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Synopsis

transcriptional regulation of its target genes.

~

G-quadruplexes are four-stranded nucleic acid structures that are implicated in the regulation of transcription, transla-
tion and replication. Genome regions enriched in putative G-quadruplex motifs include telomeres and gene promoters.
Tumour suppressor p53 plays a critical role in regulatory pathways leading to cell cycle arrest, DNA repair and apop-
tosis. In addition to transcriptional regulation mediated via sequence-specific DNA binding, p53 can selectively bind
various non-B DNA structures. In the present study, wild-type p53 (wtp53) binding to G-quadruplex formed by MYC
promoter nuclease hypersensitive element (NHE) Ill; region was investigated. Wtp53 binding to MYC G-quadruplex
is comparable to interaction with specific p53 consensus sequence (p53CON). Apart from the full-length wtp53, its
isolated C-terminal region (aa 320-393) as well, is capable of high-affinity MYC G-quadruplex binding, suggesting its
critical role in this type of interaction. Moreover, wtp53 binds to MYC promoter region containing putative G-quadruplex
motif in two wtp53-expressing cell lines. The results suggest that wtp53 binding to G-quadruplexes can take part in
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INTRODUCTION

G-quadruplexes belong to a group of non-canonical DNA struc-
tures with suggested participation in cellular processes such as
regulation of transcription and replication. G-quadruplexes are
formed by at least two stacked G-tetrads which are planar ar-
rangements of four guanines connected via Hoogsteen base pair-
ing. G-quadruplexes are further stabilized by monovalent cations,
predominantly K* or Na*, positioned in the plane or between G-
tetrads [1,2]. Putative G-quadruplex motifs in the human genome
are frequently found in G/C-rich nuclease hypersensitive regions
of gene promoters [3] and oncogenes contain a G-quadruplex
motif more often than tumour suppressor genes [4]. Formation
of G-quadruplexes in promoters has been proposed to serve a
regulatory function where the G-quadruplex structure acts as a
transcriptional modulator that can be targeted with potential anti-
cancer drugs [5,6]. Both repression and induction of genes via
promoter G-quadruplex motif have been observed [7-11]. In the

majority of cases, the transcriptional repression is associated with
G-quadruplex structure formation [9,11].

Many G-quadruplexes formed in vitro by oncogene promoter
sequences have been identified (reviewed in [8,12]) and the MYC
G-quadruplex is one of the most widely investigated. The MYC
gene is frequently deregulated in cancers [13] and contains a G-
quadruplex motif in the nuclease hypersensitive element (NHE)
III; region, located — 142 to — 115 bp upstream of P1 promoter
which controls up to 90 % of transcription [14,15]. MYC protein
is a transcription factor that promotes tumorigenesis via regula-
tion of the cell cycle, apoptosis, cell proliferation and angiogen-
esis (reviewed in [16]).

The NHE III; region of MYC contains more than four guan-
ine tracts required for intramolecular G-quadruplex formation,
enabling multiple G-quadruplex topologies. The 27-nt long G-
rich oligonucleotide Pu27 from the MYC NHE III; region can
form two major types of intramolecular G-quadruplexes with
1:2:1 or 1:6:1 loop arrangements, depending on which guan-
ine tracts are involved in G-tetrad formation [17,18]. Various

Abbreviations: CDKN1A, cyclin-dependent kinase inhibitor 1A; CNBR cellular nucleic acid-binding protein; DBD, DNA binding domain; DMS, dimethyl sulfate; NHE, nuclease
hypersensitive element; OD, oligomerization domain; p53CON, p53 consensus sequence; scDNA, supercoiled DNA; TERT, telomerase reverse transcriptase; wtp53, wild-type p53.
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truncated and substituted variants of Pu27 have also been shown
to form G-quadruplexes [19-21]. The Pu22 sequence lacking the
5’ terminal guanine tract, forms a parallel G-quadruplex structure
in K solutions as revealed by NMR spectroscopy [18]. It has
been suggested that under the conditions of negative superheli-
city, the NHE III, region can locally unwind and subsequently ad-
opt a G-quadruplex/i-motif structure which can modulate protein
binding and regulate gene expression [22]. Down-regulation of
MYC gene has been observed after addition of the G-quadruplex
stabilizing drug, 5,10,15,20-tetra(N-methyl-4-pyridyl)porphine
(TMPyP4) [5,6].

Identification of G-quadruplex interacting proteins provides
an opportunity for elucidating possible G-quadruplex functions
in vivo. To this day, various proteins have been shown to inter-
act with the MYC NHE III; G-quadruplex. Nucleolin, a mul-
tifunctional protein localized predominantly in the nucleolus,
binds specifically the MYC G-quadruplex, stabilizes it and this
leads to suppressed MYC expression [9,23]. Other identified
MYC G-quadruplex interacting human proteins include nuc-
leoside diphosphate kinase 2 (NM23-H2) [24,25], poly(ADP-
ribose) polymerase 1 (PARP-1) [26], cellular nucleic acid-
binding protein (CNBP) [27], Pif1 [28] and nucleophosmin [29]
though their function in MYC gene regulation is still not fully
understood.

