on the receptor. In 2014, two independent teams observed activation
of aGPCRs by polypeptide fragments exposed post-cleavage, indicating that the tethered agonist model also
applies to aGPCRs [29,30]. This further pointed to the conserved GAIN domain being responsible for autopro-
teolysis, contrary to PARs which require external proteolytic action. The GAIN domain helped explain the

Table 1 A summary of known endogenous ligands, receptor activation mechanisms, G protein couplings and domains contained in the
NTF, N-terminal to the GAIN domain, of every human aGPCR Part 2 of 2

Cluster aGPCR Determined ligand(s)
Activation
mechanism1

Established
G proteins
couplings N-terminal domain(s) Source

ADGRF4
(GPR115)

- Unknown but not
tethered agonist

Unknown -

ADGRF5
(GPR116)

Surfactant protein D Tethered agonist
(A)

Gq, G11 SEA, 2× IG

VII ADGRB1
(BAI1)

Phosphatidylserine,
integrin αvβ5,
lipopolysaccharide,
RTN4R, CD36

Tethered agonist
(A)

G12, G13 RGD motif, 5× TSR, HomR [14,31,95,113–123]

ADGRB2
(BAI2)

Glutaminase interacting
protein

Tethered agonist
(A)

Gz, Gi 4× TSR, HomR

ADGRB3
(BAI3)

C1ql-1,4 Unknown Unknown CUB, 4× TSR, HomR

VIII ADGRG1
(GPR56)

Collagen III, tissue
transglutaminase 2,
laminin

Tethered agonist
(A)

Gi, Gq - [46,54,62,67,96,106,124–
134,134–138]

Progastrin
ADGRG2
(GPR64, HE6)

- Constitutive
activity (C)

Gq, G11 -

ADGRG3
(GPR97)

Cortisol* Soluble ligand (TM
binding) (B)/
constitutive activity
(C)

Gs, Gi, Go -

ADGRG4
(GPR112)

- Unknown Unknown PTX, RGD motif

ADGRG5
(GPR114)

- Tethered agonist
(A)/constitutive
activity (C)

Gs -

ADGRG6
(GPR126,
VIGR, DREG)

Collagen IV, laminin-211 Tethered agonist
(A)

Gs, Gi, Go CUB, PTX, SEA, HomR
Cellular prion protein

ADGRG7
(GPR128)

- Unknown Unknown -

IX ADGRV1
(GPR98,
VLGR1)

- Tethered agonist
(A)

Unknown 35× CB, PTX, EAR [42,109]

1Letters in brackets denote the panel from Figure 3 that illustrates the activation mechanism used by each aGPCR;CB: Calx-beta motif; CUB: Complement C1r/C1s, Uegf,
Bmp1; EAR: Epilepsy-associated repeat; EC: Extracellular cadherin domains (9 cadherin repeats); EGF: Epidermal growth factor; FHR: Factor H-related protein; FLRT:
fibronectin leucine-rich transmembrane protein; HomR: Hormone receptor; IG: Immunoglobulin; LamG: laminin-G like domain; LRR: Leucine-rich repeat domain; PTX:
Pentraxin; SEA: Sperm protein, enterokinase and agrin; STP: Ser/Thr/Pro-rich domain; TSR: Thrombospondin type 1 repeat. Ligands shown in red are soluble and act while
not anchored to a cell or extracellular matrix. List of ligands adapted from Vizurraga et al. [22].
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initial results of an increase in activity following cleavage as the cut sites were coincidentally located within the
GAIN domain itself, mimicking the typical response of aGPCR activation [31].
Although initial experimentation was difficult due to the hydrophobic nature of the fragments, cleavage and

