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Abstract
A virus’mutational robustness is described in terms of the strength and distribution of the

mutational fitness effects, or MFE. The distribution of MFE is central to many questions in

evolutionary theory and is a key parameter in models of molecular evolution. Here we define

the mutational fitness effects in influenza A virus by generating 128 viruses, each with a sin-

gle nucleotide mutation. In contrast to mutational scanning approaches, this strategy

allowed us to unambiguously assign fitness values to individual mutations. The presence of

each desired mutation and the absence of additional mutations were verified by next gener-

ation sequencing of each stock. A mutation was considered lethal only after we failed to res-

cue virus in three independent transfections. We measured the fitness of each viable

mutant relative to the wild type by quantitative RT-PCR following direct competition on A549

cells. We found that 31.6% of the mutations in the genome-wide dataset were lethal and

that the lethal fraction did not differ appreciably between the HA- and NA-encoding seg-

ments and the rest of the genome. Of the viable mutants, the fitness mean and standard

deviation were 0.80 and 0.22 in the genome-wide dataset and best modeled as a beta distri-

bution. The fitness impact of mutation was marginally lower in the segments coding for HA

and NA (0.88 ± 0.16) than in the other 6 segments (0.78 ± 0.24), and their respective beta

distributions had slightly different shape parameters. The results for influenza A virus are

remarkably similar to our own analysis of CirSeq-derived fitness values from poliovirus and

previously published data from other small, single stranded DNA and RNA viruses. These

data suggest that genome size, and not nucleic acid type or mode of replication, is the main

determinant of viral mutational fitness effects.

Author Summary

Like other RNA viruses, influenza virus has a very high mutation rate. While high muta-
tion rates may increase the rate at which influenza virus will adapt to a new host, acquire a
new route of transmission, or escape from host immune surveillance, data from model
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systems suggest that most new viral mutations are either lethal or highly detrimental.
Mutational robustness refers to the ability of a virus to tolerate, or buffer, these mutations.
The mutational robustness of a virus will determine which mutations are maintained in a
population and may have a greater impact on viral evolution than mutation rate. We
defined the mutational robustness of influenza A virus by measuring the fitness of a large
number of viruses, each with a single point mutation. We found that the overall robustness
of influenza was similar to that of poliovirus and other viruses of similar size. Interestingly,
mutations appeared to be more easily accommodated in hemagglutinin and neuramini-
dase than elsewhere in the genome. This work will inform models of influenza evolution at
the global and molecular scale.

Introduction
The predictable burden of seasonal influenza and the unpredictability of the next pandemic are
attributable in large part to the rapid evolution of influenza virus [1–4]. Like other RNA
viruses, influenza viruses replicate with extremely low fidelity, with a mutation rate of roughly
2 x 10−5 substitutions per nucleotide copied per cellular infection [5–7]. Influenza viruses also
undergo reassortment of their genomic segments, a combinatorial exchange of genetic material
analogous to recombination in other RNA viruses [8,9]. Together, low replicative fidelity and
frequent reassortment allow influenza virus populations to generate significant diversity. This
capacity may allow influenza viruses to maintain, or to quickly generate, the requisite muta-
tions that mediate cross species transmission, escape from neutralizing antibody, or drug resis-
tance [10].

The focus on mutation as a driving force in viral evolution has tended to downplay the tre-
mendous fitness cost of mutation [11,12]. Here, we define viral fitness as the capacity of an
individual, or population, to generate infectious progeny. Most mutations have deleterious
effects on fitness, which suggests that mutational tolerance may play a significant role in deter-
mining the genetic diversity that can be maintained within a population [13]. Mutational
robustness refers to phenotypic stability in the face of mutation [14–16]. High mutation rates
select for increased mutational robustness [17], and a more robust population can increase its
genetic diversity without a dramatic alteration in mean fitness. A virus’ intrinsic robustness
may influence its fitness in vitro and virulence in vivo [18].

The impact of individual mutations on viral fitness is the mutational fitness effect (MFE). A
virus’mutational robustness is described in terms of the strength and distribution of the MFE
[19]. Together with mutation rate, the MFE governs many aspects of evolution including: the
relative importance of selection vs. genetic drift, the efficiency of selection and adaptation, the
impact of recombination (or reassortment), and the role of epistasis in fixing new and benefi-
cial mutations. It is therefore essential for accurate models of molecular evolution [20,21]. A
virus’ sensitivity to mutation may also determine the effectiveness of lethal mutagenesis [22–
24].

Early studies of mutational fitness effects relied on mutation accumulation (MA) experi-
ments, where the imposition of extreme bottlenecks propagates and fixes newly generated
mutations by drift as opposed to selection [25–29]. An alternative approach commonly used in
RNA viruses is to accelerate mutation accumulation by passaging virus in the presence of
mutagenic drugs [30–32]. While both methods provide valuable information about the average
fitness impact of random mutation, uncertainty about the number of mutations per clone and
the fitness effect of each individual mutation makes it difficult to accurately model a
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distribution. These issues also complicate more recent, high throughput methods based on
next generation sequencing [33–35]. Furthermore, none of these approaches provide accurate
estimates of the fraction of mutations that are lethal to the virus.

A less exhaustive, but more controlled assay for MFE is to measure the fitness of a set of
viral clones, each with a randomly selected single nucleotide substitution. This approach unam-
biguously assigns fitness values, or selection coefficients, to individual mutations. It is also
highly quantitative and allows for estimation of the lethal fraction. The first such study, of
vesicular stomatitis virus (VSV), found that over 90% of random single nucleotide mutations
reduce replicative fitness and 40% are lethal in this negative sense RNA virus [13]. Subsequent
work by Sanjuan, Elena, and colleagues found somewhat similar distributions of MFE in f1
(ssDNA phage), phiX 174 (ssDNA phage), QB (+ssRNA phage), and tobacco etch virus
(+ssRNA virus) [19,36–40]. Together these data suggest that despite their differences in
genome organization and replication strategy, ssRNA and ssDNA viruses are equally sensitive
to mutation.

Despite their importance to pathogen evolution, all available genome-wide studies of viral
MFE have been performed in evolutionary model systems. Here we characterize the distribu-
tion of MFE in influenza A virus, a segmented negative sense RNA virus whose evolutionary
dynamics are important to global health. We used site directed mutagenesis to generate a
library of plasmids encoding 128 influenza A viruses, each with a single point mutation in the
A/WSN33/H1N1 genetic background. The large number of mutants allowed us to define the
MFE across the genome and to compare the lethal fraction and MFE between segments coding
for the surface proteins to those coding for the internal proteins. We find that the MFE of influ-
enza A are remarkably similar to those of other viruses with varying genome structure. While
similar proportions of mutations in the surface proteins and internal proteins were lethal, the
average impact of mutation appeared to be less deleterious in HA and NA. Our results suggest
that the size and compactness of a virus’ genome, and not necessarily the genomic nucleic acid
or mode of replication, are major determinants of its intrinsic mutational robustness.

