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Abstract

Mechanisms conferring robustness against regulatory variants
have been controversial. Previous studies suggested widespread
buffering of RNA misexpression on protein levels during transla-
tion. We do not find evidence that translational buffering is
common. Instead, we find extensive buffering at the level of RNA
expression, exerted through negative feedback regulation acting in
trans, which reduces the effect of regulatory variants on gene
expression. Our approach is based on a novel experimental design
in which allelic differential expression in a yeast hybrid strain is
compared to allelic differential expression in a pool of its spores.
Allelic differential expression in the hybrid is due to cis-regulatory
differences only. Instead, in the pool of spores allelic differential
expression is not only due to cis-regulatory differences but also
due to local trans effects that include negative feedback. We found
that buffering through such local trans regulation is widespread,
typically compensating for about 15% of cis-regulatory effects on
individual genes. Negative feedback is stronger not only for essen-
tial genes, indicating its functional relevance, but also for genes
with low to middle levels of expression, for which tight regulation
matters most. We suggest that negative feedback is one mecha-
nism of Waddington’s canalization, facilitating the accumulation
of genetic variants that might give selective advantage in different
environments.
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Introduction

Regulatory genetic variants play a major role in phenotypic

variation and evolution. Most genetic variants are non-coding and

they are the major driver of speciation (King & Wilson, 1975). More-

over, non-coding genetic variants represent the majority of genetic

associations with common diseases (Gibson, 2009; Manolio, 2010).

Hence, given the potential phenotypic impact of regulatory variants,

biological mechanisms conferring robustness against their effects

are expected.

Recently, two studies have assessed the role of translation in

buffering variations in RNA expression (Artieri & Fraser, 2014;

McManus et al, 2014). In both studies, allelic differential expression

(ADE) was compared to allelic differential translation efficiency esti-

mated from allele-specific ribosome occupancies in a cross of the

yeast species S. cerevisiae and S. paradoxus. Allelic differential

expression indicates effects of cis variants, i.e. regulatory variants

that act on one but not on both alleles of a gene (Cowles et al, 2002;

Yan et al, 2002). Focusing on genes with both a significant ADE and

significant allele-specific translation efficiency differences, these

studies reported an excess of translation efficiency differences

opposing to the allelic differential expression. In contrast, Muzzey

et al (2014) reported a genomewide trend for reinforcing ADE

during translation in the yeast C. albicans. As these studies used

distinct statistical procedures and species, it is hard to compare

them and conclude about the generality of these findings. It is

appealing to conceive translation as a check point to counter allelic

expression imbalance (Fig 1A). However, a general mechanism that

could sense mRNA allelic imbalance and regulate translation

accordingly is hard to imagine. Instead, the most likely explanation

for translational buffering is the selection for compensatory muta-

tions (Artieri & Fraser, 2014; McManus et al, 2014). Hence, varia-

tion in translation efficiency might contribute to buffering but does

not appear as an intrinsic mechanism that yields robustness against

newly arisen regulatory variants.

Alternatively, Denby et al (2012) have proposed that negative

feedback controlling the level of RNA expression could be a common

mechanism to buffer effects of regulatory variants (Fig 1A). Negative

feedback would buffer expression differences by exerting a stronger

repression on alleles with higher expression levels and a weaker

repression on alleles with lower expression levels. Screening for

auto-regulated transcription factors in yeast, Denby et al (2012)
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found ROX1 to be under strong negative feedback. Mutant

experiments showed that this negative feedback confers robustness

to the expression of ROX1 in the face of naturally occurring allelic

variants present in a set of divergent yeast strains. This study

demonstrated for a single gene that negative feedback could act as a

buffering mechanism for regulatory variants. However, data about

the extent of feedback mechanisms genomewide and its importance

for buffering regulatory variants are still lacking.

Here, we sought to quantify the extent of buffering by feedback

against naturally occurring regulatory variants genomewide. To this

end, we devised a novel experimental design in which ADE in a

hybrid of two yeast strains is compared against ADE in a pool of

spores of the same cross (Fig 1B). We distinguish three types of

regulatory variants (Rockman & Kruglyak, 2006). First, cis-regulatory

variants affect by definition only the allele of the same chromosome

and induce ADE in both the hybrid and the pool of spores (Fig 1C, left

column). Instances of cis-regulatory elements include transcription

factor binding sites and regulatory elements in the UTR. Second,

local trans mechanisms, which act in trans and are inherited

together with the gene they affect, induce ADE in the pool of spores.

However, as any trans effect (Cowles et al, 2002; Yan et al, 2002),

local trans mechanisms act in the hybrid unspecifically on both

alleles and thus do not induce ADE in the hybrid (Fig 1C, middle

column). Local trans regulation can be due to the product of the

gene itself (feedback) or to another gene in linkage disequilibrium

such as a nearby encoded transcription factor (Ronald et al, 2005).

A

C

B

Figure 1. Tested hypothesis and experimental design.

A Effects of RNA misexpression due to cis-acting regulatory variants (orange triangle) could be buffered through (1) negative feedback of a gene product onto its RNA
expression level as investigated here or (2) through compensatory translation efficiency effects as recently proposed (Artieri & Fraser, 2014; McManus et al, 2014).

B Allelic differential expression (ADE) was estimated from allele-specific read counts in RNA-sequencing (right column) from a cross (F1 generation, top row) of the
yeast strains SK1 (red) and S96 (blue) and compared against ADE from its pool of spores (F2 generation, bottom row).

C Cis effects yield to ADE in both the hybrid and the pool of spores (left column). In contrast, local trans effects including feedback only yield to ADE in the pool of
spores (center column). Distant trans effects do not yield to ADE neither in the hybrid nor in the pool of spores (being averaged out).
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Local trans regulation can reduce the ADE in the spores compared

to the hybrid, if it counteracts the cis regulation (Fig 1B). Third,

distant trans mechanisms, which are encoded on another chromo-

some or at a distant, unlinked locus of the same chromosome, are

inherited independently of their target genes in the spores. Hence,

effects of distant trans mechanisms are averaged out across the

population of spores and thus do not contribute to ADE (Fig 1C,

right column). Altogether, comparison of ADE in the hybrid against

the pool of spores thus enables the dissection of local regulation into

cis and local trans (including feedback) effects.

We find that buffering through local trans regulation is wide-

spread, typically compensating for 15% of cis-regulatory effects on

individual genes. It is stronger for genes with essential function and

with low to middle level of expression. In contrast, re-analysis of

published ribosome profiling data (Artieri & Fraser, 2014) did not

support buffering at the translational level. Altogether, our results

indicate that negative feedback plays an important role in buffering

regulatory consequences of genetic variants.