P53 protein is a major tumour suppressor that takes part in
processes including apoptosis, DNA repair, cell cycle regula-
tion and senescence (reviewed in [30]). The N-terminal region of
p53 (aa 1-97) contains two transactivation domains (TADs) and a
proline-rich region (PRR). The central region is formed by a DNA
binding domain (DBD, aa 102-292) and a C-terminal region
consisting of an oligomerization domain (OD, aa 323-356) and
a C-terminal basic DNA binding domain (CTBD, aa 363-382,
[31]). P53 can regulate the expression of its target genes directly
via binding to specific p53 response elements. Sequence-specific
DNA binding of p53 to its consensus sequences (pS3CONs) [32]
is mediated by the central DBD [33]. Wild-type p53 (wtp53) in-
teracts with a variety of non-canonical DNA structures including
three-stranded junctions [34], Holliday junctions [35], cruciforms
[36], T-loops [37], stem-loops [38] and hairpins [39,40].

In the present study, we investigated wtpS53 protein interaction
with the MYC promoter G-quadruplex as this may participate in
pS53-mediated transcriptional regulation.

MATERIALS AND METHODS

DNA oligonucleotides and plasmids

Oligonucleotides were purchased from VBC-Biotech (Vienna,
Austria). Sequences are presented in Table 1. Recombinant plas-
mids encoding human p53 proteins pT7-7wtp53 (aa 1-393),
pT7-7p5S3CA30 (aa 1-363), pPGEX-4TGSTp53CD (aa 94-312),
pGEX-2TKGSTp53CT (aa 320-393) and pGEX-2TKGSTp53T
(aa 363-393) have been described previously [41]. Super-
coiled plasmids pBluescript II SK (-) (pBSK, Stratagene),
pPGMI1 (containing pS3CON sequence AGACATGCCTAGA-

CATGCCT) [42] and pPBMYC were isolated from bacterial strain
TOP10 (Stratagene) and verified by sequencing. Non-specific
competitor plasmid pBSK/EcoRV was prepared by EcoRV re-
striction endonuclease (New England Biolabs) cleavage of pBSK.
Plasmid pPBMYC containing 112 bp region of the MYC promoter
comprising NHE III, sequence was constructed by cloning the
141 bp EcoRI/HinlII restriction fragment of pNHE plasmid [43]
into the EcoRI/HinlII site of pBSK. Plasmid for luciferase re-
porter assay (pGL4-MYCII, kindly provided by Dr L. Trantirek)
was constructed by cloning fragment 2292 bp upstream of MYC
TSS into the Sacl/BgllI site of the pGL4.17 vector (Promega).

p53 recombinant protein purification

Recombinant human p53 proteins: full-length wtp53 (aa 1-393),
p53CA30(aa 1-363), GSTp53CD (aa 94-312), p53-320 (aa 320—
393), GSTp53CT (aa 320-393) and GSTp53T (aa 363-393) were
expressed in E. coli strain C41 (DE3) and purified according
to a protocol described previously [41]. The purity and size of
proteins was analysed by Coomassie Brilliant Blue staining of
12.5 % SDS-PAGE gels.

EMSA in polyacrylamide gels

Oligonucleotides were radioactively 5’ end labelled with [y -*2P]-
ATP using T4 polynucleotide kinase (New England Biolabs). G-
rich oligonucleotides Pu52, Pu33 and Pu22 were heated to 95°C
for 5 min in 5 mM Tris pH 7.6 and allowed to cool down gradu-
ally to room temperature in the presence of 50 mM KCl to adopt a
G-quadruplex structure. Proteins (3—400 ng) were incubated with
0.25-1 pmol of radioactively labelled DNA for 20 min on ice in
binding buffer (5 mM Tris pH 7.6, 0.5 mM EDTA, 0.01 % Triton
X-100, 50 mM KCl, 0.5 mM DTT) with 50 ng BSA and 2.5—
20 ng of non-specific competitor pPBSK/EcoRV. Samples were
loaded on to a 6 % non-denaturing polyacrylamide gel and sep-
arated by electrophoresis in 0.5 x TBE buffer supplemented with
50 mM KCl. Gels were dried, exposed on a storage phosphor
screen and DNA was detected using Typhoon FLA 9000 (GE
Healthcare).

CD spectroscopy

Oligonucleotides were diluted in 5 mM Tris pH 7.6 to 1-2 uM
concentration. KCI was added to 10-50 mM final concentration
and CD spectra were recorded after each addition at 20 °C. Wtp53
protein was added to oligonucleotides in wtpS3 monomer/DNA
strand molar ratios 1-4 and CD spectra were recorded at 4°C.
CD measurements were performed on Jasco J-815 spectropolar-
imeter in 10 mm Hellma microcells in the wavelength range
210-330 nm, with a scanning speed of 100 nm/min. CD spec-
tra shown, represent the average of four scans. Molar CD values
are referenced to one DNA strand.

