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A B S T R A C T :

The expression of positive social (i.e., prosocial) behavior is governed by a multitude of sensory and cognitive
abilities to identify and recognize key features of potential social partners, elucidate social and individual status,
and maintain appropriate behaviors. Oxytocin (OT) is a neuropeptide that has been implicated as a major player
in regulating prosocial behavior, and much of its role in social situations has been uncovered. As social behavior
inherently comprises sequential processes related to multimodal assessments of interactive features, a compre-
hensive approach to understanding the functions of OT in these prosocial behavior sequences is required. Here,
the author discusses recent evidence illustrating the functioning of OT neural circuits in the processing of
multimodal components of social behavior, including the detection/recognition of social cues via the olfactory
bulb through olfactory cortices, evaluation of social features via the circuits of the paraventricular nucleus of the
hypothalamus to the medial amygdala, and maintenance of prosocial behaviors via the circuits of the ventral
tegmental area to the nucleus accumbens. A review of rodent studies with an emphasis on mice and rats is also
provided to investigate the effects of OT in interaction with other neurotransmitters, such as serotonin and
dopamine, to characterize the neuromodulatory mechanisms that mediate the sequences of prosocial engage-
ments. The review further highlights OT function as a temporal dynamic of specific neural circuits.
1. Introduction

The peptide hormone oxytocin (OT) is a neuromodulator involved in
regulating the adaptive social behaviors of all vertebrates (Nishimori
et al., 1996). OT consists of nine amino acids (Cys-Tyr-Ile-Gln-Asn-Cy-
s-Pro-Leu-Gly); the first six amino acids form a ring, while the remaining
three form a short tail (Kimura and Tanizawa, 1992; Inoue et al., 1994).
Central release of OT governs several significant biological functions,
including reproduction-related processes, such as mating and nursing, as
well as social processes (Landgraf, 1995; Gimpl and Fahrenholz, 2001).
Over the last three decades, focused efforts have also led to considerable
advances in understanding the functional role of OT in social and phys-
iological conditions and related disorders, and much of its role in social
regulation has been uncovered, including the cellular and molecular
mechanisms involved in the role of OT and its target receptor (OTR) in
neuronal cells. Nevertheless, a key issue that still needs more attention is
their multifunctional roles in the sequential processes of interactive so-
cial behavior, which in turn involve multiple levels of coordination with
other neurotransmitters and neural circuits. This review addresses the
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complexity of OT and OTergic neuronal circuitry regulation underlying
the multimodal sequential processing of prosocial communicative
behavior in rodent models.

2. Neural mechanisms of OT function

In the mammalian central nervous system, OT is synthesized mainly
in the supraoptic nucleus (SON) and paraventricular nucleus (PVN), as
well as in the accessory magnocellular nuclei of the hypothalamus
(Sofrniew, 1983; Swanson and Sawchenko, 1983; Landgraf and Neu-
mann, 2004). The OT peptide is released into peripheral circulation via
the posterior pituitary and plays a fundamental role in
reproduction-related processes such as uterine contractions, delivery,
and lactation (Gimple and Fahrenholz, 2001). Central release of OT is
mainly mediated by the PVN which contains parvocellular and magno-
cellular neurons (Swanson and Sawchenko, 1983). The magnocellular
neurons of the PVN are primarily responsible for the innervation of
forebrain regions (D€olen et al., 2013; Ross et al., 2009), while the par-
vocellular neurons likely project to distinct regions of the spinal cord and
ehara, Nishihara, Okinawa, 903-0125, Japan.
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brainstem (Sawchenko and Swanson, 1982). Recently, Eliava et al.
(2016) discovered a subset of hypothalamic parvocellular neurons that
project onto magnocellular neurons to modulate both immediate and
long-term OT release. Thus, central OT is likely transported via axonal
projections of both magnocellular and parvocellular neurons in the PVN,
which are distributed to various sites in the brain.

3. OTR and its distribution

The OTR is encoded by a single gene and belongs to the G protein-
coupled receptor (GPCR) superfamily, in which the ligand binding
structure is highly conserved across species (Gimpl and Fahrenholz,
2001; Busnelli et al., 2013). The OTR forms a small receptor sub-family
with the three structurally related arginine-vasopressin (AVP) receptors
(V1aR, V1bR, and V2R) (Grinevich et al., 2016). As the ligand-binding
pockets in the OTR and AVP receptor subfamily are extremely
conserved, they appear to have a high binding affinity for endogenous OT
and AVP in mice (e.g., OT to OTR affinity value: 0.83 nM, AVP to OTR
affinity value: 0.87 nM) (Busnelli et al., 2013). Therefore, it has proven
problematic to develop highly selective ligands that bind only to either
receptor and to detect OTR-specific immunoreactivity using anti-OTR
antibodies (Yoshida et al., 2009; Manning et al., 2012).

OTRs form heterodimers with other GPCRs, and these interactions
enormously expand their signal transduction repertoire. There are three
biased analogues that are capable of inducing only a specific subset of
OTR/G protein couplings: carbetocin, atosiban, and D-Nal-OVT (Busnelli
et al., 2012; Passoni et al., 2016; Busnelli and Chini, 2018). The OT
agonist carbetocin is a selective OTR/Gq analogue that is able to induce
OTR/Gq coupling in the absence of OTR/Gi or OTR/Go stimulation
(Passoni et al., 2016). Atosiban is an agonist that selectively activates
OTR/Gi3 coupling and inhibits cell proliferation and neuronal firing
(Busnelli et al., 2012; Busnelli and Chini, 2018), as does D-Nal-OVT via
promoting only OTR/Gi1 coupling (Eliava et al., 2016).