Results

Dissecting cis- and local trans-regulatory effects

The reference lab strain S96 (Mortimer & Johnston, 1986; Cherry

et al, 2012) was crossed with the wild isolate SK1 (Kane & Roth,

1974; Nishant et al, 2010). Sporulation, germination, and overnight

growth of the pool of spores led to the enrichment of alleles due to

natural selection as well as technical selection for a single mating

type (Ehrenreich et al, 2010; Parts et al, 2011; Wilkening et al,

2014). To control for this bias, allele frequencies were robustly

estimated from DNA sequence data of the pools (Materials and

Methods). S96 and SK1 are genetically distant strains (0.7% diver-

gence, Nishant et al (2010)), allowing investigation of a large set of

regulatory polymorphisms and alleles. We identified 7,231 genes of

a comprehensive S96 transcriptome annotation (Xu et al, 2009) that

are common to both backgrounds by reciprocal best alignments

with at least an identity of 95% (Materials and Methods). Out of

these, the 6,934 (96%) genes that showed expression for both

alleles and carried at least one polymorphism were amenable to

allele-specific expression profiling by RNA-sequencing (Fig 1B,

Materials and Methods).

RNA-sequencing showed high reproducibility between biological

replicates, though higher between hybrids than between pools of

spores (Supplementary Fig S1, Spearman correlation 0.98 and

median coefficient of variation of expression level of 14% in hybrids

versus 0.96 and 24% in spores, respectively). Deep sequencing led

to 6,691 genes (93%, 5,078 coding and 1,613 non-coding) with more

than 10 allele-specific reads on average per sample (median 1,044),

for which we considered to have enough data to investigate

their allele-specific regulation quantitatively. Cis and local trans

effects were estimated using a generalized linear model of allele-

specific RNA-sequencing read counts (using the software DESeq2 by

Anders & Huber (2010), Materials and Methods). In contrast to stan-

dard methods that estimate allelic differential expression from

RNA-sequencing data (Bullard et al, 2010; Emerson et al, 2010;

McManus et al, 2010), our approach (i) jointly modeled all repli-

cates, avoiding summarizations of per-replicate results that do not

take between-replicate variance into account, (ii) modeled

over-dispersion of RNA-sequencing read counts, limiting false

positive results in comparison with Poisson or binomial models

(Anders & Huber, 2010), and (iii) flexibly allowed controlling for

covariates with known (genomic allele frequency) or with unknown

(replicate, ploidy) effects. Lack of correlation of cis effect estimates

with genomic allele frequency (Supplementary Fig S2) and L-shaped

distribution of P-value (Supplementary Fig S3 center) indicated the

validity of the method.

Overall, 984 (15%) genes showed strong and significant cis

effects (cis genes, effect > 1.5-fold and FDR < 0.2, Benjamini-

Hochberg correction here and in the following) and 54 (1%) genes

showed strong and significant local trans effects (effect > 1.5-fold

and FDR < 0.2, Supplementary Fig S3, Materials and Methods).

When not filtering by effect size, the prevalence of cis effects in this

cross (23%, 1,552) was in line with former reports in yeast (� 33%,

1,400 of 4,140 genes in Tirosh et al (2009); 19% cis, 830 of 4,282

genes in Emerson et al (2010)), fly (18% cis, 1,359 of 7,631 in

Suvorov et al (2013)), and mice (31% cis, 3,149 of 10,090 genes in

Goncalves et al (2012)). Local trans genes were enriched for genes

encoding proteins that localize in the extracellular region (Gene

Ontology enrichment (Ashburner et al, 2009), Fisher’s test,

FDR = 0.02), in agreement with trans effects acting often due to

variations in sensory processes (Tirosh et al, 2009). Most of the

local trans genes do not encode transcription factors (Materials and

Methods) in line with the lack of enrichment of transcription factors

among trans-acting regulatory loci (Yvert et al, 2003) and thus were

missed in the previous transcription factor screen (Denby et al,

2012). On the other hand, ROX1 showed no evidence for local trans

regulation in our study, most likely because its feedback works

under hypoxic conditions (Denby et al, 2012). The much smaller

amount of genes with significant local trans effects in comparison to

the amount of genes with significant cis effects does not prove that

local trans effects are less prevalent. Instead, this difference is likely

a consequence of the limited statistical power for calling local trans

effects, which relies on determining a difference between spore ADE

and hybrid ADE. In comparison, there is much higher power to

detect cis effects which mainly relies on determining hybrid ADE.

Nonetheless, genes under documented feedback regulation includ-

ing PHO84 (Wykoff et al, 2007) and AMN1 (Wang et al, 2003; Yvert

et al, 2003; Ronald et al, 2005) were identified (Supplementary Fig

S4 top). This shows that genuine strong local trans effects could be

detected. Moreover, 14 out of the 54 genes showed complete buffer-

ing of cis effects through local trans regulation, that is they exhibited

a strong ADE in the hybrid and essentially equal allelic expression

in the pool of spores (hybrid count ratios larger than 1.5 and spore

count ratios smaller than 1.5, examples in Supplementary Fig S4

bottom). Together, these findings indicate that buffering through

local trans regulation might be frequent.

Local trans effects buffer cis effects genomewide

As statistical power on individual genes is limited, we also analyzed

local trans regulation genomewide. In this experimental setup,

buffering can only be assessed for genes showing a cis effect in the

first place. For the 984 cis genes, allelic expression imbalances typi-

cally agreed in direction, but were weaker for the pool of spores

compared to the hybrid (Fig 2A, mass of the data subdiagonal). To
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quantify the amount of buffering of cis effects, we defined the

buffering coefficient C as one minus the log-ratio of allele-specific

expression in the spores versus the hybrid (see Materials and

Methods for definition and unbiased estimation). The buffering coef-

ficient has a value of 0 in the absence of buffering (equal ADE in the

pool of spore and hybrid), 1 for complete compensation (ADE in the

hybrid but no ADE in the pool of spores). The buffering coefficient is

greater than 1 in case of over-compensation and is negative if local

trans effects enhance cis effects. More than half of the genes with

cis effects showed at least partial buffering (60% with C above 0).

Local trans buffering appeared to affect all classes of genes, since no

gene ontology category was significantly enriched (Fisher’s test,

FDR < 0.1). Moreover, no significant association was found between

buffering coefficient and gene features that have been associated

with gene expression variability (TATA box) or dosage compensa-

tion in fly (gene length) (Supplementary Fig S5). The trend for

buffering was robust to the definition of cis genes as it was still

detectable across all genes (Supplementary Fig S6A). Hence,

genomewide cis effects tend to be partially buffered by local trans-

regulatory mechanisms. These local trans mechanisms buffer typi-

cally 15% (Fig 2C, median C = 0.148; P ¼ 6:5 � 10�15, one-sided

Wilcoxon test) of allelic expression log-ratios caused by cis-regulatory

variants (Fig 1A).