DMS footprinting

Oligonucleotides were radioactively 5 end labelled with [y -32P]-
ATP using T4 polynucleotide kinase (New England Biolabs),
heated to 95 °C for 5 min and allowed to cool down gradually to
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Table 1 Sequences of oligonucleotides used in this work

Label 5 to 3’ sequence

Pu52 TTGGGGCGCTTATGGGGAGGGTGGGGAGGGTGGGGAAGGTGGGGAGGAGACT
Py52 AGTCTCCTCCCCACCTTCCCCACCCTCCCCACCCTCCCCATAAGCGCCCCAA
Pu33 TGGGGAGGGTGGGGAGGGTGGGGAAGGTGGGGA

Pu22 TGAGGGTGGGGAGGGTGGGGAA

P1-50F GACGGTATCGATAAGAGACATGCCTAGACATGCCTCTTGATATCGAATTC
P1-50R GAATTCGATATCAAGAGGCATGTCTAGGCATGTCTCTTATCGATACCGTC
P1-40F GATCGATAAGAGACATGCCTAGACATGCCTCTTGATATCG

P1-40R CGATATCAAGAGGCATGTCTAGGCATGTCTCTTATCGATC

P1-30F GTAAGAGACATGCCTAGACATGCCTCATCG

P1-30R CGATGAGGCATGTCTAGGCATGTCTCTTAC

P1-22F GAGACATGCCTAGACATGCCTC

P1-22R GAGGCATGTCTAGGCATGTCTC

A50 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

A25 AAAAAAAAAAAAAAAAAAAAAAAAA

room temperature either in water or in 5 mM Tris pH 7.6, 50 mM
KCl. Oligonucleotides (250000 cpm, 1.7 pmol Pu52, 2.7 pmol
Pu22) were subjected to dimethyl sulfate (DMS) treatment (di-
luted 1:400 v/v) for 5 min at room temperature. The reaction was
stopped by addition of stop buffer (3 M sodium acetate:water:2-
mercaptoethanol, 6:8:1, v/v). Samples were ethanol-precipitated,
freeze-dried and subjected to piperidine cleavage at 90°C for
30 min. After two steps of dissolving in water and freeze-drying,
the samples (80000 cpm) were loaded on to a 20 % denaturing
polyacrylamide gel and electrophoresed at 45 W for 1.5-3 h.
Gels were exposed on a storage phosphor screen and DNA was
detected using Typhoon FLA 9000 (GE Healthcare).

EMSA in agarose gels

Supercoiled DNAs (scDNAs; 200 ng pBSK, pPGM1, pBMYC)
were preincubated 50 mM KClI at 37°C for 30 min. DNAs were
mixed with p53 proteins in p53 tetramer/DNA molar ratios 0.75—
3 and incubated in binding buffer (5 mM Tris pH 7.6, 0.5 mM
EDTA, 0.01 % Triton X-100, 50 mM KCl, 0.5 mM DTT) for
30 min on ice to reach equilibrium. Samples were loaded on
to a 1% agarose gel containing 0.33x TBE buffer. After 5h
electrophoresis (at 4-6 V/cm?), agarose gels were stained with
ethidium bromide (EtBr) and photographed, more details in [44].
Intensities of bands of free scDNA substrates were quantified
using ImageQuant software. Graphs show the evaluation of p53-
DNA binding as the dependence of % of bound scDNA on the
amount of p53 proteins (expressed as molar ratio pS3/DNA).
Mean values of three independent experiments were plotted on
the graph.

AFM

AFM measurements were performed on MultiMode VIII system
(Veeco) with Scan-Asyst-Air tips (Bruker) in Scan Asyst in Air
Mode. Plasmid pBMYC was incubated in 50 mM KCI at 37°C
for 30 min and 2 ng of plasmid diluted in AFM buffer (5 mM
KCl, 5 mM Hepes pH 7.6, 4 mM MgCl,) was deposited on a

freshly cleaved mica surface, incubated for 2 min, rinsed with
water and dried quickly under a stream of compressed air. For
wtp53-pBMYC complex formation, protein was incubated with
pBMYC plasmid in wtp53 monomer/DNA molar ratio 20/1 in
binding buffer (5 mM Tris pH 7.6, 0.5 mM EDTA, 0.01 % Triton
X-100, 50 mM KClI) beforehand.