Results
Our primary goal was to determine the distribution of mutational fitness effects across the
influenza A genome. We generated all single nucleotide mutations in the commonly used labo-
ratory strain, A/WSN/33/H1N1, hereafter referred to as WSN33 or wild type (WT) [41]. In
WSN33, the 8 genomic segments range in size from 0.9 to 2.3 kb. We planned to make 149
mutants and grouped them into two libraries–“genome-wide” and “comparison”–of pre-speci-
fied size and composition. Of the 149 total mutations we attempted (S1 Table), we successfully
generated 128 (86%). For our “genome-wide” library, we reasoned that in order to achieve an
unbiased distribution of mutations throughout the genome, our library should contain a num-
ber of mutations on each segment that is proportional to the size of each segment—PB2 17.2%,
PB1 17.2%, PA 16.4%, HA 13.1%, NP 11.5%, NA 10.4%, M 7.5%, NS 6.5%, of the total genome
respectively. We used a custom R script to choose randomly the nucleotide position and substi-
tution type in accordance with this distribution. For our unbiased genome-wide analysis
(n = 95), we generated 14 (14.7%) PB2, 16 (16.8%) PB1, 16 (16.8%) PA, 14 (14.7%) HA, 12
(12.6%) NP, 10 (10.5%) NA, 8 (8.4%) M and 5 (5.3%) NS mutations. Though we failed to gen-
erate 14% of attempted mutations, this did not significantly alter the distribution of the muta-
tions across the eight segments (S1A Fig).

Viral surface proteins that are targeted by the immune system often exhibit greater sequence
diversity than internal structural and enzymatic proteins. In many cases, the relationship of
this diversity to the intrinsic mutational robustness of the genes encoding these surface
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proteins is unknown. Therefore, a secondary goal of our study was to compare the distribution
of mutational fitness effects for the HA- and NA-encoding segments to the other 6 segments,
which code for internal proteins. We improved our power to detect a difference by generating
an additional 18 HA and 15 NA mutations. In this aggregate “comparison” library (n = 128),
45% (n = 57) of our library is contained on segments coding for HA and NA and 55% (n = 71)
on the other 6 segments. (S1B Fig). The entire data set includes 38 transition mutations and 90
transversion mutations, which is in the range of what one would expect by chance (Fisher test,
p = 0.75).

Identification of lethal mutations
Previous work indicates that a substantial, but varying proportion, of mutations in RNA viruses
are lethal. Accurate assessment of this lethal fraction is an essential, and non-trivial, task. In a
reverse genetic approach, the efficiency of transfection and viral recovery are key parameters,
since a failed transfection and a lethal mutation will both give supernatants with undetectable
titers. We used two approaches to address this problem. In the first, we estimated the transfec-
tion failure rate and calculated the probability of miscalling a viable mutant as lethal. Over the
course of this study, we transfected the WT virus 19 individual times, and never failed to
recover virus in our P0 supernatants. As in [13], we quantified the expected probability of a
transfection failure as if we had observed a single WT transfection failure. This conservative
approach gave a per transfection failure rate of< 5.26%. Because we attempted three indepen-
dent transfections for each candidate lethal, the likelihood of repeated transfection failure is
0.05263, or 1.46 x10-4. In a set of 128 viruses, we would expect to falsely identify fewer than one
(128 � 1.46 x 10−4 = 0.019) virus as lethal. This probabilistic model assumes equal transfection
efficiency for WT and mutant viruses. We also tested one of our mutants, PB2_14 (PB2
C532A), which had moderately reduced fitness (0.81, see below). Here too, we successfully
recovered virus in 19 individual transfections.

We also observed several cases of mutants with undetectable titers at P0 and a moderate P1
titer after blind passage of the supernatant from transfected cells. We characterized these P1
stocks by next generation sequencing, and in all cases, found either reversion of the introduced
mutation or contamination of the culture by other viruses that were transfected or passaged on
the same day. We therefore considered a mutation to be lethal if we had undetectable virus in
three independent transfections or if we were unable to recover the mutation in a P1 stock after
blind passage of the P0 stock. Using these criteria, there were 30 lethal mutations (31.6%) in
the genome-wide dataset and 38 lethal mutations in the combined dataset (29.7%, Table 1).
The lethal fraction did not differ appreciably between either the HA/NA encoding segments
and the rest of the genome (16/57 vs. 22/71; Fisher exact test, p = 0.85) or the HA encoding seg-
ment and the rest of the genome (7/32 vs. 31/96; Fisher exact test, p = 0.37). We had 62% to
detect a two fold difference in the lethal fraction for HA/NA and 52% power to detect a two
fold difference in the lethal fraction for HA. No synonymous mutations were lethal, but 2 non-
coding mutations and a stop codon loss were lethal.

Clonality of viable mutants
As in other studies of viral mutational fitness effects, we measured the fitness of P1 viral stocks
rather than the initial transfection supernatant. Given the error prone replication of RNA
viruses, we considered it possible that second-site mutations might accumulate in the short
time between transfection and completion of the first passage. This might be exaggerated in the
less fit viruses, since there would be strong positive selection of a compensatory mutation. If a
compensatory mutation swept through the population, it would confound assignment of a
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fitness value to the initial mutation. Therefore, we sequenced the entire genome of the P1
stocks for 78 of our mutants on the Illumina platform to identify any second site mutations
and their frequency. In all but 3 cases, the desired mutation was present at>94%, and was
present at>99% in nearly all. Very few additional mutations were identified at>2% (Table 2,
S2 Table). We relied on Sanger sequencing alone to confirm the desired mutation in replicate
stocks of the remaining 13 viable viruses. We conclude that these stocks are essentially clonal
and that the fitness of these populations will reflect the impact of each individual mutation.

Table 1. Lethal mutations.

Segment Mutation Amino Acid Dataset Clone ID

1 (PB2) C839A T271K Genomewide PB2-10

U1559G V511G Genomewide PB2-2

U2305C Stop reversion Genomewide PB2-1

2 (PB1) U675A Y217stop Genomewide PB1-3

A728U K235M Genomewide PB1-15

C1123U Q367stop Genomewide PB1-14

U1232G L403W Genomewide PB1-9

U1268G L415stop Genomewide PB1-16

G1581U E519D Genomewide PB1-7

3 (PA) A263U E80V Genomewide PA-12

G529C A169P Genomewide PA-11

C1324A P434T Genomewide PA-14

G1634C W537S Genomewide PA-5

C1682A A553D Genomewide PA-4

4 (HA) U55G L8R Genomewide HA-11

U799G I256R Genomewide HA-12

U915C C295R HA/NA HA-25

C1137A H369N HA/NA HA-32

A1143U N371Y Genomewide HA-5

G1153A G374E Genomewide HA-16

A1345C N438T HA/NA HA-24

5 (NP) A151U I36F Genomewide NP-6

U521C M159T Genomewide NP-2

C1194A S383R Genomewide NP-4

A1505G Y487C Genomewide NP-10

6 (NA) U334G F105L HA/NA NA-24

G422A D135N HA/NA NA-13

A449C S144R HA/NA NA-25

U668A C217S HA/NA NA-31

U693C I225T Genomewide NA-8

G968U G317C Genomewide NA-6

G1313U V432L Genomewide NA-7

U1340G W441G Genomewide NA-2

U1400C Non-Coding HA/NA NA-28

7 (M) U506C M1 S161P Genomewide M-8

G551A M1 E176K Genomewide M-6

G936U M2 E75stop Genomewide M-3

A1009G Non-Coding Genomewide M-5

doi:10.1371/journal.ppat.1005856.t001
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Measurement of viral fitness
In prior studies of MFE, fitness has been measured as the difference in exponential growth
rates for WT and mutant strains, measured either in parallel or in direct competition
[19,36,37,39,42]. Given the relative imprecision of one step growth curves for quantification of
growth parameters in influenza and many other viruses, we measured the relative fitness of
each mutant in direct competition with the WT over serial passage [18]. In this assay, the
mutant is competed with a tagged WT reference, which has a cluster of synonymous mutations
in the PB1 open reading frame. These mutations allowed us to distinguish the barcodedWT
from a non-barcoded mutant in a mixed infection using quantitative reverse transcription PCR
with primers specific for their respective sequences. Importantly, this tagged WT virus com-
peted equally well with the untagged WT virus over 6 passages, demonstrating the selective
neutrality of the marker (Fig 1A). In our serial passage competition assay, the change in relative
frequency of the WT and mutant over time is the difference in growth rate, or the selection rate
constant (Fig 1B). The exponent of this value is the relative fitness. We have shown previously
that this assay can provide precise measurements of relative fitness with as few as 3 technical
replicates [18], although it is less sensitive for weakly deleterious or beneficial mutations with a
relative fitness close to 1.