As most commercially available anti-OTR antibodies are unreliable
and stain both OT-positive and -negative tissues in mice (Yoshida et al.,
2009), in-situ hybridization to OTR mRNA and autoradiography for
detecting specific OTR ligands have been utilized to elucidate the dis-
tribution of OTRs in several species (Gimple and Fahrenholz, 2001; Jurek
and Neumann, 2018). Several brain regions with moderate to high OTR
density have been identified using the OTR gene promoter, including the
accessory olfactory bulb, medial septal nucleus, posterior region of the
complex amygdala nucleus, ventral hypothalamic areas (medial supra-
mammillary nucleus and dorsomedial and ventromedial nuclei), sub-
iculum area of the hippocampus, anterolateral cortical areas (entorhinal
and piriform cortices), and basal forebrain areas (dorsal tegmental,
vestibular, raphe, spinal trigeminal, and solitary tract subnuclei) (Gould
and Zingg, 2003; Jurek and Neumann, 2018).

As OTRs are expressed throughout the brain, OT has to reach them
efficiently and in sufficient amounts to activate them at various distances
from the hypothalamus (e.g., the PVN), by means of long-range axonal
projections. A large number of OT fibers are innervated in regions that
express OTR at sufficiently high levels (Knobloch et al., 2012; Tang et al.,
2020). High-density axonal projections are present in the basal ganglia
area, nucleus accumbens (NAc), lateral septal nucleus, bed nucleus of the
stria terminalis (BNST), medial amygdala (MeA), paraventricular
thalamic nucleus, and mid hind-brain areas including the raphe nucleus
and periaqueductal gray (Mitre et al., 2016; Jurek and Neumann, 2018).
A few regions of the rat forebrain, including the ventral pallidum, medial
preoptic area, and ventromedial hypothalamic nucleus, express moderate
to high OTR levels but are unlikely to receive direct OT projections
(Grinevich et al., 2016). This localization mismatch between OT axonal
terminals and OTR binding sites can partially be ascribed to technical
difficulties in the detection of these OT projection fibers and OTR
expression.

Recently, a viral tracing method with a fluorescent marker protein
under an OT gene promoter was used to visualize OT fibers projecting
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from hypothalamic neurons to different regions of the brain (Grinevich
et al., 2016). The distribution patterns of the OTR differ between species
(Campbell et al., 2009), in males and females (Dumais and Veenema,
2016), and across different developmental stages (Grinevich et al., 2015;
Tabbaa and Hammock, 2020). OT secretion from the axonal terminals
also varies depending on functional status in the context of
socio-environmental factors and developmental stages (Grinevich et al.,
2016; Grinevich and Stoop, 2018); thus, OTR expression is largely vari-
able. This is apparent from the fact that reported OT neuronal projection
and OTR localization and density vary widely across studies investigating
their distribution (Jurek and Neumann, 2018). For example, the lateral
septum receives dense OT fibers from the SON and PVN (Russell et al.,
1992; Neumann et al., 1991; Knobloch et al., 2012), and can increase
OTR expression by as much as four times in response to social stimuli or
pharmacological treatment (Zoicas et al., 2014; Neumann et al., 1991). In
other brain regions such as the NAc, basal fiber density and OT levels are
considered undetectable (Knobloch et al., 2012; Ross et al., 2009), but
increase substantially after social interactions to concentrations compa-
rable to those after OTR activation (Ross et al., 2009). Selective viral
tracing has confirmed that OT neuron axons project into the NAc,
although the signal is relatively weak (Tang et al., 2020).

Recently developed genetic procedures using highly selective viral
tracing have enabled the discrete identification of OT neuron axonal
projections in the PVN (Tang et al., 2020). The majority of OT neurons in
the PVN are magnocellular neurons (97%), while the rest are parvocel-
lular neurons (3%) (Althammer and Grinevich, 2018). Retrograde viral
tracing into the PVN illustrated that most afferent inputs between the
parvocellular and magnocellular neurons are common, but the number of
axonal projections varies (Tang et al., 2020). A few exceptions to these
axonal afferent inputs to the PVN include the paraventricular nucleus of
the thalamus, insular cortex, and habenular nucleus projecting to only
parvocellular neurons, and the substantia nigra to only magnocellular
neurons (Tang et al., 2020). Although parvocellular neurons can activate
the magnocellular neurons within the PVN (Eliava et al., 2016), the
functions of parvocellular neurons during social interaction between fe-
male rats likely differs from those of magnocellular neurons.

4. Circulatory delivery of OT and behavioral functions

Several studies have indicated that circulating OT can cross the blood-
brain barrier (BBB) to a certain extent (Lim et al., 2005). Intravenous
injection of OT has been shown to raise its plasma levels, but an increase
in levels in the cerebrospinal fluid (CSF) is evident only when a relatively
supraphysiological dose of OT (e.g., 100 ng/kg) is injected subcutane-
ously (Jin et al., 2007). However, the functions of the BBB differ with age,
and peripheral injection of OT into neonatal mice induces significant
alterations in central OT-OTR signaling and metabolism (Carter et al.,
2008; Tabbaa and Hammock, 2020). It is possible that exogenous OT can
induce the release of endogenous OT via binding to OTergic neurons
(Lambert et al., 1994), creating a peptide feedback loop that leads to
central release due to a small amount of OT crossing the BBB (Moos et al.,
1989).

Central release of OT has been linked to changes in cognitive and
social status-related processes, including the regulation of social behavior
systems and the salience of socially relevant stimuli based on olfactory
and auditory cues (Richard et al., 1991; Insel and Young, 2001; Young,
2001; Insel, 2010; Churchland and Winkielman, 2012; Choe et al., 2015;
Marlin et al., 2015; Oettl et al., 2016). OT has been identified as a
modulator of emotional and defensive reactions, such as anxiety,
depression, and escape behavior (Neumann and Landgraf, 2012; Neu-
mann and Slattery, 2016; Olivera-Pasilio & Dabrowska, 2020), all of
which are factors influencing the segmentalized processing of social
behavior (Knobloch et al., 2012; Arakawa, 2020b). It is hypothesized that
OT circuits play discrete roles in different sequential processes in social
behavior in a context-dependent manner; therefore, we will review these
neural circuits by focusing on the processing related to prosocial
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behavior, including olfactory detection/discrimination via the olfactory
bulb to the olfactory cortex, social approach/investigation via the
PVN-amygdala-raphe circuits, and maintenance of social inter-
action/contact via the NAc and the ventral tegmental area (VTA) circuits.