To compare the amount of buffering by local trans mechanisms

against buffering by translation efficiency, we re-analyzed one ribo-

some-profiling dataset (Artieri & Fraser, 2014) following the same

statistical procedure as above. Here, the ribosome profiles of the

hybrid substitute for the transcription profiles in the pool of spores

(Materials and Methods). A total of 592 genes were identified as

having cis differences on RNA expression (effect > 1.5-fold and FDR

< 0.2). For these genes, allelic differential levels of ribosome-bound

RNAs had typically the same extent as allelic differential levels of

expression of the RNAs in the hybrid (Fig 2B, mass of the data along

the diagonal; Fig 2C, median buffering coefficient �0.058, 54% with

C < 0). This observation was robust with respect to the definition of

cis genes, since no support for translation efficiency buffering was

detectable across all genes, too (Supplementary Fig S6B). We did

not find an enrichment for translation efficiency opposite to ADE

either when we focused on genes with both a significant ADE and

significant allele-specific translation efficiency differences as the

original study did (164, 54%, genes out of 303 genes with FDR < 0.2

for both effects had opposing ADE and translation efficiency,

P = 0.17 two-sided Binomial test). Both previous publications

(Artieri & Fraser, 2014; McManus et al, 2014) could have been

misled by the fact that translation efficiency estimates were techni-

cally anti-correlated with RNA level estimates (Albert et al, 2014)

and by the fact that the measurement variance was larger than

assumed (Supplementary Information).

Local trans buffering is stronger for essential genes

If local trans regulation confers robustness against regulatory vari-

ants, then one would expect it to be stronger at genes important for

fitness. We tested this hypothesis by classifying genes into three

categories with increasing fitness relevance: 1,613 non-coding genes

(24%, ncRNA), 4,004 non-essential protein-coding genes (60%,

A B C

Figure 2. Local trans effects, but not translation, buffer ADE.

A Scatter plot of allele-specific expression ratios in the pool of spores (y-axis) against hybrid (x-axis) for the genes with cis effect (984 cis genes). For both axes and on a
gene basis, the allele with the lower expression level in the hybrid is taken as reference (denominator). ADE in the hybrid measures cis-regulatory effects (x-axis).
Three categories of genes are distinguished depending on the resulting ADE in the pool of spores (y-axis, due to cis and local trans regulation): compensated (dark
green background) with canceled or opposite ADE (over compensation), buffered (light green) with reduced ADE, and enhanced ADE (purple). Most of the genes are
buffered.

B Analogous to (A) but for the 592 RNA cis genes of the Artieri & Fraser (2014) dataset. Ribosomal profiling ratios (y-axis) of a cross between S. cerevisiae and
S. paradoxus are compared against RNA ratios (x-axis) of the same hybrid. The mass of the data lies at the diagonal indicating that RNA cis effects in the hybrid
are not buffered translationally.

C Quartiles (boxes) and 1.5 times the interquartile range (whiskers) of the buffering coefficient for the gene sets from (A), left and (B), right. The buffering coefficients at
RNA level are significantly greater than zero (left, median = 0.147, P < 6.5 × 10�15, one-sided Wilcoxon test), whereas they are not at translational level (right). Both
distributions differ significantly (P = 2.3 × 10�12, two-sided Wilcoxon test).
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non-essential), and 1,074 essential protein-coding genes (16%,

essential). The proportion of cis genes in each category was

inversely related to fitness relevance (Fig 3A), whereby ncRNAs

were enriched for cis genes (20%, P ¼ 1:6 � 10�10, Fisher’s test)

and essential genes were depleted for cis genes (11%,

P ¼ 9:2� 10�5, Fisher’s test). This result also held when controlling

for expression level and considering the combination of two FDR

thresholds (0.1 and 0.2), with and without fold change cutoff

(Supplementary Fig S7). The association of cis effects with gene

categories is in line with former reports limited to protein-coding

genes (Tirosh et al, 2009; Emerson et al, 2010) and consistent with

the idea that selection on regulatory elements is more important for

coding than non-coding genes and for essential than non-essential

genes. Surprisingly, the buffering coefficient and fitness relevance

did not correlate (Fig 3B). However, stratifying genes into three

equally large groups with low, middle and high average expression

levels revealed that highly expressed genes showed lower buffering

coefficients compared to the two other groups (Fig 3C, median

buffering coefficient = �0.036 versus 0.284 and 0.202 with

P ¼ 3:6 � 10�7 and P ¼ 6:0 � 10�7 for low and middle levels,

respectively. Wilcoxon test, Materials and Methods, Supplementary

Fig S8 top). This result held when considering combinations of FDR

A B

C D

Figure 3. Local trans buffering is stronger for genes important for fitness and with low to middle levels of expression.

A Proportion of cis genes by gene category. Essential genes show a lower cis gene proportion than genomewide (horizontal line), whereas non-coding RNAs are
enriched for cis genes (P-value from two-sided Fisher’s test, error bars indicate 95% confidence intervals for binomial proportions).

B Quartiles (boxes) and 1.5 times the interquartile range of the buffering coefficient for cis genes grouped by gene category. No significant differences detectable.
P-values are computed with an one-sided Wilcoxon test with the alternative hypothesis that essential genes are more buffered than ncRNA, analogously for
non-essential.

C Analog to (B) but for cis genes grouped by expression level tercile. Highly expressed genes are less buffered than genes with low and middle expression levels.
P-values are computed with a two-sided Wilcoxon test.

D Same as (B) but for cis genes only at low and middle expression levels. At these levels of expression, buffering positively associates with fitness relevance category.
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and fold change cutoffs as above (Supplementary Fig S9). A plausi-

ble explanation for this observation is that buffering is less needed

for highly expressed genes because RNAs are produced in excess and

thus variation in their expression level has less phenotypic impact.

Consistent with this hypothesis, the buffering coefficient was found

to be positively associated with fitness relevance when restricted to

genes with low and middle levels of expression (Fig 3D, Supplemen-

tary Fig S8 bottom). These results provide clear evidence for two

regulatory strategies conferring robustness against regulatory vari-

ants: excess amount of RNA on the one hand, and buffering through

local trans regulation for low to middle levels of expression on the

other hand.

Local trans buffering is primarily due to negative feedback

Buffering by local trans regulation can be caused by the gene itself

(negative feedback) or by any other gene in linkage disequilibrium

with it. Although negative feedback provides a simpler explanation

for our data since the buffering is accomplished without the need

for compensatory mutations, both mechanisms could be at play. To

understand which of these two mechanisms is the major contributor

to buffering, we revisited data of a previous study in which protein

levels of 730 genes in diploid strains with one gene copy deleted

were compared to wild-type levels (Springer et al, 2010). In this

experiment, compensatory mutations had no time to occur since the

deletion was introduced artificially. Consequently, only the effect of

feedback was measured. Springer and colleagues’ screen was

technically limited to non-essential genes and to genes with high

levels of expression (63% in the highly expressed tercile, Fig 4A),

that is for two gene categories for which we detected lower amounts

of buffering than genomewide. Nonetheless, we found evidence

for buffering in this dataset (Fig 4B; median C = 0.055,

P ¼ 2:1 � 10�15 for Springer et al (2010), one-sided Wilcoxon-test).