We performed our competition assays in A549, a cancerous human lung epithelial cell line,
which supported efficient replication of WSN33 and may be more physiologically relevant to
influenza virus replication than other commonly used lines. Passages were carried out at a mul-
tiplicity of 0.01 infectious units (TCID50) per cell. Given that the burst size of influenza A in
A549 cells is<100 per cell, most passages will represent 2 cellular infection cycles with minimal
co-infection in the second cycle. We note that this moi corresponded to just 10,000 infectious
units at each passage, and we cannot exclude that genetic drift could lead to some variability in
the fitness measurements with a transfer population of this size [43].

Table 2. Next generation sequencing of viral stocks.

Mutant Mutation Amino Acid Mutation > 95% Secondary Mutations (frequency) Dataset

HA-10 T1599A S523T Yes PA-A95G (5.0) Genomewide

HA-21 A334T N101I Yes * - * Genomewide

HA-30 A648C S206R 94.7 HA-T1583G (4.6); HA-A534G (2.7) HA/NA

HA-46 C231G L67V Yes * - * HA/NA

M-1 G661C M212I Yes M-T117G (3.0) Genomewide

M-7 C174G C174G Yes * - * Genomewide

NA-14 G98A G27R Yes PB2-G2086T (2.5) HA/NA

NA-20 A909C K297T Yes PB2-T2156A (2.8) HA/NA

NA-9 G1355A G1355A 0.75 NS-C684T (2.7) Genomewide

NP-8 A454C A454C Yes PB2-A233G (2.5) Genomewide

NS-2 G227T R76R Yes PB2-A235G (2.7) Genomewide

PA-1 C500T A159V 92.6 PA-C500G (5.2); PB2-A913G (3.3); PB2-C1919T (2.9) Genomewide

PA-6 G240A L72L 92.5 - Genomewide

PA-7 A1358T Y445F Yes PB2-T1627C (3.7) Genomewide

PB1-11 A2187T R721S Yes PA-T1469C (2.0) Genomewide

PB2-8 C839A T271K Yes * - * Genomewide

* Sanger sequence only

doi:10.1371/journal.ppat.1005856.t002

Influenza Mutational Fitness Effects

PLOS Pathogens | DOI:10.1371/journal.ppat.1005856 August 29, 2016 6 / 25



Distribution of mutational fitness effects
We were able to measure the fitness of 89 out of the 90 viable mutants. Despite repeated
attempts with multiple stocks, we were unable to obtain data for HA-8. In competitions with
this mutant, we consistently saw large reductions in titer of both HA-8 and the wild type after a
single passage, perhaps due to dominant negative effects or the impact of defective interfering
particles. With the exception of PB1-6, which was measured twice, all fitness values are based
on 3 replicate competition assays, and the mean fitness and standard deviation are reported in
Table 3 (see also Figs 2 and 3). Seventy-one of the mutations in our library were nonsynon-
ymous, and these viruses had relative fitness values ranging from 0.26 to 1.12 (mean 0.80, stan-
dard deviation 0.20). Nearly all of the 18 viruses with synonymous mutations exhibited a
fitness close to 1 (mean 0.93, standard deviation 0.21). The sole exception was PA-6/G240A,
which is synonymous in the canonical PA open reading frame (Leu72). Neither this mutation,
nor any of the other PA mutations were within the alternate PA-X reading frame [44]. Three
mutations affected proteins in two different reading frames: PB1 A251C (fitness 0.45), NS
G648U (fitness 0.92), and NS G650C (fitness 0.78). Three out of the 4 nonsense mutations
were lethal (see Table 1), the exception was NS-5/G648T (NS1 E208stop, NEP M50I), which
had a fitness of 0.92. Consistent with the important role of 5’ and 3’ translated regions in RNA
synthesis and packaging, 2 out of the 3 non-coding mutations were lethal [45]. The 3rd was
HA-8 (see above).

Fig 1. Direct competition assay for relative fitness. (A) Equal infectious units of a barcoded version of theWT were competed
against WT at an moi of 0.01, and the amount of each virus at each passage was compared to the input by RT-qPCR as described
in the methods. The slope of the regression of the difference in the log10 change in ratio for each virus over time is the fitness. The
assay was performed in triplicate and the slopes of the three lines are 0.007, 0.129, and 0.007, which corresponds to a fitness of
1.02 ± 0.008 for the barcoded virus relative to WT. (B) Sample data for two single nucleotide mutants. Each was competed against
the barcodedWT as in (A) and relative fitness measured as calculated in the methods. One replicate each of NA-18 (circles,
fitness = 0.64) and HA-40 (squares, fitness = 1.02) is shown. Note that we fit our regressions through passages 1–4 and excluded
P0 as slight deviations from a 1:1 ratio of the two viruses in the inoculum can skew the slope when fit through this data point.

doi:10.1371/journal.ppat.1005856.g001
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Table 3. Fitness values of viable mutants.

Segment Mutation Amino Acid Change Fitness Mean Fitness SD Dataset Clone ID

1 (PB2) U306A P93 (SYN) 0.90 0.13 Genomewide PB2-16

A440U Q138L 0.78 0.18 Genomewide PB2-12

C532A P169T 0.81 0.04 Genomewide PB2-14

C880U H285Y 0.96 0.07 Genomewide PB2-4

A1167U R380S 0.94 0.06 Genomewide PB2-11

U1251C D408 (SYN) 0.89 0.05 Genomewide PB2-3

A1495C S490R 0.96 0.18 Genomewide PB2-8

U1527A R500 (SYN) 0.90 0.04 Genomewide PB2-5

G1660C V545L 0.94 0.04 Genomewide PB2-7

A1854G T609 (SYN) 1.03 0.05 Genomewide PB2-15

A2113C I696L 0.73 0.14 Genomewide PB2-13

2 (PB1) A251C PB1 D76A, PB1-F2 T45P 0.45 0.01* Genomewide PB1-6

C522U F166 (SYN) 1.10 0.15 Genomewide PB1-2

C549U N175 (SYN) 1.01 0.24 Genomewide PB1-1

A581C Q186P 0.30 0.01 Genomewide PB1-10

G599A R192K 0.99 0.09 Genomewide PB1-5

U1288A S422T 0.95 0.03 Genomewide PB1-13

A1322C K433T 0.48 0.10 Genomewide PB1-12

G1764U W580C 0.26 0.00 Genomewide PB1-4

A2187U R721S 0.34 0.09 Genomewide PB1-11

A2277C E751D 0.65 0.09 Genomewide PB1-8

3 (PA) A88G K22E 0.81 0.12 Genomewide PA-8

A92G E23G 0.58 0.05 Genomewide PA-10

U237A L71 (SYN) 1.11 0.13 Genomewide PA-9

G240A L72 (SYN) 0.17 0.07 Genomewide PA-6

C500U A159V 0.85 0.11 Genomewide PA-1

U878G M285R 0.62 0.14 Genomewide PA-3

U964G F314V 0.36 0.13 Genomewide PA-13

G1041C K339N 0.90 0.04 Genomewide PA-2

A1358U Y445F 0.82 0.15 Genomewide PA-7

U1685C I554T 0.89 0.08 Genomewide PA-15

U2123C V700A 0.89 0.10 Genomewide PA-16

4 (HA) C231G L67V 0.71 0.03 HA/NA HA-46

A334U N101I 0.97 0.06 Genomewide HA-21

C368A L112 (SYN) 0.93 0.08 Genomewide HA-13

U408A S126T 0.95 0.16 HA/NA HA-37

G542U K170N 1.01 0.12 HA/NA HA-36

A648C S206R 0.72 0.14 HA/NA HA-30

A699U N223Y 1.03 0.10 HA/NA HA-38

A784G E251G 0.94 0.04 Genomewide HA-22

C822U L264 (SYN) 1.00 0.06 HA/NA HA-26

A939U N303Y 0.80 0.13 HA/NA HA-41

G1006U S325I 0.83 0.08 HA/NA HA-45

A1050C I340L 0.87 0.08 HA/NA HA-43

A1057U Y342F 0.87 0.19 Genomewide HA-1

A1174U Q381L 0.93 0.06 HA/NA HA-27

C1229G I399M 0.85 0.10 Genomewide HA-18

(Continued)
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Table 3. (Continued)