5. OT function in social behavior

Although central OT is known to be involved in several physiological
functions, including those related to reproduction, the circadian rhythm,
and stress regulation, it is mainly known as a modulator of social
behavior (Jurek and Neumann, 2018). An increasing number of studies
in humans using intranasal administration of OT have indicated a critical
role for it in enhancing positive social behaviors such as trust, affiliation,
and empathy (Kosfeld et al., 2005; Keech et al., 2018). Subsequent
studies have also implicated the effectiveness of using intranasal OT
administration to ameliorate symptoms of social dysfunction in various
psychiatric conditions, including schizophrenia, autism, psychopathy,
and social anxiety (Ma et al., 2016). Autism is a neurodevelopmental
disorder affecting two major core behavioral symptoms, namely
impaired social interactions and communication and restricte-
d/repetitive behaviors (Baronio et al., 2015; Arakawa, 2020), and OT has
garnered significant interest in the scientific community as an investi-
gational treatment for autism.

Conversely, accumulating evidence has demonstrated that OT can
also induce anti-social (negative social) effects, including increased
feelings of mistrust or envy towards unknown individuals in humans
(Shamay-Tsoory et al., 2009; Bartz et al., 2011; Grillon et al., 2013) and
enhanced maternal aggression towards unfamiliar conspecifics or in-
truders in rodent models (Ferris et al., 1992; de Jong et al., 2014).
Therefore, it may be argued that OT enhances attention oriented to
associated social stimuli (the social salience hypothesis; Shamay-Tsoory
and Abu-Akel, 2016); thus, the responses of animals would depend on the
social characteristics (e.g., cooperative or threatening) they encounter
(Declerck et al., 2010). Furthermore, the exact functional contribution of
central OT is still unclear because of the complexities of the social pro-
cesses involved in compositive human behaviors. The effect of OT is also
expected to be derived from the output of complex neural processing
involving interactions with other neurotransmitters, such as dopamine
(DA) and serotonin (5-HT), and AVP, to orchestrate the regulation of
multiple aspects of behavioral processes.

The use of rodent models based on OT mutations and OT micro-
infusion has provided a solid foundation for experimental research on
the importance of OT function in social behavior-related processes,
including those related to cue detection and discrimination, memory,
social preference, and other pro- or anti-social interactions (Carter et al.,
2008; Lim et al., 2005). Across many studies, central administration of
OT agonists has been shown to enhance recognition and memory for
peers and partners as exhibited by altered social investigation (Ferguson
et al., 2001; Young et al., 2002; Arakawa et al., 2010). Studies on
transgenic mice have also shown that the loss of the capacity to respond
to social cues in OT synthesis knockout mice is fully restored by
micro-infusion of OT into the MeA before social encounters (Ferguson
et al., 2001). Since prosocial behavior is a sequential process
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accompanied by multiple modulations of the cognitive subsystems
involved in detection, recognition, memory, behavioral strategies, and
motives, it is difficult to clarify the specific functions of OT in each
sequential social process. Furthermore, several studies have provided
evidence that OT functions are a consequence of interactions with other
neurotransmitters (Jurek and Neumann, 2018). In the following chap-
ters, we will address the factors, such as prosocial processing with other
neuromodulators, that confound our understanding of the effects of OT.
We will also illustrate a putative OT/OTR neural circuit for the sequential
regulation of prosocial behavior in rodent models.

6. Sequential processing of prosocial behavior

Social interaction is well known to be a multifactorial process (Ara-
kawa et al., 2011) (Fig. 1). The complex neural organization underlying
social behavior has been extensively investigated using rodent models,
allowing us to exhaustively elucidate the related neuronal mechanisms in
highly social species. Working successfully with rodent models necessi-
tates accounting for characteristic as well as species-specific differences
between the constructs of interest. The most common laboratory rodents
(i.e., mice and rats) are nocturnal, and thus use olfactory and tactile
senses as the primary tools in adaptive behaviors and survival strategies
(Arakawa and Iguchi, 2018).

Olfaction is the major modality through which rodents detect and
identify potential social partners based on volatile signals, particularly in
the initial phase of encountering unfamiliar social cues (Brennan and
Kendrick, 2006; Arakawa et al., 2011). Volatile odor cues, along with
vocalization, facilitate the determination of whether individual signal
recipients display approach or avoidance behavior to social stimuli for
further investigation. Following approach to a range in which they can
engage in physical contact with the source of the social stimuli, rodents
exchange nonvolatile compounds as olfactory signals in conjunction with
tactile-whisking palpation for gathering social information and achieving
body contact with each other (Arakawa and Iguchi, 2018). During these
assessment processes, rodents exhibit typical behaviors and postures
involving back-and-forth movements and stretching of the body towards
the social stimuli as a mode of risk assessment (Blanchard et al., 2011),
which is a major component of novelty assessment. Moreover, when
becoming familiar with social stimuli, rodents typically engage in phys-
ical contacts with each other in the form of huddling. Huddling with
familiar conspecifics is common among most mammals to maintain
prosocial relationships (Alberts, 2007; Arakawa et al., 2007). As with
cuddle contacts in humans, empirical evidence from rodent models il-
lustrates that this innate preference for huddling is indicative of the
motivation for bodily contact with familiar conspecifics (IJzerman et al.,
2015; Morrison et al., 2016).