Immunoprecipitation assay

Witp53 (50ng) was incubated with DOI1 antibody (anti-p53,
400 ng) in binding buffer (5 mM Tris pH 7.6, 0.5 mM EDTA,
0.01% Triton X-100, 50 mM KCI) for 20 min on ice. SCDNA
(200 ng) was then added and the samples were incubated for an
additional 30 min on ice. Magnetic beads (washed three times
in binding buffer beforehand) coated with protein G (DBG,
Dynal/Invitrogen) were added to DO1-wtp53-DNA complexes
and incubated for 30 min at 10°C. Magnetic beads were then
washed with binding buffer (with 50 mM KCIl) once and then
twice with binding buffer containing 50-600 mM KCIl. DNA
was released from the beads by heating at 65°C in 1 % SDS for
5 min and analysed by agarose gel electrophoresis. Intensities
of bands of bound scDNA substrates were quantified using Im-
ageQuant software. The graphs show the evaluation of p53-DNA
binding as % of bound scDNA in relation to concentration of
KCI. Mean values of three independent experiments were plotted
on the graph.

Human cell lines, transfections and luciferase
assays

Human cell lines H1299 (p53-null, NCI-H1299, CRL-5803,
AT.C.C), HCT116 (wtp53, p53+/4, CCL-247, A.T.C.C.),
HCT116 (p53 —/—, [45]) and wtp53-expressing inducible TO
cell line Hwtp53 (established by protocol described in [46]) were
grown in Dulbecco’s modified Eagle medium (DMEM; Biosera)
supplemented with 5% FBS and penicillin/streptomycin (PAA).
All cultures were incubated at 37°C with 5% CO,. H1299
cells were seeded in 24-well plates 24 h before transfection,
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for luciferase assay. Cells were transfected using Lipofectamine
(Invitrogen) according to the manufacturer’s instructions, at
80 % confluence. Construct pGL4-MYCII was used as reporter,
pGL4.17 vector (Promega) was used as control and the linear
form was prepared by BamHI restriction enzyme cleavage.
Plasmid pRL-SV40 (20 ng) encoding the Renilla luciferase, was
used as a control for transfection efficiency. Where appropriate,
150 ng of the p53 expression vector based on pCDNA3.1p53
[44] or empty vector pPCDNA3.1 was co-transfected with 400 ng
of reporter constructs pGL4-MYCII or pGL4.17 in supercoiled
or linear form of reporter. Approximately 48 h after transfection,
extracts were prepared using the Dual Luciferase Assay System
(Promega) following the manufacturer’s protocol and luciferase
activities were measured in a plate reader luminometer Immu-
notech LM-01T. For each construct, relative luciferase activity
is defined as the mean value of the firefly luciferase/Renilla
luciferase ratios for pPCDNA3.1p53 effector divided by the mean
value for pCDNA3.1 vector only, results were obtained from
three independent experiments.

Western blot analysis

H1299, HCT116 (p53 +/4-), HCT116 (p53 —/ — ) and Hwtp53
(expressing wtp53, induced with 1 pug/ml tetracycline for 20 h)
[44] cells were harvested from 10 cm plates and lysed with 1x
PLB (Promega), followed by the sonication of cells (Bandelin
Sonopuls). Samples (100 g of total protein) were analysed on
12.5% SDS-PAGE gels and proteins were detected by the fol-
lowing primary antibodies: DO1 (anti-p53, kindly provided by B.
Vojtesek), anti-cyclin-dependent kinase inhibitor 1A (CDKN1A;
Millipore), anti-B-Actin (Sigma), anti-BAX (Sigma), anti-MYC
(Cell Signaling).

ChIP assay

HCT116 (p53 +/4), HCT116 (p53 —/—), H1299 (p53 null)
and Hwtp53 cells were cross-linked with formaldehyde and sub-
jected to ChIP assays as previously described [44] with the
following modifications: the sonication of cells was limited to
4 kJ (Bandelin Sonopuls). Purified antibodies DO1 and IgG were
incubated overnight with diluted chromatin and immunoprecip-
itations were performed with protein G magnetic beads (Invit-
rogen). The PCR was performed using primers targeting MYC
NHE III; (myc-chipTQF: CTACGGAGGAGCAGCAGAGAA;
myc-chipTQR: GCCTCTCGCTGGAATTACT). For quantitative
analysis, PCR was carried out for 25 cycles.

RESULTS

Wild-type p53 binds MYC parallel G-quadruplex

To investigate wtp53 binding to G-quadruplex DNA by EMSA,
G-quadruplexes formed by single-stranded oligonucleotides
Pu52, Pu33 and Pu22 derived from the NHE III; region of the
MYC gene promoter were selected. G-quadruplexes were formed