Segment Mutation Amino Acid Change Fitness Mean Fitness SD Dataset Clone ID

A1264C K411T 0.65 0.20 HA/NA HA-31

G1292A M420I 1.12 0.07 HA/NA HA-33

U1299C L423 (SYN) 1.13 0.27 HA/NA HA-39

U1466A N478K 0.64 0.14 Genomewide HA-3

A1512G S494G 0.87 0.04 HA/NA HA-42

U1583G D517E 1.00 0.02 HA/NA HA-40

G1587C V519L 1.06 0.24 Genomewide HA-15

U1599A S523T 0.88 0.13 Genomewide HA-10

C1696A S555Y 0.73 0.01 Genomewide HA-20

A1749C noncoding ND ND Genomewide HA-8

5 (NP) U198G D51E 0.88 0.06 Genomewide NP-1

A425G D127G 1.01 0.07 Genomewide NP-9

G436U A131S 0.76 0.11 Genomewide NP-5

A454C M137L 0.60 0.05 Genomewide NP-8

C485U T147I 1.00 0.28 Genomewide NP-7

A1160U E372V 0.77 0.10 Genomewide NP-11

A1229U N395I 0.99 0.09 Genomewide NP-12

C1485A D480E 0.99 0.04 Genomewide NP-3

6 (NA) G98A G27R 0.73 0.03 HA/NA NA-14

C109A I30 (SYN) 1.04 0.24 HA/NA NA-30

G158A G47R 0.94 0.20 HA/NA NA-22

A176C S53R 0.90 0.11 HA/NA NA-21

G201C G61A 0.98 0.03 Genomewide NA-4

C454U C145 (SYN) 1.08 0.11 HA/NA NA-26

C700U T227 (SYN) 0.84 0.04 Genomewide NA-10

G758C V247L 0.54 0.06 Genomewide NA-3

A909C K297T 1.09 0.14 HA/NA NA-20

A1026U K336M 0.39 0.08 HA/NA NA-29

G1040C V341L 0.74 0.09 HA/NA NA-18

U1070G S351A 0.90 0.19 Genomewide NA-5

U1130G F371V 0.89 0.22 HA/NA NA-16

U1162C T381 (SYN) 0.98 0.01 Genomewide NA-1

G1168U R383 (SYN) 0.93 0.05 HA/NA NA-19

G1355A E446K 0.71 0.06 Genomewide NA-9

7 (M) C174G M1 P50R 0.40 0.11 Genomewide M-7

A541C M1 L172 (SYN) 0.93 0.09 Genomewide M-4

G661C M1 M212I 0.48 0.01 Genomewide M-1

U861G M2 C50G 0.74 0.07 Genomewide M-2

8 (NS) U51A NS1 F9I, NEP F9I 0.86 0.05 Genomewide NS-1

G227U NS1 R67 (SYN) 0.85 0.13 Genomewide NS-2

G648U NS1 E208stop, NEP M50I 0.92 0.04 Genomewide NS-5

G650C NS1 E208D, NEP R51T 0.78 0.04 Genomewide NS-4

A809G NEP Q104R 0.91 0.06 Genomewide NS-3

ND, no data

* range of 2 replicates

doi:10.1371/journal.ppat.1005856.t003
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HAmutational fitness effects in head and stem regions
Wemapped our HA mutants to the protein structure in order to observe structural patterns in
HA fitness effects (Fig 4). Similar to previous studies on mutational fitness effects in influenza
A hemagglutinin [35,46], we observed that the HA head seemed to tolerate mutations better
than the stem domain. The mutants on the HA1 head domain had an average fitness of 0.77
and a lethal fraction of 2/14. Mutants on the HA2 stem region had an average fitness of 0.56
and a lethal fraction of 4/11. While suggestive, these differences in mean fitness did not achieve
statistical significance (p = 0.258, Mann Whitney U test). Two mutations were located in one
of the four H1N1 antigenic sites [47], K170N (Sa, fitness 1.01 ± 0.12) and S206R (Sb, fitness
0.72 ± 0.14).

Fig 2. Location and fitness for all mutations. Each mutation in Tables 1 and 3 is shown in its reading frame
(s) with substitution type (nonsynonymous, synonymous, or noncoding) and fitness (see legend).

doi:10.1371/journal.ppat.1005856.g002
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Fitting mutational fitness effects to probability density functions
We compared the distributions of fitness effects by plotting the fitness of all mutants as histo-
grams and overlaying fitness values for the viable mutants as cumulative distribution functions.
We show distributions for the total dataset (n = 128, Fig 3A), the randomly selected genome-
wide dataset (n = 95, Fig 3B), the expanded HA/NA dataset (n = 57, Fig 3C), and the compari-
son “internal” 6 segment dataset (n = 71, Fig 3D). As above, the lethal fraction in each group
was ~30%. Of the viable mutants, 47 out of 90 were weakly deleterious or neutral (fitness 0.85–
1.05). Seven were weakly beneficial (fitness 1.05–1.15). We are conservative in classifying
weakly deleterious and weakly beneficial mutations, since the fitness values for many of these
mutants were not statistically different from 1. The mutations in 35 of the 90 viable mutants
were more deleterious (fitness< 0.85). The mean and standard deviation for the viable
mutants were: 0.82 ± 0.21 in the total, 0.80 ± 0.22 in the genome-wide, 0.88 ± 0.16 in the HA/
NA, and 0.78 ± 0.24 in the internal datasets, respectively. While the HA/NA and internal

Fig 3. Histograms and cumulative distribution functions of influenza A virus mutational fitness effects.
Data are shown for all single nucleotide mutants (A, n = 128), the randomly selected genome-wide dataset (B,
n = 95), the HA and NA dataset (C, n = 57), and the “internal” dataset (D, n = 71). Relative fitness values, bin
width 0.1, are shown on the x-axis, and number of mutations in each histogram bar (left) and percent in
cumulative distribution (right) are shown on the y-axes. The cumulative distribution functions show only the
viable mutations (fitness > 0).

doi:10.1371/journal.ppat.1005856.g003
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datasets had a similar lethal fraction (Table 1 and associated text), the fitness impact in the via-
ble fraction tended to be lower in the HA/NA-encoding segments relative to the internal seg-
ment group, but did not achieve statistical significance (p = 0.08, MannWhitney U test).