Although humans are not highly dependent on odorant cues or the
tactile sense to make decisions regarding social interactions, these
multisensory modalities are essential for rodents in all aspects of social
interaction, including the recognition and assessment of a would-be so-
cial partner. The multiple sensory inputs discretely activate neural
pathways coupled to the expression of social behavior (Zarate, 2014;
Arakawa and Iguchi, 2018). Thus, preclinical rodent models of social
Fig. 1. A diagram of the relationships between fa-
miliarity and behavioral strategies towards social
encounters. At a distance, volatile olfactory signals
are detected, which activates exploratory behavior.
In a proximity, risk assessment behavior is per-
formed to gather more information regarding social
features of social stimuli via non-volatile and tactile
signals. When getting familiar with the social stim-
ulus, staying in the proximity and body contact are
permitted each other, and thus, time spent in prox-
imity/contact is increased.
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behavior need to involve a comprehensive analysis of variables involved
in initial olfactory detection and recognition of social partners and sub-
sequent investigatory assessment and contact reception behaviors during
olfactory and tactile social engagement. Moreover, the neural mecha-
nisms of OT circuitry are hypothesized to be involved in all aspects of the
prosocial engagement.

7. Social olfactory detection regulated by the OT system

Social interactions between rodents, particularly during the initial
phase of detection, rely heavily on olfactory cues (Keverne and Brennan,
1996; Arakawa et al., 2011), with the corresponding assessment of social
stimuli involving two discrete olfactory processes (Brennan and Ken-
drick, 2006; Linster and Fontanini, 2014) (Fig. 2). Airborne volatile cues
trigger the detection and discrimination of potential social stimuli and
facilitate the determination of subsequent strategies for social in-
teractions, for example, approach-withdrawal behavior for risk assess-
ment (Blanchard et al., 2011). Approach behavior towards social stimuli
leads to individuals subsequently being in range of physical contact with
each other and activates sniffing and uptake of nonvolatile odorants from
bodily, facial, and anogenital areas of the opponents to gather more in-
formation regarding social features (Arakawa et al., 2011).

Volatile molecules are mainly processed via the main olfactory
epithelium, which projects to the main olfactory bulb (MOB) (De Castro,
2009; Courtiol and Wilson, 2015). Axons from the MOB project through
the olfactory cortices, including the piriform cortex, and reach the ol-
factory thalamus and/or the amygdala directly (De Castro, 2009). On the
other hand, nonvolatile molecules are taken up to reach the circuits
projecting from the vomeronasal organ to the accessory olfactory bulb
(AOB) (Mucignat-Caretta, 2010). Projection neurons from the AOB
directly send their axons to the amygdala (Mucignat-Caretta, 2010).

Both the MOB and AOB (more densely projected to AOB) contain OT
terminals originating from OT neurons of the PVN (Vaccari et al., 1998;
Knobloch et al., 2012). The MOB contains inter-neuronal networks
mediated by mitral and tufted cells connected to granule cells (Brunjes
et al., 2005; Balu et al., 2007). OTRs are expressed in the granule
cell-containing region of the MOB and may play a role in local compu-
tations in coordination with olfactory cortical circuits (Numan, 2006;
Mitre et al., 2016). AVP receptors are involved, perhaps more intensely,
in the processing of social odor discrimination processed via the MOB to
the anterior olfactory nucleus pathway (Wacker et al., 2011). OT also
induces long-term potentiation of excitatory input from mitral to granule
4

cells in the AOB (Fang et al., 2008).
Essential olfactory processing does not require the OT system, as mice

with genetic OT deletion can detect and recognize non-social or preda-
tory odors normally (Kavaliers et al., 2003; Oettl et al., 2016). Social
odors require specific processing of conspecific components, and OT
plays a critical role in learning that is associated with the ability to detect
and recognize social odors (Oettl et al., 2016). Exogenous OT enhances
olfactory exploration towards social cues in rats, which is associated with
increased firing rates of neurons in the anterior olfactory nucleus (Kno-
bloch et al., 2012; Oettl et al., 2016). The anterior olfactory nucleus
contains a high level of OTRs and receives innervation from OT neurons
of the hypothalamic PVN (Freund-Mercier et al., 1987; Vaccari et al.,
1998). Furthermore, the OT-OTR system in the olfactory bulb enhances
odor coding by increasing the inhibitory tone innervated to the granule
cells of the MOB, improving the signal-to-noise ratios of social odor re-
sponses (Markopoulos et al., 2012; Knobloch et al., 2012; Oettl et al.,
2016). Therefore, OT also plays a regulatory role in coding social olfac-
tory information.

OT signaling in the piriform cortex is required for acquiring social
odor learning (Choe et al., 2015). Dense labeling of the OTR and OTergic
terminals in the piriform cortex and other olfactory cortices has been
documented (Illig and Haberly, 2003; Sosulski et al., 2011). OTR
signaling in the piriform cortex also seems to be essential for entraining
initial sensory representation of social olfactory cues (Choe et al., 2015).
Selective blocking of OTR signaling in the piriform cortex disrupts the
detection of neutral, non-social odors formerly paired with female mice,
suggesting that OTR signaling in the piriform cortex appears to mediate
social salience to an initially neutral odor (Choe et al., 2015).

Moreover, OT administration rapidly reduces GABAergic inhibition
in several brain regions, including the hippocampus (Owen et al., 2013),
auditory cortex, piriform cortex, and hypothalamic PVN (Marlin et al.,
2015; Mitre et al., 2016). This transient disinhibition is effective in
modulating and re-activating the neural mechanism underlying
long-term changes in synaptic and spiking responses to social stimuli and
ontogenetic social events. For example, maternal behaviors, such as a
particular response to a pup's distress call, are observed only for experi-
enced mothers, and virgin females respond poorly to pup calls (Marlin
et al., 2015). OT modulation of synaptic and spiking responses to pup
distress calls can trigger both rapid modulation of synaptic transmission
and long-term plasticity by disinhibition of GABAergic signals (Mitre
et al., 2016).