Moreover, buffering in these data was comparable to the amount of

local trans buffering we observed for genes with matched properties

(Fig 4B, median C = 0.058, Materials and Methods and Supplemen-

tary Information). Hence, these deletion experiments indicate that

negative feedback is the primary mechanism for local trans buffer-

ing. A further feature distinguishing negative feedback from compen-

satory mutation is that negative feedback also confers robustness to

environmental variations. Consistently, the buffering coefficient of

the cis genes negatively associated with expression response to more

than 1,500 environmental perturbations (Tirosh et al, 2009) (median

buffering coefficient = 0.22 for the low versus 0.07 for the high

tercile of environmental response, P-value = 0.031, one-sided

Wilcoxon test, Fig 4C, Supplementary Fig S10). Altogether, these

results indicate that local trans buffering is primarily due to negative

feedback rather than due to compensatory mutations.

Discussion

We found that compensatory local trans-regulatory mechanisms

buffer typically 15% of RNA level log-ratios caused by naturally

occurring cis-regulatory variants in S. cerevisiae. Local trans mecha-

nisms involve the gene itself (feedback) or trans-acting variants in

its genetic vicinity. Analysis of expression data of heterozygous

deletions indicates that this buffering is primarily due to negative

A B C

Figure 4. Local trans buffering is primarily due to negative feedback.

A Proportion of expression levels in Springer et al (2010) dataset (gray) and from cis genes in this study (blue). Due to technical limitations, Springer and colleagues’
dataset is enriched for genes with high levels of expression. Error bars indicate 95% confidence intervals for binomial proportions.

B Quartiles (boxes) and 1.5 times the interquartile range (whiskers) of Springer and colleagues’ C coefficient (left), of the buffering coefficient estimated in this study for
cis genes with expression level distribution and gene category matching Springer and colleagues’ dataset (Materials and Methods, center), and of the buffering
coefficient estimated in this study for all cis genes (right). Springer and colleagues’ C mathematically corresponds to the here defined buffering coefficient under
simple assumptions (Supplementary Information). Significant buffering is found in Springer’s gene set (P = 2.1 × 10�15, one-sided Wilcoxon test). The significantly
lower amount of buffering (left, median = 0.055) compared to the genomewide amount of buffering reported here (right, median = 0.148) is explained by the bias for
non-essential and highly expressed genes in Springer and colleagues’ experimental setup (median = 0.058 for matched gene properties, center).

C Quartiles (boxes) and 1.5 times the interquartile range of the buffering coefficient for cis genes (y-axis) by tercile of median absolute value of gene expression
log2-ratio in response to more than 1,500 environmental changes (Tirosh et al, 2009; x-axis). Environmental expression data were available for coding genes only
(P-value one-sided Wilcoxon test).
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feedback regulation and not due to compensatory mutations. In

addition, we did not find evidence for translational buffering to be

common when reanalyzing ribosome profiling data of a cross

between two yeast species, even though translational buffering

occurs for specific instances. The intensity of buffering through local

trans regulation was lower for highly expressed genes, suggesting

that the sheer amount of transcripts available for these genes confer

robustness against cis-regulatory variants. In low to middle range of

expression, buffering was increasing across the three categories,

non-coding, non-essential coding, and essential coding genes, corre-

lating with presumed functional importance.

We dissected local regulation into its cis and trans components

using a novel experimental design in which ADE in a yeast hybrid

strain was compared against ADE in a pool of its spores. In contrast,

former dissection of local regulation was performed in two steps

(Ronald et al, 2005). First, polymorphisms in the vicinity of genes

that significantly associated with their expression across a popula-

tion of spores were identified (eQTL mapping). Second, the esti-

mated effect of these local eQTLs was compared to allelic

differential expression in a hybrid strain. The advantage of our

experimental design is first economic, because the spores are pooled

whereas eQTL mapping requires typically dozens of individual

spores to be transcription profiled. Second, our design suffers less

from confounders such as batch effects that can give false associa-

tions in eQTL mapping. Third, ADE in the hybrid is more compara-

ble to ADE in the pool of spores than to eQTL effects because in the

former case the same experimental protocol and the same analysis

are applied. One should note that amplification and sequencing

biases could favor one allele thereby leading to overestimated ADE.

However, the same bias applies similarly to the pool and to the

hybrid and thus does not affect our observation that ADE is lower in

the pool than in the hybrid. Our experimental design could be

applied to study other levels of gene regulation where local trans

mechanisms, and in particular regulatory feedback, could play a

significant role, including synthesis and decay of RNA, translation,

and protein levels (Khan et al, 2012).

Our findings have implications for the understanding of dosage

compensation, that is the buffering of expression level in case of

gene copy number variation. Unlike for sex chromosomes, the prev-

alence and the mechanisms for dosage compensation on autosomes

are poorly understood. Buffering in the 10–20% range was reported

for a set of seven autosomal single copy deletions in fruit fly

(Lundberg et al, 2012). In contrast, Springer et al (2010) reported a

general lack of dosage compensation in yeast. Our study shows that

these observations are more in agreement with each other than they

seem to be. We found that buffering against cis-acting regulatory

variants in yeast is typically of 15% genomewide, and that Springer

and colleagues’ heterozygous deletion screen was biased for genes

with little buffering (about 5%). Hence, the extent of buffering

appears to be conserved from yeast to fly. Moreover, we found that

buffering is primarily due to negative feedback which confers

robustness against single nucleotide polymorphisms and short

indels as well, as supported by the fact that we assessed genes with

more than 95% identity between the two parental strains. Together,

these results suggest that dosage compensation of autosomal genes

in higher eukaryotes might be explained to a large extent by negative

feedback, that is by a mechanism that generally buffers regulatory

variants rather than by a copy number surveillance pathway.

In 1942, Waddington hypothesized the existence of buffering

mechanisms against genetic variants that would explain the

remarkable stability of developmental processes among individuals

(Waddington, 1942; Flatt, 2005). It is still unclear to date, which

buffering mechanisms act across the stages of phenotypic expres-

sion, from DNA to RNA, protein and cellular phenotypes, and what

their respective contribution is. Robustness against coding varia-

tions can be explained by redundancy, such as diploidy, copy

number variation, and functional duplication (Hartwell et al, 1999;

Hartman et al, 2001). Our data show that already at the level of

RNA expression, buffering is widespread. We could estimate its

effect and identified negative feedback as the predominant mecha-

nism. Protein abundance of orthologous genes has been shown to

be more conserved than mRNA abundance across all domains of life

ranging from bacteria to fungi and primates (Schrimpf et al, 2009;

Laurent et al, 2010; Khan et al, 2013). Thus, further mechanisms

buffering regulatory variants downstream of RNA expression remain

to be identified (Dahan et al, 2011; Vogel, 2013). One possibility is

that negative feedback is also common for controlling protein levels.

Buffering plays an important role in evolution because it confers

robustness to mutations on the one hand and allows the accumula-

tion of cryptic genetic variants in the population that might give

selective advantage under new environmental conditions on the

other hand. In this context, a capacitor is a switch capable of releas-

ing previously cryptic heritable variation (Masel & Siegal, 2009).