The fitness values of the viable mutants were not distributed normally, and we therefore
determined which type of distribution best fit the data. We modeled our empiric data on the
deleterious mutations against exponential, gamma, beta, Weibull, and lognormal predictions
and determined the best fit based on their Akaike information criteria (AIC, Table 4). For each
dataset, the beta model was the best at capturing the distribution of fitness effects. We also fit
distributions from a large, recently published dataset of poliovirus mutants [48]. Here, the beta
model also provided the best fit. These beta models are described by two shape parameters, α
and β, in which the expected value of the beta distribution is α/(α+β). The α and β parameters

Fig 4. Fitness impact of mutations on HA.Mutations were placed onto a structural model of the hemagglutinin
protein (PBD 1RVX). Shown are mutations on the head and stem regions, HA1 and HA2. Non-coding mutations
(HA-8) andmutations on the signal peptide (HA-11), splice site (HA-1), and transmembrane domain (HA-40, HA-
15, HA-10, HA-20) are not shown. Mutations are color coded as follows according to their relative fitness: lethal
mutations are red, 0.6–0.8 are orange, 0.8–1.0 are yellow, and 1.0–1.2 are green.We found noHAmutations
with a fitness between 0–0.6.

doi:10.1371/journal.ppat.1005856.g004

Table 4. Model fit for MFE distributions.

Total Genome-wide HA/NA Internal Poliovirus

Exponential 109.824436 84.814139 49.11733 61.536311 6970.5079

Gamma -2.633794 5.372353 -23.9851 9.75584 1338.4441

Weibull -33.906937 -17.061899 -35.7708 -4.538429 -499.8882

Lognormal 12.427892 17.069145 -21.1132 18.0786 3174.4454

Beta -68.630982 -48.693444 -42.91293 -28.713227 -2519.1795

Shape Parameters (95% CI)

alpha 3.258 (2.277–4.487) 2.833 (1.882–4.062) 6.306 (3.531–10.216) 2.47 (1.544–3.715) 2.166 (2.086–2.247)

beta 0.985 (0.731–1.297) 0.893 (0.638–1.216) 1.398 (0.857–2.151) 0.88 (0.595–1.252) 1.022 (0.989–1.056)

doi:10.1371/journal.ppat.1005856.t004
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for each of the random, surface, and internal influenza MFE datasets as well as the poliovirus
MFE dataset are similar (Table 4). Some have suggested that deleterious mutational fitness
effects may be better explained by more complex models [49]. We therefore attempted to com-
bine the above distributions with uniform distributions, in which we allowed the latter to
describe a proportion of our mutants’ fitness effects. However, in the cases tested, adding this
uniform distribution did not improve the fit of our models. While the influenza A and poliovi-
rus mutational fitness effects were both best described by a beta distribution, there was no simi-
lar consensus among previously characterized viruses [19]. VSV was best described by a
lognormal + uniform distribution, TEV by a beta distribution, phiX174 by an exponential dis-
tribution, QB by a gamma distribution, and F1 by a log normal distribution. In most of these
fits, the AIC of the beta distribution did not differ appreciably from the AIC of the best-fit
probability density function.

Fitness in alternate genetic backgrounds
All of our mutations were generated in the context of WSN33, a lab-adapted H1N1 strain.
Recent work suggests that epistasis is quite prevalent across the influenza virus genome, and
we therefore considered it likely that the same mutations would have distinct fitness effects in
other genetic backgrounds [50–53]. To understand the degree to which our fitness measure-
ments for specific WSN33 mutations are generalizable, we compared our data to those
obtained for analogous mutants in WSN33 and other genetic backgrounds. Bloom and col-
leagues have used deep mutational scanning (DMS) to broadly sample most of the possible
amino acid substitutions in the HA and nucleoprotein open reading frames [35,46,54,55].
Deep sequencing of mutant libraries before and after passage was used to infer site preferences
for every amino acid at every site and to calculate site entropy, or inherent tolerance of substi-
tution at a given site. Site entropy will tend to capture the general mutability of a position,
while site preference is likely to be more specific for a mutation in a given genetic background.
Importantly for our comparison, many of the plasmids had multiple mutations and the site
preferences represent the average effect of a mutation in the background of very similar, but
distinct, sequences.

We first compared our 43 HA point mutants to DMS data on HA fromWSN33 [35,46].
Here, we observed a statistically significant, and reasonably strong, correlation between our fit-
ness values and site entropy for nonsynonymous substitutions (Fig 5A, Spearman r = 0.56,
p = 0.0018). Consistent with the fact that both datasets were generated in the WSN33 back-
ground, the correlation between the fitness of viruses with our substitutions (nonsynonymous
and synonymous) and the site preference for the same substitution was similar (Spearman
r = 0.66, p< 0.001). It isn’t clear the degree to which the modest correlations for site entropy
and site preference are attributable to differences in experimental set-up or the scale and error
of measurement for two very different datasets. Of note, Thyagarajan and Bloom observed a
similarly modest correlation (Pearson r = 0.48, p< 10−10) between their DMS data on WSN33
and a DMS separate study by Wu et al. [33], see discussion in [35].

We next compared the fitness of our 12 NP mutants to DMS data on NP from influenza A/
Puerto Rico/8/1934 (H1N1, PR8) and A/Aichi/1968 (H3N2) [54,55]. In PR8, a closely related
lab strain, we found a stronger correlation between fitness and site entropy (Fig 5B, Spearman
r = 0.79, p = 0.0037). The correlation between WSN33 fitness and PR8 site preference was
weaker (Spearman r = 0.60) but did achieve statistical significance (p = 0.0450). Interestingly,
our WSN33 fitness values were correlated with site entropy in the more distantly related Aichi
H3N2 strain (Fig 5C, Spearman r = 0.59, p = 0.0465). The correlation with site preference was
weaker for the WSN33-Aichi comparison than the WSN33-PR8 comparison (Spearman
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r = 0.26) and did not achieve significance (p = 0.4031). Together, our fitness values are reason-
ably correlated with site entropy in distinct strains and subtypes, and these data suggest that a
sizeable portion of mutational fitness effects are attributable to the general mutational tolerance
at a given site. The observation that fitness was correlated with site preference for HA in
WSN33 and NP in PR8 (H1N1), but not in Aichi (H3N2) suggests that the fitness impact of
these mutations will vary with genetic background due to intragenic or intergenic epistasis. We
are cautious in this interpretation given the differences in the underlying experimental design,
sample size, and nature of the datasets, as outlined above. Given that Doud and Bloom found
general conservation in site preference between PR8 and A/Aichi/1968, it is possible that our
differences could be due to the type and number of amino acid substitutions in our smaller NP
dataset.

We further explored the generalizability of our MFE data by querying the influenza
research database for H1N1 sequences containing any of our nonsynonymous mutations. We
reasoned that of our WSN33 amino acid substitutions, only those with weakly deleterious,
neutral, or beneficial fitness effects would be observed in circulating strains. Indeed, we found
only two mutations, both in HA, that were present at reasonably high frequencies in more
recent, circulating strains (S4 Table, S2 Fig). One was weakly deleterious, Q381L (fitness
0.93 ± 0.06, present in 78.7%) and the other was beneficial, HA M420I (fitness 1.12 ± 0.07,
present at 79.7%). Consistent with what one would expect, our deleterious mutations had
extremely low prevalence in the database. The prevalence of only two other non-synonymous
mutations was above 0.1%, HA N101I (fitness 0.97 ± 0.06, present in 0.247%) and NA D135N
(lethal, present in 0.173%). The significance of these mutants in circulating strains is unclear
as they represent a relatively small number of sequences in the entire database (54/21,805 and
28/16187, respectively).