A form of OT-mediated plasticity through sensory experiences of
Fig. 2. Olfactory circuity coordinated with OT
neurons in mouse ventral brain. Volatile odorants as
a social signal are processed via the main olfactory
epithelium (MOE), olfactory bulb (OB), olfactory
and piriform cortex (PC) mediodorsal thalamus
(MD), amygdala (Amyg), and Entorhinal cortex (EC)
and hippocampus (HPC). Nonvolatile odorants as a
contact social signal are processed through the
vomeronasal organ (VNO), accessary olfactory bulb
(AOB), and medial amygdala (MeA). OT neurons
innervate from the paraventricular nucleus of hy-
pothalamus (PVN) to several brain sites associated
with these olfactory processes.
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different modalities has been identified in early development (Zheng
et al., 2014). Mice were subjected to sensory deprivation by either
whisker trimming at birth (i.e., tactile deprivation) or rearing in total
darkness (i.e., visual deprivation). In vitro recordings in layer II/III of
auditory, somatosensory, and visual pyramidal cells showed a reduction
in spontaneous firing rates, as expected. Microarray screens to search for
changes in gene expression showed that OT mRNA was consistently
downregulated after sensory deprivation. The reduction in OT mRNA
levels which would account for the reduced excitatory synaptic trans-
mission, could be reversed by postnatal environmental enrichment
(Zheng et al., 2014). These data suggest that sensory experiences can
mediate OTergic gene expression in the PVN and lead to a reduction in
OT activities required for synaptic transmission related to sensory pro-
cesses in multiple cortical areas during early development (Grinevich and
Stoop, 2018).

OT may not be involved in interactive neural processing with other
neurotransmitters in the olfactory system. Along with GABAergic neu-
rons, dopaminergic neurons and their axonal terminals richly innervate
the glomerular layers in the olfactory bulb (Pignatelli and Belluzzi,
2017), but dopaminergic regulation is unlikely to be required for
essential olfactory processing (O'Dell et al., 2011). For example, the
administration of methamphetamine, which acts as an indirect DA
agonist, does not have a significant impact on olfactory habituation to
social odors as tested using the habituation/dishabituation test, although
a slight impairment in olfactory discrimination is observed (O'Dell et al.,
2011). Similarly, mice with genetic dilution of DA type 2 receptors
exhibit normal odor discrimination (Kruzich et al., 2004). There are
serotonergic projections to both the MOB and AOB, largely excitatory in
the MOB and predominately inhibitory in the AOB (Huang et al., 2017),
indicating the olfactory-MOB processing dominance of 5-HT. Seroto-
nergic signals are required neither for normal olfactory processing nor
social odor discrimination, since neuronal 5-HT synthesis knockout mice
(Tph2�/�) demonstrated normal olfactory discrimination for social
cues, but impaired social approach/contact (Mosienko et al., 2012; Huo
et al., 2018), which is regulated by other brain regions as discussed
below.
5

8. Social investigation regulated by OTergic projection from the
PVN

In rodents, OT neurons in the PVN are directly projected to the MeA
(Keshavarzi et al., 2014; Cadiz-Moretti et al., 2016; Cserven�ak et al.,
2017), where the OTR mediates the effects on social signals to result in
the expression of approach behavior, such as in the social recognition test
(Ferguson et al., 2001; Arakawa et al., 2010) (Fig. 3). This test is used to
assess the ability of animals to discriminate between social stimuli based
on social memory (Engelmann et al., 1995; Arakawa and Iguchi, 2018).
The test relies on the exposure of subject mice to conspecifics as stimulus
animals and on monitoring the duration that subject mice spend inves-
tigating those conspecifics. It is hypothesized that mice have a motive to
investigate/sniff ‘unfamiliar’ social cues, such as odors; thus, subject
mice would spend more time investigating social cues if they are unfa-
miliar, and less if they are familiar. Subject mice are exposed over several
trials to a social stimulus that is initially unfamiliar; repeated exposures
to the same social stimulus induce habituation, and the investigation
time in subsequent trials declines. Following habituation, a change to a
novel, unfamiliar stimulus restores the investigatory reaction to initial
levels if subject mice are able to detect a difference between the previous
and current social stimuli, known as dishabituation.

OT null mice did not induce the expression of c-fos, a neuronal ac-
tivity marker, in the MeA when they encountered a social stimulus, and
maintained a moderate level of investigation toward the same social
stimulus over repeated trials in the habituation/dishabituation task;
however, micro-infusion of OT into the MeA before the test restored
impaired habituation to the social stimulus (Ferguson et al., 2001). A
similar phenotype has been confirmed in mice with genetic OTR dilu-
tion—OTR knockout mice do not reduce investigation time when
exposed to the familiar stimulus mouse in a similar habituation paradigm
(Choleris et al., 2006; Lee et al., 2008). Since these mice with OT deletion
exhibited normal performance in non-social or predatory odor discrim-
ination (Kavaliers et al., 2004), the function of OT can be ascribed to the
expression/regulation of approach behavior in response to social cues
rather than to memory-related odor discrimination. Accordingly, OT
knockout mice spent less time in social interactions with conspecifics
Fig. 3. OT neural circuits regulating multiple pro-
cesses of prosocial behaviors. When sensory inputs
associated with social stimuli are delivered via the
sensory systems, including olfactory and tactile
senses, the OT neurons in the paraventricular nu-
cleus of the hypothalamus (PVN) consist of two
discrete cell types (e.g., magnocellular and parvo-
cellular neurons) and the serotonergic neurons in
the raphe nucleus are stimulated. OT neurons
innervate with several brain sites, including the ol-
factory bulb-cortices, raphe nucleus, amygdala
complex, and ventral tegmental area (VTA) and
nucleus accumbens (NAc). 5-HT neurons are also
projected to several brain sites associated with OT
neurons, including the raphe nucleus, amygdala,
and reward circuit (VTA and NAc). The 5-HT and
OT in the PVN can activate the release of OT. The
OT neurons from the PVN to medial amygdala play a
significant role in approach and investigatory be-
haviors to social stimuli. OT neurons also stimulate
the reward circuits of VTA-NAc via dopamine neu-
rons to maintain contact-based social behavior such
as huddling. A modulatory circuit including the
insular cortex to the bed nucleus of the stria termi-
nalis (BNST) receives OT input integrates sensory
social information and sends back modulatory sig-
nals to the PVN and reward circuit, providing
adaptable behavioral responses in a social situation
(evaluation) dependent manner.
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when they could directly contact each other (Pobbe et al., 2012). How-
ever, these OTR null mice spent less time investigating a ‘non-social’
object as well (Leonzino et al., 2019), which indicates a particular
behavioral role of OT in the regulation of approach behavior to both
social and non-social novel stimuli.