Since feedback loops themselves can be impaired, through muta-

tions as in the case of ROX1 or environmental changes, we suggest

that negative feedback loops could function as capacitors.

Materials and Methods

Data availability

All raw sequencing files for DNA and RNA samples, processed DNA

coverage as well as raw read counts per transcript and sample

are available at gene expression omnibus (GEO id: GSE61553).

Supplementary Table S1 contains raw expression counts for filtered

genes, normalized counts, results of the statistical analysis and

further annotation used to produce the figures. Supplementary

Table S2 contains the raw read counts per transcript and sample

shared by Carlo Artieri and Hunter Fraser (personal communica-

tion). Supplementary Table S3 contains raw expression counts for

filtered genes, normalized counts, results of the statistical analysis

of the ribosomal data based on Supplementary Table S2 (Artieri &

Fraser, 2014).

Yeast strains

In this study we used the hybrid strains and the pools of spores used

for bulk segregant analysis from a recent QTL study by Wilkening

et al (2014). Strains were grown in YPD medium (1% yeast extract,

2% peptone and 2% glucose).

DNA sequencing

DNA sequencing data from Wilkening et al (2014) were used to

estimate allele frequencies for our hybrid and spore samples. Note
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that DNA fragmentation was done with a Bandelin and a Covaris

sonicator, except for spore pool B, where only a Covaris fragmenta-

tion was applied, which led to reduced coverage.

Transcriptome profiling

Total RNA was isolated by a standard hot phenol method followed

by DNase treatment using Turbo DNA-free kit (Ambion). Strand-

specific total RNA-Seq libraries were prepared as described in Wilk-

ening et al (2013) which is a modified protocol of Parkhomchuk

et al (2009). Briefly, 10 lg of total RNA was fragmented by incubat-

ing the samples at 80�C for 5 min in the presence of RNA fragmenta-

tion buffer (40 mM Tris-acetate, pH 8.1, 100 mM KOAc and 30 mM

MgOAc). The fragmented RNA was purified using 1.5× Ampure XP

Beads (Beckman Coulter Genomics). Eluted RNA was reverse tran-

scribed with 3 ll oligo dT18 with a VN anchor (1 lM, Invitrogen),

3 ll random hexamers (30 ng/ll, Invitrogen) and 2 ll 10 mM

dNTPs. The samples were incubated at 65�C for 5 min and

transferred to ice. Of 8 ll 5× First strand buffer (Invitrogen), 4 ll
DTT 0.1 M, 0.5 ll actinomycin D (1.25 mg/ml) and 0.5 ll RNasin
plus RNase inhibitor (Promega) were added to each sample and

the samples were then incubated at 25�C for 2 min. Following

this, 0.5 ll Superscript III reverse transcriptase (200 U/ll, Invitro-
gen) was added. The retrotranscription was carried out at 25�C for

10 min, and at 42�C for 50 min, and inactivated at 70�C for

15 min. After cleanup, the 2nd strand cDNA synthesis was done

with dUTPs instead of dTTPs. For ligation, 1 ll of forked paired

end multiplexed adaptors (40 lM) was used. The dUTPs of the

second strand were hydrolyzed by incubating the samples at 37�C
for 30 min with 5 units of UDG in UDG reaction buffer (NEB).

The samples were purified using 1× Ampure XP beads. After 10

cycles of PCR amplification and cleanup, samples were submitted

to the EMBL core facility for 100-bp paired end sequencing on a

HiSeq 2000 (Illumina).

We produced 186, 148, 204, and 188 million read pairs of

good quality (R bioconductor package ShortRead, quality score of

more than 30) for hybrid A, hybrid B, spore A, and spore B,

respectively.

Genotyping and allele frequencies

S96 is isogenic to S288c besides the mating type, and therefore, we

could use the reference genome of the S. cerevisiae database (Cherry

et al, 2012). We used the allele frequencies computed earlier by

(Cherry et al, 2012). The coverage of the spore pool B DNA sample

was lower than for the other three samples (see DNA sequencing

section); hence, we have allele frequencies for about 60,000 and

10,000 SNPs, respectively. To adjust the SNP coordinates, we lifted

them from S288c version R63 to R64. We smoothed the allele

frequencies over a window of 28,000 bp (� 10 centimorgan) using

local binomial likelihood estimation (R CRAN package locfit). We

observed a mapping bias toward the S288c genome (median S288c

allele frequency 0.52), most likely due to the better annotated refer-

ence genome. This artificial bias was used to correct the spore

frequency estimations. Those mapping-bias-corrected spore allele

frequencies were used to correct the read counts for the statistical

model. A similar mapping issue was not observed for the hybrid

RNA counts.

Gene annotation

To include also recent non-coding RNAs we used the gene annota-

tion of Xu et al (2009) for gene coordinates in the S96 strain (iso-

genic to S288c). The SK1 gene annotation was generated via

bidirectional best hits: Using the coordinates from Xu and collea-

gues, we extracted the S96 gene sequences from the S288c genome

version R64 of the Saccharomyces Genome Database (Cherry et al,

2012). These sequences were searched in the SK1 genome using

BLAST (Altschul et al, 1990) with default parameters. The best hit

of this first search became query of the second search in the S96

genome. If this second search resulted in the query of the first, we

considered the gene pair as ortholog candidates. Every pair with an

alignment identity of more than 95% was considered orthologous.

This includes also longer indels and does not restrict our analysis to

single nucleotide variants.

Additionally, expression levels for each gene are defined as the

average read counts divided by the mean gene length over both

strains. These levels were sorted and categorized into three equally

sized groups: Low, Middle and High using cut2 (R package Hmisc).

Transcription factor annotation was taken from MacIsaac et al

(2006).

Mapping and read counts

RNA-seq reads were mapped to the genomes of S96 and SK1 jointly.

GSNAP (Wu & Nacu, 2010) was used allowing for four mismatches

with novel splice site detection enabled, apart from that we used

default parameters. We classified mapped read pairs into three cate-

gories: common, only SK1, and only S96. Common reads matched

equally well to both genomes and therefore are not apt to measure

ADE. Only the strain-specific and proper-paired alignments can led

to ADE and were filtered by their SAM flags (i.e. 83/163 and 99/

147) for our statistical model. Additionally, if one read had one

proper pair and one mate aligned to the same chromosome on the

other allele, it was considered as specific, too. All other reads were

discarded together with the common reads.

The filtered alignments were processed with htseq-count (Anders

et al, 2014) using intersection-strict as overlap mode to generate

read counts per gene. Strict means that a read or read pair has to

align completely inside the annotated gene region to be counted. As

gene annotation we used our expressed orthologs with start and end

extended by 50 bp to increase sensitivity.