Fig 5. Correlation of fitness values with site entropy and preference. (A) Fitness of nonsynonymous HA
mutants vs. site entropy (top) and fitness of all HA mutants vs. site preference (bottom) as reported in [46].
Unscaled values are shown. Correlations were similar for scaled values, see S3 Table. (B) Fitness of
nonsynonymous NPmutants vs. site entropy (top) and fitness of all NP mutants vs. site preference (bottom)
as reported for PR8 in [55]. (C) Fitness of nonsynonymous NPmutants vs. site entropy (top) and fitness of all
NP mutants vs. site preference (bottom) as reported for A/Aichi/1968 (H3N2) in [55]. Note that scale in (A) for
site preference is different as there were synonymous mutants in this dataset, but not in the NP datasets.

doi:10.1371/journal.ppat.1005856.g005
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Comparison to other viruses
Sanjuan, Elena, and colleagues have used a similar approach to characterize the mutational fit-
ness effects for 5 viruses: VSV, TEV, QB, phiX174, and F1 [13,19,37,40,56]. This set of viruses
includes viruses with both DNA and RNA genomes (among which the authors found similar
distribution patterns), and influenza is the first segmented virus to be described by this method.
We compared the lethal fraction, mean, and variance of our mutational fitness effects to these
previously characterized viruses. Because relative fitness values in VSV, QB, phiX174, and F1
were measured as differences in exponential growth rate, we first transformed our serial pas-
sage fitness values based on the wild type exponential growth rate in our experimental condi-
tions (S5 Table). A similar transformation has been described for TEV to allow comparison of
exponential growth rates across systems (see Methods and [19]). Overall, we found that the
lethal fraction and our scaled fitness values closely matched those for these other small DNA
and RNA viruses. We also calculated the skewness and kurtosis for each data set to quantita-
tively describe the shape of the distribution (Table 5). Following the general property that
mutations are more likely to be deleterious than beneficial, we found negative values for skew-
ness in each of our data sets. Kurtosis, measuring the “peakness” of a distribution, was above 5
for each of our data sets. A positive kurtosis value indicates that a probability density function
has a heavier tail and more values near the mean than predicted by a Gaussian distribution.

Discussion
We report the first genome-wide study of the mutational fitness effects of single nucleotide
mutations in influenza A virus. Unlike other studies of mutational tolerance in influenza, we
took great pains to define the lethal fraction, a key parameter in the distribution of MFE. We
ensured the relative clonality of nearly all of our stocks by next generation sequencing and used
a highly quantitative assay for fitness measurements. Both the lethal fraction and the overall
distribution of MFE of influenza A are quite similar to what has been found for ssDNA and
other RNA viruses. Consistent with what has been assumed, but to our knowledge never
shown, the surface proteins of influenza virus appear to be slightly more tolerant of point
mutation than the internal viral proteins. This finding did not achieve statistical significance.
These results have important implications for quantitative models of influenza evolution and
our general understanding of the mutational robustness of RNA viruses.

The MFE of many viruses were initially explored by mutation accumulation (MA) experi-
ments involving serial plaque to plaque transfers [25–29]. While these studies suggested that
many mutations were deleterious, MA experiments are generally unable to assign fitness values
to individual mutations. Similarly, mutagen sensitivity has been used to define the global
impact of mutation and the relative robustness of viral strains or even multiple viral species

Table 5. Comparison to MFE in other viruses.

Genome Sample Lethal Fraction Arithmetic Mean Variance Skewness Kurtosis

VSV ss (-) RNA 48 0.396 -0.132 0.036 -1.795 3.007

TEV ss (+) RNA 66 0.409 -0.112 0.041 0.285 -0.382

QB ss (+) RNA 42 0.286 -0.103 0.018 -1.167 0.238

phiX 174 ss DNA 45 0.200 -0.126 0.047 -1.957 4.022

F1 ss DNA 100 0.210 -0.107 0.037 -1.909 3.165

Influenza genomewide seg -ssRNA 95 0.316 -0.124 0.027 -1.970 6.866

Influenza HA/NA seg -ssRNA 57 0.281 -0.059 0.010 -1.790 7.101

Influenza internal seg -ssRNA 71 0.310 -0.139 0.033 -1.728 5.557

doi:10.1371/journal.ppat.1005856.t005
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[23,30,31,57,58]. Neither gives a reliable estimate of the lethal fraction and comparisons across
viral families can be confounded by differences in host cells, basal viral mutation rates, and the
pleiotropic effects of commonly used mutagens on cellular metabolism. More recently, several
groups have used higher throughput assays to measure viral mutational tolerance [33,35,48].
While these approaches allow for impressively large datasets, they are similarly imprecise in
assigning fitness values to individual mutations. Because lethal and strongly deleterious muta-
tions will be present at extremely low frequency, they are easily lost from populations with
serial passage and variably ascertained by even the best deep sequencing approaches. For exam-
ple, the impressive characterization of poliovirus MFE by CirSeq could only quantify the aver-
age fitness of a mutation across a range of haplotypes, given that each mutation can potentially
arise in the setting of a genome that already bears a different mutation [48]. Many mutations
were also present at very low frequency, varied significantly across passages, and were presum-
ably subject to clonal interference. Measurement of fitness effects from these data also required
extensive modeling of genetic drift. In influenza A virus, two different groups have used ran-
dom mutagenesis of plasmids and next generation sequencing of recovered viruses to infer the
mutational robustness of hemagglutinin [33,35] and nucleoprotein [54,55]. Because many of
the plasmids had multiple mutations and the sequencing assays were unable to accurately mea-
sure fitness, these important works were nevertheless unable to model the distribution of MFE.
The only genome-wide study of influenza A MFE, of which we are aware, utilized transposon-
based insertional mutagenesis, and is less informative about the impact of single nucleotide
mutation [59].

We chose a lower throughput, and in our opinion more reliable, approach to define the dis-
tribution of MFE in influenza A virus. Sanjuan, Moya, and Elena pioneered the use of small
libraries of viruses with single nucleotide substitutions to model the MFE of vesicular stomatitis
virus [13]. Since this initial study, Sanjuan has used a similar approach to define the MFE of
the phages QB, f1, and phiX174 [36,37], and Elena has applied it to tobacco etch virus [40].
The advantage of this approach is that it links specific mutations to fitness values, provides pre-
cise fitness measurements, and accurately estimates the lethal fraction. We improved on this
method by generating a larger genome-wide library of mutants and by also including sub-
libraries to compare the impact of mutations on different viral proteins. Our exhaustive charac-
terization of the lethal fraction by repeated transfection, documentation of the relative clonality
of each stock by deep sequencing, and use of a highly quantitative competition assay also
ensure the quality of our model of influenza A MFE. An obvious drawback of this approach is
that it was only feasible to analyze 128 single nucleotide mutations. While we took great pains
to ensure random selection of our mutations, it is possible that our random sample of muta-
tions is biased in some way from the overall set of roughly 39,000 possible SNV in influenza A
viruses. We are encouraged that our distribution is similar to what has been found in both high
and low throughput studies [19,48].

Fitness values are specific to the environmental conditions in which they are measured [60].
For example, in cell culture they can vary with host cell type, temperature, and multiplicity of
infection. We chose to use A549 cells, as they are derived from a respiratory epithelium and
support relatively efficient replication of influenza virus. The variability and inefficiency of pri-
mary cells present difficulties for a large-scale comparative study such as ours. We chose a rela-
tively low multiplicity to reduce bias in fitness measurements due to complementation and
reassortment in multiply infected cells. We note, however, that our relatively low transfer pop-
ulations in the serial passage experiment could contribute to the observed variability in repli-
cate fitness measurements through genetic drift [43]. While our cell-based assay will capture
elements of fitness related to virus interactions with the host cell machinery and evasion of the
innate immune response, it does not model the impact of adaptive immunity. While we would
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argue that many of the deleterious mutations are likely to be so in many environments, some
mutations that are only weakly deleterious in cell culture may be subject to stronger purifying
selection in nature. Finally, our mutations in WSN33 may not have the same fitness impact in
H3N2, or other subtypes, due to intragenic and intergenic epistasis. The observed correlation
between site entropy and fitness on a set of a HA and NP mutants suggests that the overall dis-
tribution of MFE will be conserved.