by heating the G-rich oligonucleotides to 95°C and annealing
them in 50 mM KCI. Full-length wtp53 binds the G-quadruplex
Pu52 with an affinity comparable to double-stranded P1-50 oli-
gonucleotide which includes 20 bp pS3CON (Figure 1A). Wtp53
also binds the G-rich sequences Pu22 (Figure 1D) and Pu33 (Sup-
plementary Figure S1A) with an affinity comparable to the shorter
double-stranded pS3CON containing oligonucleotides P1-22 and
P1-30 respectively. Wtp53 affinity to Pu52 is higher than to Pu22
and Pu33. Oligonucleotides A50 (Figure 1A) and A25 (Fig-
ure 1D) are not bound by wtp53 under the same conditions.
G-quadruplex formation of the MYC NHE III; region derived
oligonucleotides was examined by CD spectroscopy and DMS
footprinting. CD spectra of Pu52, Pu33 and Pu22 exhibit a pos-
itive peak at 260 nm and negative peak at 240 nm characteristic
of a parallel G-quadruplex structure (Figures 1B, 1E and Sup-
plementary Figure S1B) that is stabilized after addition of 10
and 50 mM KCI. DMS footprinting of Pu52 (Figure 1C) and
Pu22 (Figure 1F) revealed a partial blocking of DNA cleavage
in four consecutive G-tracts after annealing of oligonucleotides
in 50 mM KCl, suggesting a G-quadruplex formation with 1:2:1
loop arrangement. Furthermore, we studied the effect of wtp53
on MYC G-quadruplex structure by CD spectroscopy. Addition
of wtp53 to MYC G-quadruplexes Pu52, Pu33 and Pu22 folded
in 50 mM KCI resulted in preserved positive peak at 260 nm,
suggesting that wtp53 does not unwind the MYC parallel G-
quadruplex (Supplementary Figures S1C and S2).

FullHlength wild-type p53 binds MYC G-quadruplex
with higher affinity than its isolated C-terminal
region or central DNA binding domain

The ability of full-length wtp53 protein to bind MYC G-
quadruplex was compared with isolated central DBD (p5S3CD,
aa 94-312) and C-terminal construct containing OD and basic
domain (p53-320, aa 320-393). Wtp53 binds the Pu52 (Fig-
ure 2A), Pu33 (Figure 2B) and Pu22 (Figure 2C) G-quadruplexes
with higher affinity than p53-320 and p53CD proteins. Double-
stranded oligonucleotides P1-50, P1-30 and P1-22 containing the
20 bp pS3CON sequence are preferentially bound by full-length
wtp53 and central DBD of p53, whereas p53-320 protein ex-
hibits only minimal binding (Figures 2D-2F). In both sets of
DNA substrates, protein binding is strengthened with increasing
oligonucleotide length.

FullHlength wild-type p53 and the C-terminal region
of p53 specifically recognize the G-quadruplex over
double-stranded MYC NHE IllI4

The role of p53 protein domains in G-quadruplex binding was
further tested by EMSA with a set of p53 protein constructs. Full-
length wtp53, p53 lacking the last 30 C-terminal amino acids
(CA30) and central DBD (p53CD) bind P1-40 oligonucleotide
containing pS3CON (Figure 3A). G-quadruplex Pu52 was bound
preferentially by wtp53 and the C-terminal region of p53 (p53CT,
aa 320-393), to a lesser extent by protein construct comprising
only the last 30 C-terminal amino acids (pS3T, aa 363-393).
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Figure 1 Full-length wild-type p53 binding to the parallel G-quadruplex from MYC promoter NHE lll; region is comparable

with p53CON binding

(A) Comparison of sequence-specific and MYC G-quadruplex Pu52 binding of p53 by EMSA. Oligonucelotides P1-50
(0.25 pmol, lanes 1-5), Pu52 (1 pmol, lanes 6-10) and A50 (0.25 pmol, lanes 11-15) were incubated with wtp53 protein
(50, 100, 200, 400 ng/1 pmol of oligonucleotide) in the presence of 20 ng (per 1 pmol of oligonucleotide) of non-specific
competitor pBSK/EcoRV. (B) CD spectra of Pu52 oligonucleotide measured in 5 mM Tris pH 7.6 (dotted line) and after
addition of 10 mM KCI (dashed line) and 50 mM KCI respectively (solid line). (C) DMS footprinting of Pu52 oligonucleotide.
Pu52 was annealed in 50 mM KCI without subsequent DMS treatment (lane 1), annealed in the absence of KCI and
treated with DMS (lane 2) or annealed in 50 mM KCI and treated with DMS (lane 3). (D) Comparison of sequence-specific
and MYC G-quadruplex Pu22 binding of p53 by EMSA. Oligonucelotides P1-22 (0.25 pmol, lanes 1-5), Pu22 (1 pmol,
lanes 6-10) and A25 (0.25 pmol, lanes 11-15) were incubated with wtp53 protein (50, 100, 200, 400 ng/1 pmol of
oligonucleotide) in the presence of 20 ng (per 1 pmol of oligonucleotide) of non-specific competitor pBSK/EcoRV. (E) CD
spectra of Pu22 oligonucleotide measured in 5 mM Tris pH 7.6 (dotted line) and after addition of 10 mM KCI (dashed line)
and 50 mM KCI respectively (solid line). (F) DMS footprinting of Pu22 oligonucleotide. Pu22 was annealed in 50 mM KCI
without subsequent DMS treatment (lane 1), annealed in the absence of KCI and treated with DMS (lane 2) or annealed

in 50 mM KCI and treated with DMS (lane 3).

pS3CD and CA30 proteins exhibit only minimal binding to Pu52
(Figure 3B). All tested proteins exhibited only residual binding
to double-stranded dsPu52/Py52, formed by complementary G-
rich Pu52 and C-rich Py52 oligonucleotides, containing NHE III,
sequence (Figure 3C).