Statistical modeling

The raw counts of reads (integer values) per annotated gene are

prone to systematic biases that need to be corrected. During the

growth of the spores artificial (one mating type) and natural selec-

tion takes place (Ehrenreich et al, 2010; Parts et al, 2011). To deal

with this bias, we used the genomic allele frequencies of the spores

for correction (Supplementary Fig S2, see genotyping and allele

frequencies section). Additionally, we corrected for length differ-

ences between the strains genewise as well as the standard sample

size factors by DESeq2 (Anders & Huber, 2010). Furthermore, we

modeled additional confounding factors for diploid cells, and the

biological replicate of each hybrid and spore pool (design matrix,

Table 1). Hence, allele-specific read counts Ki;j were modeled
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according to the following generalized linear model:

Ki;j � NBðli;j; aiÞ (1)

li;j ¼ sj � fi;j � qi;j � li;j (2)

log2ðqi;jÞ ¼ b0i þ bcisi xcis
i;j þ blocaltransi xlocaltrans

i;j þ bnuis
T

i xnuis
i;j (3)

where NB is the negative binomial distribution, ai is a gene-specific

dispersion parameter; sj is the size factor of sample j; fi;j is the

allele frequency of gene i in sample j; li;j is the length of the allele

for gene i in sample j. The value of fi;j is 0.5 in the hybrid sample

and is robustly estimated from genomic DNA sequencing in the

pool. xcis
i;j is 1 for allele K and 0 otherwise. xlocaltrans

i;j is 1 in the pool

for allele K and 0 otherwise. xnuis
i;j represents all nuisance parame-

ters to control for: diploid, hybrid B, pool B (Table 1). The model

was implemented with the R/Bioconductor package DESeq2

(Anders & Huber, 2010), which provides robust estimation of the

size factors and of the dispersion parameters.

After the correction and fitting process we removed genes

from further analysis that had less than ten reads average count

over all samples, in order to increase our detection power at the

same type I error (Supplementary Fig S3 top row; Anders &

Huber, 2010; Bourgon et al, 2010). This minimal expression

filtering resulted in 6,691 genes. Accordingly, we corrected the

P-values for multiple testing using false discovery rate (Benjamini

& Hochberg, 1995). Supplementary Table S1 provides normalized

counts together with fitted coefficients and further gene annota-

tion.

Analysis of ribosome profiling data

We re-analyzed read count data kindly provided by Carlo Artieri

and Hunter Fraser (personal communication, Supplementary Table

S2), adopting our model to the hybrid data from RNA-seq and ribo-

somal profiling. The ribosome-bound fraction was assumed to be

the product of the expression level and the binding affinity to RNA,

a proxy for translation efficiency (Ingolia et al, 2009). Accordingly,

allele-specific read counts Ki;j were modeled according to the follow-

ing generalized linear model:

Ki;j �NBðli;j; aiÞ (4)

li;j ¼ sj � qi;j (5)

log2ðqi;jÞ ¼ b0i þ bcisRNAi xcisRNA
i;j þ bcisTEi xcisTE

i;j þ bnuis
T

i xnuis
i;j (6)

where NB is the negative binomial distribution, ai is a gene-specific

dispersion parameter; sj is the size factor of sample j; xcisRNA
i;j is 1

for the S. paradoxus allele and 0 otherwise. xcisTE
i;j is 1 in the ribo-

some-bound fraction for the S. paradoxus allele and 0 otherwise.

xnuis
i;j represents nuisance parameters that were controlled for:

baseline translation efficiency and overall replicate effect (Table 2).

The model was implemented with the R/Bioconductor package

DESeq2 (Anders & Huber, 2010). Supplementary Table S3 provides

normalized counts together with fitted coefficients and further gene

annotation.

Buffering coefficient

Definition

To quantitatively estimate how much cis effects are buffered by

local trans effects, we defined the buffering coefficient C as:

C ¼ 1� logðyspore;SK1=yspore;S96Þ
logðyhybrid;SK1=yhybrid;S96Þ (7)

where y denotes the RNA expression level.

In order to estimate buffering at the transcriptional level, we also

defined buffering coefficient when comparing ribosome profiling

data (RP) and RNA levels in the S. par. × S. cer. cross.

Ctranslation ¼ 1� logðyRP;S:par:=yRP;S:cer:Þ
logðyRNA;S:par:=yRNA;S:cer:Þ (8)

Table 1. DESeq design matrix. A cell denotes whether we can observe an effect of the modeled factor (column) in the specified sample (row).
Samples split by strain and biological replicate.

Sample/Factor Cis Local trans Diploid Hybrid B Spore B

Hybrid A only SK1 1 1 1 0 0

Hybrid A only S96 0 1 1 0 0

Hybrid B only SK1 1 1 1 1 0

Hybrid B only S96 0 1 1 1 0

Spore A only SK1 1 1 0 0 0

Spore A only S96 0 0 0 0 0

Spore B only SK1 1 1 0 0 1

Spore B only S96 0 0 0 0 1

Table 2. DESeq design matrix for ribosome profiling data. Value of
covariates by sample for the Equation 4.

Sample RNA cis TE cis RNA bias Hybrid rep2

Hybrid RNA 1 SCER 1 0 1 0

Hybrid RNA 2 SCER 1 0 1 1

Hybrid RNA 1 SPAR 0 0 1 0

Hybrid RNA 2 SPAR 0 0 1 1

Hybrid RIBO 1 SCER 1 1 0 0

Hybrid RIBO 2 SCER 1 1 0 1

Hybrid RIBO 1 SPAR 0 0 0 0

Hybrid RIBO 2 SPAR 0 0 0 1
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where yRNA denotes the RNA expression level, and yRP the ribo-

some occupancy.

Note that both for the local trans regulation case and for the

translation efficiency case, C is ill-defined for hybrid RNA ratios

close to zero. This is equivalent to say that buffering can only be

assessed if there is a cis effect in the first place. We therefore

restricted the analysis of buffering for genes with significant and

sufficiently large cis effects.

Calibration

We defined as raw buffering coefficient the quantity:

Craw ¼ 1� logð#readsspore;SK1=#readsspore;S96Þ
logð#readshybrid;SK1=#readshybrid;S96Þ (9)

Craw is a biased estimator of the buffering coefficient C defined

by Equation 7. We empirically derived an unbiased estimator of C

by inferring the relationship between Craw and C from simulations

for all values of C in [0.0.5] with a 0.005 spacing. For each simu-

lated value of C, read counts for every gene i were simulated by

random draws according to Equations 1–3, keeping all the

parameters fixed to their estimated values on the primary dataset,

except for substituting blocaltransi with �Cbcisi . On these simulated

genomewide read counts, the exact same analysis as for the

primary dataset was performed (i.e., including filter for minimum

read counts, DESeq2 normalization and fits, and filter for large

and significant cis effects) and the median Craw across cis genes

was computed. To obtain an unbiased estimator of translational

buffering for the ribosome dataset, the same procedure was

applied substituting bcisTE with �CbcisRNA. For both datasets, we

observed a linear relationship between the simulated true C and

the median Craw (Supplementary Fig S12A and B, Pearson correla-

tion > 0.99) and used the linear regression fit as calibration func-

tion. This linear transformation of Craw was then used for all

further analysis as buffering coefficient C.