Several lines of evidence suggest that 5-HT-related mechanisms are
involved in the regulation of OT release from the PVN. Firstly, 5-HT1A
receptors are distributed widely throughout the brain (Riad et al.,
2000; Matias et al., 2017), and OT neurons in the PVN have been shown
to be immunopositive for 5-HT1A receptors (Zhang et al., 2004). Stim-
ulation of postsynaptic 5-HT1A/2A receptors on OT neurons in the PVN
leads to downstream release of endogenous OT (Badgy & Kalogeras,
1993; Jørgensen et al., 2003; Osel-Owusu et al., 2005; Petrunich- Ruth-
erford et al., 2018), while OT response after systemic administration of
the 5-HT1A partial agonist ipsapirone was significantly reduced
following lesions to the PVN (Bagdy, 1996). Secondly, two 5-HT2 re-
ceptor agonists, DOI (5-HT2A) and MK212 (5-HT2C), also stimulated OT
mRNA expression in the PVN (Jørgensen et al., 2003). The amphetamine
derivative 3,4-methylenedioxymethamphetamine (MDMA) is an agonist
of multiple 5-HT receptors, including the 1A, 1B, 1D, 2A, and 2C re-
ceptors (Fletcher et al., 2002), and stimulates OT neurons in the PVN;
moreover, this stimulation is blocked by co-administration of the 5-HT1A
antagonist WAY-100635 (Hunt et al., 2011). Finally, restraint
stress-induced OT release in the PVN is blocked by intra-
cerebroventricular administration of either of the 5-HT antagonists
WAY-106635 (5-HT1A) or ketanserin (5-HT2A/2C) (Jørgensen et al.,
2002). Therefore, one of the serotonergic receptors, most likely the
5-HT1A or 5-HT2A receptor, both of which colocalize in the same cells as
OT (Ho et al., 2007; Osei-Owusu et al., 2005), stimulates OT synthesis in
the PVN (Chiodera et al., 1996), which in turn activates social approach
behavior (Arakawa, 2017). Accordingly, central OT infusion as well as
systemic injection of the 5-HT1A agonists 8-OH-DPAT (Tang et al., 2020)
or buspirone (Arakawa, 2017) produce increased sniffing and approach
to unfamiliar conspecifics in response to volatile social odors, which are
blocked by central injection of a specific OTR antagonist (Arakawa et al.,
2015; Arakawa, 2017).

The neural circuitry of 5-HT and OT in the PVN is likely formed
during postnatal development. Perinatal administration of the 5-HT
agonist 5-methoxytryptamine, upregulates plasma 5-HT levels and
morphological reconstruction in OT neurons in the PVN, including
decreased co-localization of OT with 5-HT2A but not 5-HT1A receptors
(Edwards et al., 2018). This mutual regulation between 5-HT and OT
suggests discrete mechanisms underlying OT-regulation by 5-HT neurons
existing with the 5-HT1A/2A receptor balance in the PVN (Lefevre et al.,
2017).

Following approach to conspecifics, mice display typical response
patterns based on familiarity, such as facial investigation of the oppo-
nents by whisker palpation along with muzzle sniffing, which usually
induces little avoidance (flight response) in approached mice. Anogenital
investigation of unfamiliar opponents typically leads to a flight response
(~40%) (Arakawa et al., 2007, 2015). Injection of either OT or buspir-
one, a 5-HT1A agonist, robustly decreased the flight response in the
approached animals and contributed to the maintenance of approach/-
contact behavior (Arakawa et al., 2015, 2017). Tph2 knockout mice
exhibit a higher frequency of the flight response (~80%) on being
approached (Mosienko et al., 2012), which indicates that their extreme
aggressiveness (i.e., rejection of social contact) is due to diminished
sensitivity of 5-HT1A receptors (Peeters et al., 2019). OT infusion in the
MeA restores approach behavior in female Tph2 knockout mice (Huo
et al., 2018), suggesting that the 5-HT-OT signal in the PVN-MeA cir-
cuitry plays a key role in expressing approach behavior in response to
social cues and maintaining social contact acceptance.

These behavioral patterns related to approach and withdrawal to
physical contact are frequently reciprocated during a social interaction.
Such approach-withdrawal behaviors represent typical risk assessment
behavior (Blanchard et al., 2011), which involve searching and assessing
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the environment by stretching the body back and forth. Such risk
assessment behaviors of male mice in response to a predatory odor are
disrupted by an intracerebroventricular injection of a specific OTR
antagonist (Samuelsen and Meredith, 2011). A recent study demon-
strated that the types of OT neurons in the PVN could be the key to
mediating approach-contact patterns. Magnocellular OT neurons in the
PVN modulate social investigation/approach without physical contact
(novelty investigation), which likely switches to control by parvocellular
OT neurons when rats can physically encounter peer social stimuli (Tang
et al., 2020). Signals from parvocellular OT neurons associated with
physical contact with peers would be sent to the NAc, which is linked to
the reward circuit (D€olen and Malenka, 2014). Accordingly, one of the
social deficit models of autism, Fmr1 knockout mice, is diluted a set of
target genes for fragile X syndrome (Mineur et al., 2006), which require
activation of parvocellular OT neurons to appropriately express prosocial
reward learning (Lewis et al., 2020).