subsequent treatment using stalk fragments was successful. Single amino acid changes in the post cleavage
stalk-peptides were discovered to have a variety of responses in aGPCRs, including inverse agonism [32]. This
was partially explained with the stalk behaving like a lever and activity depending on its placement into the
activation domain [33] (Figure 3A). This was given more credit thanks to the discovery of predicted β-turn ele-
ments within the stalk regions resulting in the stalk fragment bending into the receptor following cleavage [31].
The most recent theory suggests that the hydrophobic nature of the stalk contributes to the activity of the
receptor, pushing it away from the aqueous ECD and into the relatively hydrophobic activation domain [22].
This does not explain all receptor activity however, with many noncleaved receptors still being able to signal in
some capacity. Class B1 secretin-like GPCRs are also activated by soluble peptides such as glucagon and para-
thyroid hormone, exhibiting several activation states depending on the agonist present [34]. Therefore, it is
likely that aGPCRs are also activated by allosteric agonists binding to the typically cleaved NTD. Currently, the
exact mechanism is not known, but it may be postulated that agonist binding to an allosteric site could result
in a conformational change of the NTD to push the stalk domain far enough into the activation domain of the
receptor, eliciting activity through TMD to stabilse the active state (Figure 3B). Alternatively, there could be
binding directly to the TMD stabilising it such as with cortisol and ADGRG3 (Table 1). This is further sup-
ported by the autoinhibitory nature of the GAIN domain with ligand binding to allosteric sites on the NTD
relieving this action. Whilst orthosteric agonist activation is considered to result in full activation of the
aGPCR, allosteric ligand binding can produce a graded response depending on the extent that the active site is
stabilised. Many of these receptors have some degree of constitutive activity, without the need of an agonist

Figure 1. Types of signalling between cells using aGPCRs.

aGPCRs are mainly utilised in paracrine or autocrine signalling via either secreted factors (top) or membrane-bound proteins

and proteoglycans on adjacent cells (bottom). Activation through either of these two methods can lead to a cellular response.

Created with Biorender.
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Figure 2. Example aGPCR structure.

The GPS, dividing the N- and C-terminal fragments, lies between the hydrophobic stalk and GAIN domain. Created with

Biorender.

Figure 3. Proposed activation states of aGPCRs and the corresponding electrostatic forces.

Inactive aGPCRs have their G proteins bound and stalks away from the activation domain in the centre of the GPCR. This is

due to the hydrophilic GAIN domain still being attached and the hydrophobic stalk being hidden within it. (A) Full activation of

the aGPCR is achieved by autoproteolysis of the GAIN domain, to expose the hydrophobic stalk to the ECM, pushing it toward

the hydrophobic centre of the activation domain. This activates the GPCR releasing the G protein causing further downstream

effects. (B) Partial allosteric activation can result in a conformational change of the GAIN domain resulting in the exposure of

part of the hydrophobic stalk. This pushes the stalk toward the activation domain resulting in a higher chance of the G protein

subunit dissociating. (C) Some receptors have constitutive activity, and this is likely due to the exposure of some of the

hydrophobic residues on the stalk, resulting in more forces pushing the stalk away from the water rich ECM and toward the

hydrophobic centre of the aGPCR. This can partially activate the aGPCR resulting in a higher chance of G protein subunit

dissociation and downstream effects. Created using Biorender.
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present to elicit activity (Table 1 and Figure 3C). Finally, ligands may also bind to allosteric or orthosteric sites
resulting in conformational changes that cause the opposite effect of typical agonism, also known as inverse
agonism. These could move the stalk fragment away from the activation domain within the receptor, or desta-
bilise the active site [35].

N-terminal motifs of aGPCRs vary heavily and may
determine ligand binding
The N-terminal regions of aGPCRs are consistently longer than those of Class A GPCRs, hence their initial group-
ing with Class B1. Their high Ser/Thr content, with many being glycosylated, gives the region a rigid, extended
structure with high solubility, similar to mucin. Hence, one of the first identified aGPCRs was termed the EGF
module-containing mucin-like hormone receptor (EMR1/ADGRE1) [36]. However, this feature is unlikely to
directly influence ligand binding, as shown for GPR56 (ADGRG1) and one of its ligands, collagen III [37].
Many domains found in the aGPCR NTF are conserved features found in other proteins and across the

aGPCR subfamilies (Table 1 — readers are directed to Hamann et al. [15] for a pictural representation of these
NTFs). For instance, the most common feature is the hormone receptor domain (HomR), most commonly
proximal to the GAIN domain [14]. This bears a striking sequence similarity to HomRs found in Class B
GPCRs, to the extent that the latter may have descended from aGPCRs [38]. However, the GAIN domain has
been shown to block the hormone-binding site of the ADGRL1 HomR [39], making their use for binding
hormone ligands unlikely.
All cluster II aGPCRs contain EGF-like domains that vary only subtly between individuals. For example, the