Across viral systems, increased genetic variability is often observed in surface or structural
proteins relative to internally located, non-structural proteins. This bias could be attributable
to local differences in mutation rate or mutational robustness and may have implications for
evasion of host antibody [61]. It is therefore interesting that the fitness impact of mutations in
the segments coding for hemagglutinin and neuraminidase appear to be slightly less than those
in proteins encoded by the other six genomic segments. Host-specific evolutionary rates are
also higher for HA and NA relative to the other 6 segments [62]. The 6 internal segments have
similar rates, and we were underpowered to distinguish differences in robustness among them.
Our finding of a trend toward increased mutational tolerance in the HA protein, and the head
in particular, is consistent with the tolerance of HA to transposon insertion [59] and deep
mutational scanning experiments [35]. These data suggest that HA is more robust to mutation,
possibly as a consequence of this history of strong and repeated selection for antigenic escape.
A byproduct of this robustness could be the greater exploration of antigenic sequence space
and subsequent immune escape [63]. Here, mutational robustness would increase evolvability,
or the capacity for adaptive evolution. This concept is attractive in view of the proposed
epochal evolution of influenza A H3N2 on neutral networks [64]. We note that our study was
of an H1N1 virus, and there may be important differences in the mutational robustness of
H3N2 and H1N1 surface proteins. This is especially important given their different evolution-
ary rates [65]. As we and others have pointed out, the relationship between mutational robust-
ness and evolvability is complex, and there are clearly situations in which increased robustness
will either increase or decrease evolvability [16,66–68].

The genome-wide distribution of mutational fitness effects of influenza A virus is similar to
those of poliovirus ([48] and this work), VSV, tobacco etch virus, and phages F1, QB, and
phiX174 [19,36–40]. Because we relied on an assumption of exponential growth over the
course of the competition assay to transform our fitness values into exponential growth rates
(see Methods), it is possible that we have either over- or underestimated the similarities. Given
that this collection includes a negative sense ssRNA virus (VSV), a segmented negative sense
RNA virus (influenza A), three positive sense ssRNA viruses, and two ssDNA viruses, it is clear
that the type and polarity of the genomic nucleic acid are not major determinants of robust-
ness. Their similarity likely reflects shared constraints due to small and compact genomes [19].
Small genome viruses often have overlapping reading frames or regulatory elements that are
more sensitive to genetic disruption. Larger genomes allow for more genetic redundancy and
modularity, which could limit the impact of point mutations. Interestingly, the hypersensitivity
of these viruses to mutation at an individual level may actually promote robustness at a popula-
tion level [69]. In large populations under strong purifying selection, deleterious variants are
rapidly purged and the wild type sequence preserved. We note that recombination and reas-
sortment in RNA viruses are often considered to be adaptive as they could also increase robust-
ness by purging deleterious mutations from populations [70–72]. Given the association
between sex and mutation fitness effects in evolutionary theory, it is interesting that we find
similar robustness of an asexual virus (VSV), a recombining virus (poliovirus) and a reassort-
ing virus (influenza). While our assay conditions minimized reassortment, a long-term life his-
tory of reassortment does not appear to have altered the intrinsic mutational fitness effects of
influenza virus.
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The evolutionary dynamics of influenza A virus have been intensively studied at the global
and molecular level. Our data on mutational fitness effects will be useful in modeling these pro-
cesses across scales. We expect that further comparative studies in this area might elucidate
important similarities and differences between different influenza subtypes and between influ-
enza and other viruses.

Materials and Methods

Viruses and cells
Madin Darby canine kidney cells (MDCK) were provided by Dr. Arnold Monto (University of
Michigan) and A549 human lung epithelial cells were provided by Dr. Michael Bachman (Uni-
versity of Michigan). Human embryonic kidney 293T fibroblasts were provided by Dr. Raul
Andino (UCSF). Both cell lines were maintained in Dulbecco’s Modified Eagle Medium
(DMEM, Invitrogen) supplemented with 10% fetal bovine serum (Gibco and HyClone), 25mM
HEPES (Invitrogen), and 0.1875% bovine serum albumin (Life Technologies). Viral infections
were performed in DMEM supplemented with 25mMHEPES, 0.1875% bovine serum albumin,
and 2μg/ml TPCK-trypsin (Worthington). The 8 plasmid reverse genetic system containing
the genomic segments for influenza A/WSN33 (pHW181-PB2, pHW182-PB1, pHW-183-PA,
pHW184-HA, pHW185-NP, pHW186-NA, pHW187-M, pHW188-NS) was a kind gift of
Robert Webster ([41], St. Jude’s Children’s Research Hospital)

Site directed mutagenesis
An R script was used to select randomly the nucleotide position and base change for all mutants
in this study and to design optimal oligonucleotides for mutagenesis by polymerase chain reac-
tion (PCR). Noncoding and promoter regions were included. Due to sequence context and GC
content, several primers had to be designed manually (S1 Table). One hundred and eight of the
single nucleotide mutants were generated using the QuickChange site directed mutagenesis kit
(Agilent Technologies) according to the manufacturer’s protocol. The remaining 21 single
nucleotide mutants were generated by overlap extension PCR [73]. Here, the outer primers
contained 5’ BsmBI or BsaI restriction sites for subsequent cloning into pHW2000 [41,74].
The barcoded PB1 segment (555) was made using the Quickchange protocol and primers
pPolPB1_555f 5’ GATCACAACTCATTTCCAACGGAAACGGAGGGTGAGAGACAAT 3’
and pPolPB1-555r ATTGTCTCTCACCCTCCGTTTCCGTTGGAAATGAGTTGTGATC. In
each plasmid clone, the presence of the desired mutation(s) and the absence of second site
mutations were verified by sequencing of the entire influenza segment.

Transfection and viral stocks
Equal quantities of MDCK and 293T cells were seeded at a total density of 1,000,000 cells per
well of a 6 well plate 24 hours prior to transfection in complete DMEM (see above). Each trans-
fection mixture contained 1μg of the mutant plasmid, 1μg of each of the other 7 wild type plas-
mids, 16μl of TransIT-LT1 (Mirus) and 250μl Optimem (Gibco). These reagents were
incubated together for 45 minutes at room temperature and applied dropwise to the cellular
monolayer. After 24 hours, the media was changed to viral infection media (see above). Recom-
binant passage 0 virus was harvested 48 hours post-transfection, clarified by centrifugation at
200 x g for 3 minutes, and stored in aliquots with 0.5% glycerol at minus 70°C. Passage 1 (P1)
stocks were generated by a single passage on MDCK cells at a multiplicity of infection (moi)�
0.001. Virus was applied to cells for one hour and aspirated, and then viral media was added.
Passage 1 stocks were harvested at 48 hours post-infection. All stocks were titered by tissue
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culture infectious dose (TCID50, [75]). We subjected all transfection supernatants with unde-
tectable P0 titers to blind passaging. One or 0.333 ml of virus was applied to a confluent T75 or
T25 flask, respectively. These cultures were monitored for cytopathic effect and titered at 48
hours.