The sense of touch is a highly social component in both animals and
humans (Glone et al., 2014). Whisker sensations represent the rodent
tactile sense, while the bodily touch sense also plays a major role in peer
social interaction (Lenschow and Brechit, 2015), as mice frequently
engage in huddling with familiar conspecifics (side-by-side physical
contact) (Alberts, 2007). Central infusion of OT facilitates huddling and
anogenital contact behavior among unfamiliar mice (Arakawa et al.,
2015) and mouse pups (Harshaw et al., 2018). Moreover, 5-HT regulates
rhythmic whisking (Hattox et al., 2003) and the whisker touch sense
(Arakawa et al., 2014; Gaspar and Lillesaar, 2012). Injection of the par-
tial 5-HT1A-agonist buspirone also increased physical body contact with
unfamiliar mice during social encounters (Arakawa, 2017). Taken
together, these behavioral data support the idea that 5-HT and OT in the
PVN play a mediatory role in the approach-withdrawal tactile contact
process during social engagements.

9. Social approach modulated by OT in the amygdala

The amygdala consists of three discrete subdivisions—the basolateral
portion, composed of the lateral, basolateral and basomedial nuclei; the
centro-medial portion, composed of the medial and central nuclei; and
the cortical portion, composed of the anterior and posterior cortical
nuclei (Sah et al., 2003; McDonald, 1998). These subregions are collec-
tively involved in the regulation of several fundamental behavioral
processes, such as the determination of the emotional significance of
sensory stimuli, the modulation of fear-related defensive responses
(LeDoux, 2000), and the regulation of social behavior (Gothard, 2020).
The OT-OTR system in the MeA plays a key role in the expression of
approach behavior in response to social cues and in the maintenance of
social contact with familiar partners (Arakawa et al., 2010, 2015; Ara-
kawa, 2017). Although systemic OTR blockage does not influence social
approach in malemice (Haskal de la Zerda et al., 2020), micro-infusion of
an OTR antagonist into the MeA blocks the activation of social approach
and contact behaviors in response to social stimuli (Arakawa et al., 2010;
Samuelsen and Meredith, 2011).

Sex-specific activities of OT have been reported in response to social
stimuli in the subregions of the amygdala based on human fMRI studies
(Domes et al., 2007, 2010; Rilling et al., 2012, 2014). Rodent studies
have also illustrated sex-specific differences in OT function in mediating
male versus female social interest depending on the subregions of the
amygdala. Male mice showed higher social investigation accompanied by
higher OTR mRNA expression in the MeA (Arakawa et al., 2010; Mur-
akami et al., 2011), while female mice displayed enhanced OTR mRNA
expression in the central amygdala particularly in response to juvenile
male approach (Dumais et al., 2016). However, the sex-specificity of OT
function is not always consistent, since the MeA in female mice has also
been identified as a target of OT to promote social approach, as shown by
a local infusion of antisense oligonucleotides targeting OTR expression in
the MeA of female mice (Choleris et al., 2007).

In addition to OT synthesis, 5-HT may be involved in the amygdalar
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regulation of social investigation/approach in rodents. There are two
distinct ascending serotonergic systems: serotonergic fibers from the
dorsal raphe nucleus extend anchored innervations to the striatum,
amygdala, and ventral hippocampus, while those from the median raphe
nucleus show large, round, sparse innervations to a wide range of regions
including the sensory cortices, hippocampus, and hypothalamus (Hens-
ler, 2006; Gaspar and Lillesaar, 2012). Although the MeA receives 5-HT
innervation from the dorsal raphe nucleus (Azmitia and
Whitaker-Azmitia, 1991), it is unclear whether 5-HT is directly involved
in the regulation of social approach in the MeA. The MeA expresses
several types of 5-HT receptors, in particular the 5-HT1A (Kia et al.,
1996), 5-HT1B (Sari et al., 1999), and 5-HT2C receptors (Abramowski
et al., 1995). The 5-HT2C receptor in the MeA may be involved in the
regulation of aggressive behavior via inhibitory GABAergic interneurons
(Asan et al., 2013). The activation of 5-HT1A receptors or blocking of
5-HT2 receptors in the MeA by microinjection induces anxiolytic effects
(de Paula et al., 2016). While it is still unknown whether the OTR system
in the MeA is coordinated with serotonergic innervation to 5-HT re-
ceptors, most serotonergic regulation appears to be via mediation by
basolateral amygdala projecting neurons (Bocchio et al., 2016) or the
central amygdala (Ferretti et al., 2019). It is likely that the 5-HT in the
amygdala plays a regulatory role in the emotional state, rather than in
social behavior directly (Ferretti et al., 2019; Bubak et al., 2020).

The emergence of approach behavior in response to peer social
stimuli is also coordinatively controlled by other behavioral processes.
When exposed to unfamiliar social or potentially threatening stimuli,
animals display more investigatory behavioral components in order to
assess the risk posed by the confronted stimuli (Blanchard and Blanchard,
1989; Blanchard et al., 2011). If the confronted stimulus is evaluated as a
threat or danger, the risk assessment behavior is linked to subsequent
avoidance responses (Blanchard et al., 2011), in which OT neurons
innervated to the anterior BNST are involved (Steinman et al., 2019). The
anteromedial portions of the BNST receive inputs from the PVN andMeA,
and send back direct projections to the PVN and central amygdala (Dong
and Swanson, 2006). The BNST circuits are likely a key center for
stress-related avoidance responses (Lebow and Chen, 2016), as exposure
to social defeat stress increases OT expression in the anterior BNST
(Nasanbuyan et al., 2018). OTR activation in the anteromedial BNST
induces avoidance of unfamiliar social stimuli in female California mice,
whereas administration of OTR antagonist into the anterior BNST re-
duces the acquisition of fear-associated learning in rats (Moaddab and
Dabrowska, 2017) and suppresses social avoidance following stress
exposure in female California mice (Duque-Wilckens et al., 2018).
Therefore, the BNST-amygdala circuits coordinate with the PVN-MeA
circuits, in which OT acts to regulate investigatory behaviors toward
social stimuli in a familiarity- and threat-dependent manner (Steinman
et al., 2019). In addition, sex-dimorphic hormonal regulation in the BNST
is clearly documented—female mice predominantly exhibit
OT-dependent behavioral effects, while male mice show AVP-dependent
BNST effects on behavior (Rigney et al., 2019).