3 amino acids that differ between ADGRE2 and 5 cause a huge bias of the ligand CD55 towards ADGRE5
[40]. Some EGF-like domains bind Ca2+, which is important for maintaining their structure and mediating
protein ligand binding [41]. The Calx-beta motif, found in ADGRV1, also binds Ca2+ in the NTF, as demon-
strated by their presence in Na+/Ca2+ exchangers [42]. From this, some have inferred that Calx-beta motifs
could use Ca2+ to bind ligands, similarly to Ca2+-binding EGF domains [43]. Moreover, Complement C1r/C1s,
Uegf, Bmp1 (CUB) domains have been demonstrated to use Ca2+ to bind ligands in various proteins [44,45],
and have recently been shown to mediate intramolecular interactions in the ADGRG6 ECD. This gives a closed
conformation by giving an interface between the CUB domain’s tip and the more distal HomR that may
contribute to the signalling state of the receptor [46].
aGPCR NTFs contain other domains and motifs found in a variety of proteins that are known to bind

specific protein partners. Arginine-glycine-aspartate (RGD) motifs are known to bind integrins and are notably
found in ADGRE5 [47–49]. Pentraxin (PTX) domains are found in a variety of aGPCRs, with variations
between individuals that allow recruitment of specific ligands to specific receptors. For instance, the PTX and
CUB domains of ADGRG6 have been shown to bind collagen IV, but not other collagen subtypes [50]. While
not every identified NTF domain has been matched to a binding partner, the expansive repertoire of motifs
and structures present demonstrate the heterogeneity of the ligands with which this family may interact.
Alternative splicing also expands this repertoire. The most variable part of aGPCR transcripts is the region

N-terminal to the GAIN domain. Here, the position of individual domains can be altered, by addition of Ser/
Thr stretches that vary NTF structure, or excluded entirely [51]. This is demonstrated in ADGRG6, where
inclusion of 23 amino acids, many of which are glycosylated, disrupts this receptor’s closed conformation,
instead giving the receptor a more extended conformation that disrupts its ability to facilitate myelination
in vivo [46].

The GAIN domain separates aGPCRs into two fragments
and may bind ligands
The GAIN domain is found almost ubiquitously in aGPCRs, between the variable N-terminal domains and the
7TM region, with only ADGRA1 lacking this region [14]. Its primary function is to allow receptor autoproteo-
lysis at the GPS site, located proximally to the final β-strand (β13) of the GAINB subdomain (consensus: HLT,
cleaving between L and T). These residues form a sharp turn, created by a disulfide bridge located proximally
to the GPS and the Leu R-group being trapped in a hydrophobic pocket. Proteolysis is achieved by nucleophilic
attack on the L-T peptide bond by the Thr R-group, with the resulting ester hydrolysing to give two separate
fragments of the original protein [22,39,52].
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There is also evidence for ligands binding to the GAIN domain to trigger aGPCR activation, such as CD90
binding ADGRE5 [49,53]. More recently, a small molecule agonist of ADGRF1, synaptamide, has been shown
to interact with its GAIN domain [23]. These observations could explain the finding that cancer-causing
mutations are found on the surface of the GAIN domain [39].