Significance

To assess the significance of the median buffering coefficient,

data were simulated under the null hypothesis of independence

between cis effects and local trans effects in a semi-parametric

fashion. A total of B = 1,000 bootstrap genomewide datasets were

generated by permuting the estimated local trans effects blocaltransi

between genes while keeping all remaining parameters fixed to

their estimated values on the primary dataset and drawing counts

according to Equations 1–3. On these simulated genomewide read

counts, the exact same analysis as for the primary dataset was

performed (i.e., including filter for minimum read counts, DESeq2

normalization and fits, and filter for large and significant cis

effects) and the median buffering coefficient across cis genes was

computed.

One-sided P-value was then estimated by (Davison & Hinkley,

1997):

P ¼ 1þ# f �C�
i � �Cg

Bþ 1

where �C is the median buffering coefficient in the observed dataset

and �C�
i ; i ¼ 1. . .B are the bootstrap values of the median buffering

coefficient (Supplementary Fig S12C). The same procedure was

applied to the ribosome dataset whereby the estimated translation

efficiency estimates bcisTEi were permuted across genes (Supplemen-

tary Fig S12D).

Comparison with Springer’s C

Comparison with Springer et al (2010) data was done for the same

growth medium as the one used in this study (rich growth medium

YPD). Distribution of our buffering coefficient under matching distri-

bution of gene category and expression levels (Fig 4A, central box)

was obtained by (i) restricting to non-essential genes and (ii)

randomly samplinzg 1,000 times with replacement the same

number of genes in each tercile of expression as in Springer and

colleagues’ database.

Supplementary information for this article is available online:

http://msb.embopress.org

Acknowledgements
DMB is supported by a DFG Fellowship through the Graduate School of Quan-

titative Biosciences Munich (QBM) and JG by the Bavarian Research Center for

Molecular Biosystems. We are very thankful to Hunter Fraser and Carlo Artieri

for fruitful discussions as well as exchange of code and sharing the raw read

counts. We thank Christophe Chabbert for sharing the best reciprocal align-

ments of the yeast transcriptome between the S288c and SK1 strains and Itay

Tirosh for the compendium of environmental expression response data. We

thank Peter Becker for useful discussion and references on dosage compensa-

tion in fly.

Author contributions
JG conceived and designed the experiments. SW, MT, and KD performed the

experiments. DMB, LG, and JG analyzed the data. DMB, JG, and LMS wrote the

paper.

Conflict of interest
The authors declare that they have no conflict of interest.

References

Albert FW, Muzzey D, Weissman JS, Kruglyak L (2014) Genetic influences on

translation in yeast. PLoS Genet 10: e1004692

Altschul S, Gish W, Miller W (1990) Basic local alignment search tool. J Mol

Biol 251: 403 –410

Anders S, Huber W (2010) Differential expression analysis for sequence count

data. Genome Biol 11: R106

Anders S, Pyl PT, Huber W (2014) HTSeq - A Python framework to work with

high-throughput sequencing data. Bioinformatics (Oxford England) 31:

166 – 169

Artieri CCG, Fraser HBH (2014) Evolution at two levels of gene expression in

yeast. Genome Res 24: 411 –421

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP,

Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis

A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G

(2009) Gene ontology: tool for the unification of biology. The Gene

Ontology Consortium. Nat Genet 25: 25 – 29

Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a

practical and powerful approach to multiple testing. J R Stat Soc Series B

Stat Methodol 57: 289 – 300

Molecular Systems Biology 11: 785 | 2015 ª 2015 The Authors

Molecular Systems Biology Negative feedback buffers regulatory variants Daniel M Bader et al

10



Bourgon R, Gentleman R, Huber W (2010) Independent filtering increases

detection power for high-throughput experiments. Proc Natl Acad Sci USA

107: 9546 – 9551

Bullard JH, Mostovoy Y, Dudoit S, Brem RB (2010) Polygenic and directional

regulatory evolution across pathways in Saccharomyces. Proc Natl Acad Sci

USA 107: 5058 – 5063

Cherry JM, Hong EL, Amundsen C, Balakrishnan R, Binkley G, Chan ET,

Christie KR, Costanzo MC, Dwight SS, Engel SR, Fisk DG, Hirschman JE,

Hitz BC, Karra K, Krieger CJ, Miyasato SR, Nash RS, Park J, Skrzypek MS,

Simison M, et al (2012) Saccharomyces Genome Database: the

genomics resource of budding yeast. Nucleic Acids Res 40:

D700 –D705

Cowles CR, Hirschhorn JN, Altshuler D, Lander ES (2002) Detection of

regulatory variation in mouse genes. Nat Genet 32: 432 – 437

Dahan O, Gingold H, Pilpel Y (2011) Regulatory mechanisms and networks

couple the different phases of gene expression. Trends Genet 27:

316 – 322

Davison AC, Hinkley DV (1997) Bootstrap methods and their application.

Engineering 42: 216

Denby CM, IM JH, Yu RC, Pesce CG, Brem RB (2012) Negative feedback

confers mutational robustness in yeast transcription factor regulation.

Proc Natl Acad Sci USA 109: 3874 – 3878

Ehrenreich IM, Torabi N, Jia Y, Kent J, Martis S, Shapiro JA, Gresham D, Caudy

AA, Kruglyak L (2010) Dissection of genetically complex traits with

extremely large pools of yeast segregants. Nature 464: 1039 – 1042

Emerson JJ, Hsieh LC, Sung HM, Wang TY, Huang CJ, Lu HHS, Lu MYJ, Wu SH,

Li WH (2010) Natural selection on cis and trans regulation in yeasts.

Genome Res 20: 826 – 836

Flatt T (2005) The evolutionary genetics of canalization. Q Rev Biol 80:

287 – 316

Gibson G (2009) Decanalization and the origin of complex disease. Nat Rev

Genet 10: 134 – 140

Goncalves A, Leigh-Brown S, Thybert D, Stefflova K, Turro E, Flicek P, Brazma

A, Odom DT, Marioni JC (2012) Extensive compensatory cis-trans

regulation in the evolution of mouse gene expression. Genome Res 22:

2376 – 2384

Hartman JL, Garvik B, Hartwell L (2001) Principles for the buffering of genetic

variation. Science (New York NY) 291: 1001 – 1004

Hartwell LH, Hopfield JJ, Leibler S, Murray AW (1999) From molecular to

modular cell biology. Nature 402: C47 –C52

Ingolia NT, Ghaemmaghami S, Newman JRS, Weissman JS (2009)

Genomewide analysis in vivo of translation with nucleotide

resolution using ribosome profiling. Science (New York NY) 324:

218 – 223

Kane S, Roth R (1974) Carbohydrate metabolism during ascospore

development in yeast. J Bacteriol 118: 8 – 14

Khan Z, Bloom JS, Amini S, Singh M, Perlman DH, Caudy AA, Kruglyak L (2012)

Quantitative measurement of allele-specific protein expression in a diploid

yeast hybrid by LC-MS. Mol Syst Biol 8: 602

Khan Z, Ford M, Cusanovich D (2013) Primate transcript and protein

expression levels evolve under compensatory selection pressures. Science

342: 1100 – 1104

King M, Wilson A (1975) Evolution at two levels in humans and chimpanzees.