Wild-type p53 binds supercoiled pBMYC plasmid
containing NHE Ill, sequence

First we compared binding of wtp53 to scDNAs at native super-
helical density. These scDNAs contain either G-quadruplex form-
ing sequence (pBMYC) or specific pS3CON sequence (pPGM1).
Differences in wtp53 recognition of scDNA with and without G-
quadruplex forming sequence are measurable by number and

intensity of retarded bands (compare lanes 5 and 15, Figure 4A).
Both plasmids pPGM1 (with CON, lanes 7-10) and pBMYC
(lanes 12-15) were more strongly bound by p53 than pBSK
(lanes 2-5, Figure 4A). The stability of wtp53 binding to scDNA
pPGM1 (p53CON) and pPBMYC (MYC promoter sequence) was
compared by immunoprecipitation assay. Wtp53 was incubated
with supercoiled plasmids and bound via DO1 antibody on mag-
netic beads in binding buffer containing 50 mM KCI. To in-
vestigate the stability of formed protein—DNA complexes, these
were subjected to two-step washing in buffer containing various
concentrations of KCI. Binding of wtp53 to supercoiled pBSK
control plasmid observed after washing with 50 mM and 100 mM
KCl, was dramatically abolished when the washing buffer con-
tained 300 mM or 600 mM KCI (Figure 4B). Decreased wtp53
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Full-length wild-type p53 binds to MYC G-quadruplex more efficiently than its isolated C-terminal and central

The role of p53 domains in MYC G-quadruplex binding was studied by EMSA. Oligonucleotides (1 pmol) Pu52 (A), Pu33 (B)
and Pu22 (C) were incubated with wtp53 (lanes 2-5; 50, 100, 200, 400 ng), p53-320 (lanes 6-9; 25, 50, 100, 200 ng)
or p53CD (lanes 10-13; 12.5, 25, 50, 100 ng) in the presence of 10 ng of non-specific competitor pPBSK/EcoRV. Binding
of full-length wtp53, central DBD and C-terminal construct of p53 to double-stranded oligonucleotides containing p53CON
was studied by EMSA. Oligonucleotides (0.25 pmol) (D) P1-50, (E) P1-30 and (F) P1-22 were incubated with wtp53 (lanes
2-5; 12.5, 25, 50, 100 ng), p53-320 (lanes 6-9; 6, 12.5, 25, 50 ng) or p53CD (lanes 10-13; 3, 6, 12.5, 25 ng) in the

presence of 2.5 ng of non-specific competitor pPBSK/EcoRV.

binding after washing in 300 mM and 600 mM KCl was also
observed for pPPGM1 and to a lesser extent for pPBMYC plasmid
(Figure 4B). These data suggest that wtp53 binding to scDNA
is more stable if the plasmid includes the MYC promoter region
containing NHE III; sequence or p5S3CON. pPBMYC plasmid was
visualized by AFM either alone (Figure 4C, top) or in complex
with wtp53 protein (Figure 4C, bottom). Potential G-quadruplex
formation was considered from the shape of the molecules.

Wild-type p53 represses and binds MYC promoter
in vivo

Several reports have demonstrated that wtp53 represses the tran-
scription of MYC in vivo [47-50]. To confirm the involve-
ment of wtp53 binding to MYC promoter G-quadruplex in
this regulation, we used luciferase reporter assay and ChIP
techniques.

To analyse whether G-quadruplex-forming sequence had
any effect on p53-driven transcription, we performed luci-
ferase reporter assays using reporter vectors in variants with
(pGL4-MYCII) and without (pGL4) MYC G-quadruplex motif

(Figure 5A). Luciferase assay was performed in H1299 cells with
linear and supercoiled reporter vectors and with pCDNA3.1p53
effector or pPCDNA3.1 vector only (Figure SA). Only supercoiled
reporter sc pGL4-MYCII could form G-quadruplex structure.
P53 expression resulted in strong repression of pGL4-MYCII
vectors. Repression was stronger for sc form of reporter
(Figure 5A) than lin form of reporter. These results show that
DNA superhelicity possibly accompanied by G-quadruplex
formation enhances MYC promoter repression mediated
by wtp53.