The aGPCR 7TM domain retains recognised GPCR
functions with novel motifs
Cryo-electron microscopy (cryo-EM) was recently used to elucidate the first full-length structure of an active
aGPCR (ADGRG3) in complex with small molecule agonists (glucocorticoids cortisol and beclomethasone)
and Gαo [54]. The resultant structure had a 7TM region overall resembling that of a Class A GPCR, other than
a greater separation between TM6 and TM7, giving a larger ligand-binding site. Extracellular Loop 2 (ECL2)
forms a hydrophilic β-sheet that has a weak constitutive interaction with ECL3. This could act as a mechanism
for relaying conformational changes from the NTF to the CTF upon ligand binding, allowing removal of the
ECL2 ‘flexible lid’. This would expose the ligand binding pocket between TM6 and TM7, with the hydrophobic
cores of glucocorticoid ligands packing against TM7. Alternatively, this feature may act to prevent dissociation
of small molecule ligands by blocking their exit from the orthosteric site, slowing their dissociation rate and
increasing the length of time over which the receptor signals, as seen in Class A GPCRs such as the
endothelin-1 receptor B [55,56].
Unlike Class A GPCRs [57,58], ADGRG3 did not contain a core triad (IPF) motif or an NPxxY motif in

TM7 that are involved in signal transduction across the GPCR. Instead of the core triad, ADGRG3 contained
upper quaternary and lower triad cores (UQC and LTC) of hydrophobic residues that performed equivalent
functions. A vital ‘toggle switch’ residue (W4906.53), contained within the UQC, recognises ligand binding and
causes a conformational change that leads to its coupling to Gαo. Moreover, ADGRG3 lacks an ionic lock
motif, normally found at the base of TM3 in Class A GPCRs (consensus: E/DRY), replacing it with a hydro-
phobic lock (HLY motif ) that may perform similar roles in stabilising the receptor conformation on its cyto-
plasmic surface [54]. The differences in these key functional motifs between aGPCRs and other GPCR families
further demonstrate the evolutionary distance between them, justifying the classification of aGPCRs as their
own subfamily. The separation of the core triad into UQC and LTC between Family A and aGPCRs suggests a
relatively distant common ancestor exists between the two. This structural difference also suggests the existence
of novel methods for the design of small-molecule drugs targeting aGPCRs.

aGPCRs activate a variety of effectors
GPCRs typically propagate their activation signal through two main classes of effectors: heterotrimeric G pro-
teins, and β-arrestins resulting in an incredibly varied intracellular response profile [59]. ADGRF1 (GPR110),
for example, is activated by synaptamide and can increase intracellular cAMP in a Gs dependent-manner as
well as mobilise intracellular Ca2+ in a Gq/11 dependent-manner, resulting in neurite growth and neurogenesis
[60,61]. Interestingly, many of the downstream mediators and effectors of aGPCRs were discovered before their
ligands, due to the self-cleavage aspect of their function. For example, ADGRG2 (GPR64) is currently an
orphan receptor but due to manual cleavage of its NTD it has been observed to activate Gq mobilising intracel-
lular Ca2+ [62] and Gs stimulating intracellular cAMP production [63]. ADGRG2 was also found to undergo
β-arrestin-mediated endocytosis, further increasing its signalling repertoire by acting as a scaffold for down-
stream effectors.
β-arrestins are well known to mediate GPCR internalisation and activate numerous intracellular effectors

for downstream signalling pathways, dependent on both the receptor itself as well as the ligand bound.
Interestingly, β-arrestins can function in aGPCR signalling without full activation, which is atypical for many
GPCRs [31]. The presence of the activating stalk in ADGRG1 was found to not be required for β-arrestin asso-
ciation, and therefore signalling. This could mean that allosteric agonism or even constitutive activity could be
explained by arrestin recruitment and signal propagation. A further class of accessory protein recently discov-
ered to interact with aGPCRs are the receptor activity-modifying proteins (RAMPs). RAMPs are a family of
three single-pass transmembrane spanning proteins which were initially discovered to allow functional mem-
brane expression and alter ligand specificity of the Class B1 GPCR calcitonin-like receptor (CALCRL) [64].
Since then, they have been discovered to interact with more GPCRs affecting receptor trafficking, downstream
signalling and recycling [65,66]. Whilst the repertoire of RAMP-interacting GPCRs has expanded across Class
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A, B1 and C, in 2019, it was discovered that ADGRF5 (GPR116) interacts with RAMP2 and 3 [67]. Whilst the
role of RAMPs in aGPCR function is currently unknown, this opens another avenue of research into aGPCR
activity that may aide in the discovery of endogenous ligands which can only activate aGPCRs in the presence
of RAMPs.