Next generation sequencing
Viral RNA was harvested from 200μl of each P1 supernatant using either Purelink Viral RNA
(Invitrogen) or Qiamp Viral RNA (Qiagen) kits. Multiplex reverse transcription-PCR amplifi-
cation of all 8 influenza virus genome segments was performed on RNA samples using Super-
script III with HiFi platinum Taq (Invitrogen 12574) and primers Uni12/Inf1 (5’-GGGGGGA
GCAAAAGCAGG-3’), Uni12/Inf3 (5’-GGGGGAGCGAAAGCAGG-3’), and Uni13/Inf1 (5’-
CGGGTTATTAGTAGAAACAAGG-3’) [76]. Seven hundred fifty nanograms of the each
amplified cDNA were sheared to an average size of 300 to 400 bp using a Covaris S220 focused
ultrasonicator. Sequencing libraries were prepared using the NEBNext Ultra DNA library prep
kit (NEB E7370L), Agencourt AMPure XP beads (Beckman Coulter A63881), and NEBNext
multiplex oligonucleotides for Illumina (NEB E7600S). Indexed samples were pooled in equal
quantities and sequenced on an Illumina MiSeq instrument with 2 x 250-base paired end
reads.

Sequencing reads that passed standard Illumina quality control filters were binned by index
and aligned to the reference genome using bowtie [77]. Single nucleotide variants (SNV) were
identified and analyzed using DeepSNV [78]. The DeepSNV algorithm relies on a clonal con-
trol to estimate the local error rate within a given sequence context and to identify strand bias
in base calling. It then applies a hierarchical binomial model based on mutation calls for test
and control at each base and position to identify true-positive SNV. The clonal control was a
library prepared in an identical fashion from 8 plasmids containing the A/WSN33/H1N1
genome and sequenced in the same flow cell. Code for our implementation of DeepSNV can be
found at https://github.com/lauringlab/variant_pipeline, and can be accessed anonymously.
True positive SNV were identified from the raw output tables (S2 Table) by applying the fol-
lowing filtering criteria in R: (i) Bonferonni corrected p value< 0.01, (ii) average MapQ score
on variant reads> 30, (iii) average phred score on variant positions> 35, (iv) average position
of variant call on a read> 50 and< 200, (v) variant frequency> 0.02. Application of these cri-
teria to a viral spike-in dataset with equivalent genome copy number inputs resulted in> 95%
sensitivity and> 99.99% specificity for SNV present at> 1% of the population [79].

Competition assays
Competitions were performed on A549 cells in 12 well plates, plated at a density of 2.6 x 105

per well 24 hours prior to infection. Cells were infected at a total MOI of 0.01 with an equal
TCID50 of WT and a given mutant. Three replicate wells were infected with each pair of
viruses. Passage 1 virus was harvested after 48 hours and one replicate was titered by TCID50.
This titer was used to calculate the dilution factor necessary to maintain an MOI of 0.01 for
subsequent passages. Four passages were performed for each competition. RNA was harvested
from each passage using PureLink 96 well RNA mini kits (Invitrogen). Random hexamers
were used to prime cDNA synthesis with 1/10 of the RNA. Each cDNA was analyzed by real
time PCR using three different primer sets with duplicate PCR reactions for each sample/
primer set. The first set, PB1_149f 5’ CAGAAAGGGGAAGATGGACA 3’ and PB1_360r
5’ GTCCACTCGTGTTTGCTGAA 3’, were used to quantify total viral genomic RNA. The sec-
ond set, pPol1PB1_555f 5’ TCAGAGAAAGAGACGAGTGAG 3’ and pPol1PB1_555r 5’
AAACCCCCTTATTTGCATCC 3’, were used to quantify the amount of mutant viral RNA.
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The third set, pPol1PB1_555fm 5’ ATTTCCAACGGAAACGGAGGG 3’ and pPol1PB1_555r
5’ AAACCCCCTTATTTGCATCC3’, were used to quantify the amount of barcoded WT viral
RNA. We verified that the levels of RNA (Cycle threshold, Ct) were well correlated with the
infectious titer (TCID50/ml) for the mutants shown in Fig 1B. Duplicate wells were averaged
and values were excluded from subsequent analysis if duplicates wells differed by> 0.5 Ct or
any of the Ct were out of the empirically determined linear range for that primer pair. Relative
amounts of WT and mutant RNA were determined by normalizing the cycle thresholds for
each to those of the common (PB1_149f and PB1_360r) primer set (DCt = CtVirus-CtPB1 total).
The normalized values for each virus passages 1–4 were then compared to passage 0 to obtain a
ratio relative to P1 (ΔΔCt = CtPX-CtP0). This relative Ct value was converted to reflect the fold
change (Δratio = 2-logΔΔCt). The change in ratio of the mutant relative to the change in ratio of
the WT as a function of passage is the fitness ([ΔratioMut-ΔratioWT]/time).

Transformation of fitness into relative growth rate
Except for poliovirus, the data on other viruses were extracted from [19]. Here, the relative fit-
ness values for VSV, QB, phiX174, and F1 were calculated as differences in the exponential
growth rate. The data on TEV were originally derived by qPCR as in the present study. In this
comparative analysis, Sanjuan applied a correction to the TEV data to enable direct compari-
sons of growth rate. We applied this same correction to our data to transform the values to
something resembling an exponential growth rate. The exponential growth rate, r, of influenza
A on A549 in a 12 well dish at moi 0.01, is derived from the equation: Nt = N0e

rt, where t = 2
days (48 hour passage), N0 is 10,000 infectious units (the amount at time 0), and Nt is the titer
after time t, or 48 hours. For Nt, we used the mean of three replicates for HA-40 (9.3e5), which
has a fitness of 1 (see Fig 1B). This is similar to the scaled output of WSN33 that we have
observed at different moi and different well sizes. Solving for r gives a value of 2.26 per day. We
then applied the following correction from [19], y = (lnx + r)/r, where y is the relative exponen-
tial growth rate of a given mutant, x is the relative fitness measured by qPCR and reported in
Tables 1 and 3, and r is the estimate of the WT exponential growth rate under our experimental
conditions (2.26 per day). For example, a fitness of 0.8 in our assay is transformed to a relative
exponential growth rate of 0.90. The relative exponential growth rates, as calculated, are
reported in S5 Table. We note that using a value 2e6 for Nt (which would be roughly consistent
with the average dilution factor applied at each passage in many of the competition experi-
ments, gives a growth rate of 2.65 per day and relative exponential growth rate of 0.916 for a
virus with a fitness of 0.8.

Statistics
All secondary analysis and statistical tests were performed in R and GraphPad Prism6. R and
Python scripts for analysis of Influenza Research Database data (as of July 8, 2016) and other
analyses are available at https://github.com/lauringlab/MFE_paper.

Supporting Information
S1 Fig. Distribution of single nucleotide variants in the influenza A genome. (A) A ran-
domly selected genome-wide dataset (n = 95), in which the number of mutants generated per
segment (grey bars) closely matches the expected distribution based on percentage of the
genome contained on each segment (black bars). (B) Extra HA and NA mutations were gener-
ated to compare larger numbers of mutations on these segments, n = 57, to those on the other
6 (internal) segments, n = 71.
(PDF)
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S2 Fig. Frequency of mutations in the Influenza Research Database. Shown are the frequen-
cies of nonsynonymous amino acid substitutions in our mutant dataset (y-axis) and their fit-
ness values (x-axis).
(PDF)

S1 Table. Primers used in this study.
(XLSX)

S2 Table. Secondary mutations as determined by Illumina sequencing.
(XLSX)

S3 Table. Site entropy and site preference values for HA and NP mutants.
(XLSX)

S4 Table. Raw data on mutation frequency from the Influenza Research Database.
(XLS)

S5 Table. Relative exponential growth rates for all mutants.
(XLSX)
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