To confirm wtp53 binding to MYC promoter in vivo, ChIP
was performed in two cell line based models with endogenous
HCT116 (p53+/+) and exogenous Hwtp53 expression and
their p5S3 null forms HCT116 (p53 —/—) and H1299 (Fig-
ure 5B). ChIP with p53 specific antibody (DO1) confirmed
endogenous (Figure 5B, lane 6) and exogenous (Figure 5B,
lane 3) wtp53 binding in contrast to their negative controls.
Lastly, the effect of endogenous and exogenous wtp53 expres-
sion on MYC regulation was investigated at the protein level
(Figure 5C). Suppressed level of the MYC protein in Hwtp53
(tetracycline-inducible wtp53) cells compared with H1299
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Figure 3 Wild-type p53 and C-terminal region of p53 bind
G-quadruplex Pu52 with higher affinity than double-stranded
Pu52/Py52

Binding of various p53 protein constructs to MYC promoter G-quad-
ruplexes from was studied by EMSA. Oligonucleotides (A) P1-40
(0.5 pmol), (B) Pub52 (1 pmol) and (C) dsPu52/Py52 (0.5 pmol) were
incubated with wtp53 (lanes 2-4; 25, 50, 100 ng/1 pmol of oligonuc-
leotide), CA30 (lanes 5-7; 25, 50, 100 ng/1 pmol of oligonucleotide),
p53CT (lanes 8-10; 50, 100, 200 ng/1 pmol of oligonucleotide), p53T
(lanes 11-13; 50, 100, 200 ng/1 pmol of oligonucleotide) or p53CD
(lanes 14 and 15; 100, 200 ng/1 pmol of oligonucleotide) in the pres-
ence of 20 ng (per 1 pmol of oligonucleotide) of non-specific competitor
pBSK/EcoRV.

(p53-null) cells correlated with wtp53 induction and activation
of CDKNI1A (p21) and BAX (Figure 5C). In the case of endo-
genous cell line HCT116 (p53 4/4), the difference in MYC
protein expression in comparison with HCT116 (p53 —/ —) was
not so robust.

Original Paper

DISCUSSION

Tumour suppressor p53 protein functions as a transcriptional reg-
ulator of a vast number of genes through binding to pS3 response
elements in the genome that may differ from the established con-
sensus sequence motif (reviewed in [51]). The central DBD of
p53 is crucial for high affinity recognition of consensus sequences
[33] and the C-terminal domain was shown to regulate sequence-
specific DNA binding [52]. The importance of the C-terminal
region of p53 was demonstrated on a mouse model, where it af-
fected p53-dependent gene expression in a tissue-specific manner
by impairing p53 DNA binding or regulating p53 protein levels
and activity [53]. Recently, it has been shown that the intact C-
terminal region of p53 is important for stable p53 tetramer—-DNA
complex formation [54].

In the present study, we investigated the selective binding
of wtp53 to the purine-rich G-quadruplex forming sequence of
the MYC NHE III; region located upstream of the P1 promoter
which is believed to have a significant role in MYC transcrip-
tional regulation. The topology of the NHE IlI; can be altered by
negative supercoiling and binding of various proteins or ligands
[22]. Our results show that full-length wtp53 binds to the par-
allel G-quadruplex formed by purine-rich strand of MYC NHE
III,, whereas it does not bind to the NHE III; in double-stranded
form. Our data suggest that wtp53 can bind MYC parallel G-
quadruplex selectively with affinity comparable to pS3CON.
Using different p53 protein constructs, we found that the C-
terminal region of p53 can autonomously bind to G-quadruplex
with higher affinity than isolated central DBD. In our previ-
ous study, we showed that several full-length hot spot mutant
p53 proteins (R273H, R248W and G245S) and wtp53 bound se-
lectively to G-quadruplexes formed by 52-mer from MYC NHE
III; and 61-mer from telomerase reverse transcriptase (TERT)
core promoter and that mutant p53 R273H stabilizes both MYC
and TERT G-quadruplex structures [55]. Hence, the results with
full-length wtp53 [55] are in good agreement with the results
presented in the present study. Full-length hot spot mutant p53
proteins contain a mutated core domain but intact C-terminus,
common recognition of MYC G-quadruplex by hot spot mutp53
and wtp53, support the conclusion from the data that the C-
terminus of p53 is mainly responsible for p53 G-quadruplex
recognition.

Both wtp53 and mutp53 have been described as regulating the
transcription of MYC but in the opposite direction [47,48,50,56].
Transcriptional activation of the MYC gene in relation to the
p53 C-terminus has been described as one of the acquired func-
tions of mutant p53 D281G [56]. Mutant pS3 binding sites on
DNA in that study were not examined. Using custom tiling array
that covers a total of 902 genes including putative mutant p53
target genes, we showed earlier in ChIP-chip experiments that
oncogenic mutant pS3 R273H preferentially and autonomously
binds to CpG islands around transcription start sites of many
active genes with the potential to form G-quadruplexes. How-
ever, mutant p53 binding to MYC promoter was not examined in
cells [55].
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Figure 4 Wild-type p53 tightly binds supercoiled plasmid pBMYC containing the MYC NHE lll; sequence