Science 188: 107 – 116

Laurent JM, Vogel C, Kwon T, Craig SA, Boutz DR, Huse HK, Nozue K, Walia H,

Whiteley M, Ronald PC, Marcotte EM (2010) Protein abundances are more

conserved than mRNA abundances across diverse taxa. Proteomics 10:

4209 – 4212

Lundberg LE, Figueiredo MLA, Stenberg P, Larsson J (2012) Buffering and

proteolysis are induced by segmental monosomy in Drosophila

melanogaster. Nucleic Acids Res 40: 5926 – 5937

MacIsaac KD, Wang T, Gordon DB, Gifford DK, Stormo GD, Fraenkel E (2006)

An improved map of conserved regulatory sites for Saccharomyces

cerevisiae. BMC Bioinformatics 7: 113

Manolio TA (2010) Genomewide association studies and assessment of risk of

disease. N Engl J Med 363: 2076 – 2077

Masel J, Siegal ML (2009) Robustness: mechanisms and consequences. Trends

Genet 25: 395 – 403

McManus CJ, Coolon JD, Duff MO, Eipper-Mains J, Graveley BR, Wittkopp PJ

(2010) Regulatory divergence in Drosophila revealed by mRNA-seq.

Genome Res 20: 816 – 825

McManus CJ, May GE, Spealman P, Shteyman A, McManus J (2014) Ribosome

profiling reveals post-transcriptional buffering of divergent gene

expression in yeast. Genome Res 24: 422 – 430

Mortimer RK, Johnston JR (1986) Genealogy of principal strains of the yeast

genetic stock center. Genetics 113: 35 – 43

Muzzey D, Sherlock G, Weissman JS (2014) Extensive and coordinated control

of allele-specific expression by both transcription and translation in

Candida albicans. Genome Res 24: 963 – 973

Nishant KT, Wei W, Mancera E, Argueso JL, Schlattl A, Delhomme N, Ma X,

Bustamante CD, Korbel JO, Gu Z, Steinmetz LM, Alani E (2010) The

baker’s yeast diploid genome is remarkably stable in vegetative growth

and meiosis. PLoS Genet 6: e1001109

Parkhomchuk D, Borodina T, Amstislavskiy V, Banaru M, Hallen L, Krobitsch

S, Lehrach H, Soldatov A (2009) Transcriptome analysis by strand-

specific sequencing of complementary DNA. Nucleic Acids Res

37: e123

Parts L, Cubillos FA, Warringer J, Jain K, Salinas F, Bumpstead SJ, Molin M, Zia A,

Simpson JT, Quail MA, Moses A, Louis EJ, Durbin R, Liti G (2011) Revealing

the genetic structure of a trait by sequencing a population under selection.

Genome Res 21: 1131 – 1138

Rockman MV, Kruglyak L (2006) Genetics of global gene expression. Nat Rev

Genet 7: 862 – 872

Ronald J, Brem RB, Whittle J, Kruglyak L (2005) Local regulatory variation in

Saccharomyces cerevisiae. PLoS Genet 1: e25

Schrimpf SP, Weiss M, Reiter L, Ahrens CH, Jovanovic M, Malmström J, Brunner E,

Mohanty S, Lercher MJ, Hunziker PE, Aebersold R, von Mering C, Hengartner

MO (2009) Comparative functional analysis of the Caenorhabditis elegans and

Drosophila melanogaster proteomes. PLoS Biol 7: e48

Springer M, Weissman JS, Kirschner MW (2010) A general lack of

compensation for gene dosage in yeast. Mol Syst Biol 6: 368

Suvorov A, Nolte V, Pandey RV, Franssen SU, Futschik A, Schlötterer C (2013)

Intra-specific regulatory variation in Drosophila pseudoobscura. PloS One 8:

e83547

Tirosh I, Reikhav S, Levy AA, Barkai N (2009) A yeast hybrid provides insight

into the evolution of gene expression regulation. Science (New York NY)

324: 659 – 662

Vogel C (2013) Protein expression under pressure. Science 342: 1052 – 1053

Waddington C (1942) Canalization of development and the inheritance of

acquired characters. Nature 150: 563 – 565

Wang Y, Shirogane T, Liu D, Harper JW, Elledge SJ (2003) Exit from exit:

resetting the cell cycle through Amn1 inhibition of G protein signaling.

Cell 112: 697 – 709

Wilkening S, Pelechano V, Järvelin AI, Tekkedil MM, Anders S, Benes V,

Steinmetz LM (2013) An efficient method for genomewide polyadenylation

site mapping and RNA quantification. Nucleic Acids Res 41, e65

ª 2015 The Authors Molecular Systems Biology 11: 785 | 2015

Daniel M Bader et al Negative feedback buffers regulatory variants Molecular Systems Biology

11



Wilkening S, Lin G, Fritsch ES, Tekkedil MM, Anders S, Kuehn R, Nguyen

M, Aiyar RS, Proctor M, Sakhanenko NA, Galas DJ, Gagneur J,

Deutschbauer A, Steinmetz LM (2014) An evaluation of high-throughput

approaches to QTL mapping in Saccharomyces cerevisiae. Genetics 196:

853 – 865

Wu TD, Nacu S (2010) Fast and SNP-tolerant detection of complex

variants and splicing in short reads. Bioinformatics (Oxford England) 26:

873 – 881

Wykoff DD, Rizvi AH, Raser JM, Margolin B, O’Shea EK (2007) Positive

feedback regulates switching of phosphate transporters in S. cerevisiae.

Mol Cell 27: 1005 – 1013

Xu Z, Wei W, Gagneur J, Perocchi F, Clauder-Münster S, Camblong J,

Guffanti E, Stutz F, Huber W, Steinmetz LM (2009) Bidirectional

promoters generate pervasive transcription in yeast. Nature 457:

1033 – 1037

Yan H, YuanW, Velculescu VE, Vogelstein B, Kinzler KW (2002) Allelic variation

in human gene expression. Science (New York NY) 297: 1143

Yvert G, Brem R, Whittle J, Akey J (2003) Trans-acting regulatory variation in

Saccharomyces cerevisiae and the role of transcription factors. Nat Genet

35: 57 – 64

License: This is an open access article under the

terms of the Creative Commons Attribution 4.0

License, which permits use, distribution and reproduc-

tion in any medium, provided the original work is

properly cited.

Molecular Systems Biology 11: 785 | 2015 ª 2015 The Authors

Molecular Systems Biology Negative feedback buffers regulatory variants Daniel M Bader et al

12