aGPCRs have a multitude of physiological effects
As mentioned previously and reviewed extensively by Monk et al. [68], aGPCRs have significant function in
paracrine signalling. They have a major role in the immune system, demonstrated by the large variety of
aGPCRs found on immune cells [69]. These include ADGRB1 (BAI1) described above, which is required for
the phagocytosis of apoptotic cells and pathogens in the brain. In addition to this, other aGPCRs such as
ADGRG1 (GPR56) have been shown to be present in inflammatory natural killer cells along with cytotoxic
lymphocytes [70]. Paracrine signalling is not limited to the immune system however, with several aGPCRs
including ADGRL1 (Latrophilin-1) being suggested to increase synapse formation and function [71]. ADGRC1
(CELSR1) is another aGPCR responsible for dendritogenesis and axon guidance where KO studies have shown
impaired migration of branchiomotor neurons during development [72]. One other area in which aGPCR func-
tion is also seemingly is required in the trafficking of stem cells to the bone marrow and their retention therein
to produce haematopoietic cells, likely using soluble ligands due to the systemic trafficking of these cells [73].

Clinical significance of aGPCR malfunction
aGPCRs have been implicated in numerous diseases, in particular, various types of cancers where a lack of
function results in increased cell growth and metastasis [5]. One of the deadliest forms of cancer, lung cancer,
can be severely affected by aGPCR mutations. ADGRB3 is an angiogenesis inhibitor, which has been found to
be the most significantly mutated gene in 13% of lung squamous tumours, with mutations resulting in
decreased activity of the receptor, increasing blood flow to the tumour [74]. Furthermore, it was discovered that
in many lung cancers, the translation of ADGRB3 is decreased, resulting in reduced tumour suppressive effects
provided by the receptor. Breast cancer was the second most diagnosed form of cancer in 2018 [75] and simi-
larly to lung cancer, showed altered expression or mutation in aGPCRs. While typically not expressed in breast
epithelial cells, ADGRE2 was shown to be up-regulated in invasive breast carcinomas and negatively correlated
with survival and patient prognosis [76]. Previous research suggested ADGRE2 to have functions in the
immune system therefore indicating further exploration is required in determining the secondary function in
carcinoma progression. Recently, it was discovered that a further aGPCR, ADGRL4, promoted angiogenesis
during both the development of the endothelium, as well as in several cancers where it is overexpressed. Of
note is the lack of canonical GPCR signalling by this aGPCR, although several genes were found to have
altered expression following activation suggesting an unusual method of signal transduction [24]. aGPCRs
are quickly becoming a target of interest for other diseases outside of cancer, hopefully allowing for further
harnessing of aGPCRs as therapeutic targets [73].

Perspectives
• aGPCR research is a rapidly changing field with many orphan aGPCRs and an emerging

picture of how agonists cause receptor activation. Further insights into these may help in
rational drug design for aGPCRs. This would aid in treatments of diseases which aGPCRs are
involved in, such as cancer, due to their control over angiogenesis and up-regulation in breast
cancer.

• The current consensus on aGPCR activation involves the GAIN domain acting in an autoinhibi-
tory way to occlude a tethered ligand, as demonstrated by constitutively active aGPCR
mutants. Ligands may bind to the NTF to cause the tethered ligand to be exposed, allowing
its binding to the aGPCR orthosteric site and receptor activation. Recent cryo-EM studies
have shown that, from here, aGPCR conformational changes reflect those in Class A GPCRs,
but make use of different motifs.

© 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY). 1703

Biochemical Society Transactions (2021) 49 1695–1709
https://doi.org/10.1042/BST20201144

https://creativecommons.org/licenses/by/4.0/


• Future directions may include the cryo-EM analysis of more aGPCRs to allow comparative
structural studies demonstrating the importance of sites such as the UQC; further elucidation
of how the binding of ligands to the NTF can cause receptor activation; and using this new-
found knowledge of aGPCR activation to design drugs to alter their activity.
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