(A) Wtp53 binding to supercoiled plasmids pBSK, pPGM1 and pBMYC was studied by EMSA in agarose gel. Wtp53 protein
was incubated with scDNA (pBSK, 200 ng, lanes 1-5), scDNA with CON (pPGM1, 200 ng, lanes 6-10) and scDNA with
MYC G-quadruplex forming sequence (pBMYC, 200 ng, lanes 11-15) in p53/DNA molar ratios 0.75, 1.5, 2 and 3 at
4°C, EMSA was performed at 4°C. Graphs show the evaluation of p53-DNA binding as the dependence of percents
of bound scDNA (y-axis) on the amount of p53 proteins (expressed by molar ratio p53/DNA, x-axis). Mean values of
three independent experiments were plotted on the graph, representative gel is shown on the top. (B) Wtp53 binding to
supercoiled plasmids pBSK, pPGM1 and pBMYC studied by immunoprecipitation on magnetic beads (scheme describes
performed procedure). After binding of wtp53-DNA complexes on magnetic beads, they were washed in buffer containing
50-600 mM KCI. Arrows indicate precipitated supercoiled (sc), open circular (oc) and supercoiled dimers (dimer sc). Mean
values of bound scDNA from three independent experiments were plotted in the graph, representative gel is shown in
the middle section. (C) Visualization of pBMYC plasmid (top, line bar represents 200 nm) and wtp53-pBMYC complex
(bottom, line bar represents 200 nm) by AFM on air. Potential G-quadruplex formation was considered from the shape of
the molecules, positions of potential G-quadruplex structures are indicated by arrows on the top section. The complex of

wtp53-pBMYC is indicated by arrow on the bottom section.

Repression of MYC by wtp53 has been observed in several
human and mouse cell lines and mouse tissues [47,49,57]. As-
sociation of wtp53 with MYC promoter may represent one of
the initial steps in p53-mediated gene regulation. For this reason,
we detected wtp53 binding to G-quadruplex forming sites of
the MYC promoter in the context of chromatin by ChIP as-
say. Endogenous wtp53 expressed in HCT116 (p53 +-/+) cells
and exogenous wtp53 expressed in Hwtp53 were bound to G-
quadruplex, forming the MYC NHE III, region but so far this
binding has not been detected in cells. Binding of thermosensitive
mutant p53 with wild-type conformation to MYC promoter in vivo
was identified in DP16.1/p53ts murine cells [47]. However, the
identified murine sequence, which is homologous with human
NHE III; region, does not share the same putative G-quadruplex
motif.

The ability of p53 to suppress the expression of cell cycle
regulatory and growth promoting genes, including MYC [57,58]
via multiple mechanisms is one of the most important factors
in protection from tumorigenesis. We propose that p53 binding

to G-quadruplex in MYC promoter may be one of the steps in
MYC repression. Transcriptional repression of MYC by p53 was
also associated with histone deacetylation upon p53 binding [47].
Another scenario is that indirect p53-dependent MYC repression
involves the activation of miR-145 via binding of p53 to its poten-
tial p53 response element [59]. MYC promoter contains several
P53 consensus motifs, p53 binding to two of these was shown by
ChIP in murine cells [47]. In contrast to results in differentiated
cells, in murine embryonic stem cells, p53-mediated induction of
MYC transcription was observed [60]. The mechanisms of p53-
dependent MYC regulation described so far lead us to hypothesize
that p53 binding can potentiate the recruitment of co-regulators
which may ultimately regulate transcription in the desired
direction.

In conclusion, the results suggest that wtp53 protein can
bind MYC promoter G-quadruplex and the C-terminal region
of p53 is critical for G-quadruplex recognition. P53 binding to
G-quadruplexes in promoter regions of p53 target genes may play
arole in p53-mediated transcriptional regulation.
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Figure 5 Wip53 represses MYC promoter activity and binds to MYC promoter in vivo

(A) Influence of DNA topology on wtp53-driven repression of MYC promoter. Luciferase assay showing stronger repression of
MYC promoter in supercoiled pGL4-MYCII plasmid by wtp53 in contrast to linear plasmid pGL4-MYCII/BamHI. Supercoiled
pGL4.17 and linear pGL4.17/BamHI were used as control vectors. Mean values of relative luciferase assay (normalized
on Renilla luciferase) from three independent experiments were plotted on the graph. (B) ChIP showing wtp53 binding to
MYC promoter which contains a G-quadruplex motif. DNA fragments were immunoprecipitated using DO1 antibody against
p53 in HWtp53 (top, lane 3) and HCT116 (p53+/ +) (top, lane 6) cells, negative control ChIP without Ab (lanes 2 and
5), positive input control (1/15 input for ChIR lanes 1 and 4). The same procedure was performed in p53 null cell lines
H1299 and HCT116 (p53 —/ —). (C) Wtp53 mediated down-regulation of MYC at the protein level and activation of BAX
and CDKN1A was analysed in Hwtp53 cells compared with H1299 without p53 expression. Western blots presenting the
protein levels of p53, MYC, CDKN1A, g-Actin and BAX. Wtp53 mediated down-regulation of MYC at the protein level was
analysed in HCT116 (p53 4/ + ) compared with HCT116 (p53 —/ —).
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