10. OTergic mediation of the 5-HT system

Several lines of evidence have illustrated that OT conversely regulates
the release/effects of 5-HT (Lefevre et al., 2017). For instance, an intra-
cerebroventricular injection of OT reduced anxiety-related behavior in
the open field test, which was fully blocked by systemic injection of
ritanserin, an antagonist of 5-HT2A/2C receptors (Yoshida et al., 2009).
The existence of mutual interactions between OT and 5-HT is endorsed
by several observations of neuromodulatory effects in the NAc. OTRs are
found in the presynaptic terminals of serotonergic inputs from the dorsal
raphe into the NAc (D€o;len et al., 2013). OT-mediated activation in the
NAc requires activation of 5HT1B receptors, which is associated with
synaptic plasticity in the NAc neurons sustaining social approach
behavior (D€o;len et al., 2013). In addition, recent findings have
demonstrated that OTRs are co-localized with 5-HT2A receptors in
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several brain regions, including the hippocampus, cingulate cortex, and
NAc (Chruscicka et al., 2019). Activation of the 5-HT2A signal attenuates
the OTR-mediated Gαq signal in the NAc (Chruscicka et al., 2019), sug-
gesting serotonergic mediation of neural OT activity via 5-HT1B/2A re-
ceptors in the NAc. It is conceivable that a similar regulatory mechanism
also exists in the dorsal periaqueductal gray (dPAG).

OT administration in the dPAG facilitated 5-HT neurotransmission,
which regulates anti-escape behaviors in social or predatory situations
(Vilela-Costa et al., 2019). The 5-HT effect in the dPAG is mediated via
activation of 5-HT1A or 2A receptors (De Oliveira Sergio et al., 2020; De
Paula Soares and Zangrossi, 2004; Mongeau and Marsden, 1997;
Nogueira and Graeff, 1995; Spiacci et al., 2016). The majority (>90%) of
5-HT2A receptor-labelled cells are colocalized with GABAergic in-
terneurons in the PAG (Griffiths and Lovick, 2002). It is indicated that
activation of 5-HT1A receptors hyperpolarizes cells and leads to inhibi-
tion of dPAG neuronal activities, while the activation of 5-HT2A re-
ceptors via OT stimulation induces depolarization of the dPAG cells
through an inhibition of GABAergic interneurons (Brandae;o et al., 1991;
Griffiths and Lovick, 2002). Moreover, micro-infusion of a GABAA re-
ceptor antagonist into the dPAG blocked OT/5-HT2A-induced behavioral
effects (De Oliveira Sergio et al., 2020; Vilela-Costa et al., 2019).

The raphe nuclei have a high density of OTRs that are involved in the
regulation of 5-HT release by OT (Pagani et al., 2015). 5-HT1A receptors
are presynaptic in the raphe nucleus and postsynaptic in other brain re-
gions (Albert et al., 2014). Presynaptic 5-HT1A receptors in the dorsal
and median raphe nuclei act as autoreceptors, forming a micro-feedback
loop to tightly regulate 5-HT neuronal activity within the raphe nucleus
(Toth, 2003; Stiedl et al., 2015) and through interaction with OT (Stiedl
et al., 2015). OT may modulate 5-HT neurotransmission by upregulating
5-HT1A receptors in the dorsal raphe nucleus in humans (Mottolese et al.,
2014) and the median raphe nucleus in mice (Yoshida et al., 2009;
Pagani et al., 2015). The release of 5-HT from the raphe nucleus stimu-
lates OT neurons in the PVN, where feedback OT projections from the
PVN activate 5-HT1A autoreceptors in the raphe nucleus, leading to a
reduction/termination of 5-HT release from it, thus creating a long-range
indirect feedback loop. Systemic injection of the 5-HT agonist 5-methox-
ytryptamine causes massive increase in extracellular 5-HT levels, leading
to a reduction of OT release in the PVN (Kostoglou-Athanassiou and
Forsling, 1998), which can be explained by an upregulation of 5-HT1A
autoreceptors in the raphe nucleus, resulting in a reduction of 5-HT
stimulation in OT neurons in the PVN. Accordingly, site-specific condi-
tional knockout of the OTR on serotonergic neurons of the raphe nucleus,
leading to a loss of negative feedback of 5-HT, did not increase
anxiety-like behavior, but reduced intruder-aggression in male resident
mice (Pagani et al., 2015). Activation of postsynaptic 5-HT1A and 1B
receptors in the raphe nucleus also leads to anti-aggressive effects in
rodents (de Boer and Koolhaas, 2005), while a deficit of 5-HT signals in
the brain results in extreme hyper aggression in mice (Mosienko et al.,
2012). Therefore, OT signals delivered in the raphe nucleus play a role in
fine-tuning 5-HT signals in the nucleus via the mediation of presynaptic
5-HT1A autoreceptors and postsynaptic 5-HT1A and 1B receptors.

11. Reward systems sustaining social contact behavior

Social interaction with familiar conspecifics has reward properties
which motivate animals to engage in physical contact involving familiar
social stimuli, such as huddling, and maintain certain relationships with
partners (Young and Barrett, 2015). There is a direct relationship be-
tween the reward value of social interactions and the frequency of
seeking those interactions (Borland et al., 2018; Netser et al., 2020),
similar to the reward value of drugs and their seeking (Veeneman et al.,
2012; Doherty et al., 2013). OT acts on the DA circuit in the NAc, which
receives projections from the VTA (Buffington et al., 2016; Song et al.,
2016) and is a key node of the reward circuit in mice (D€o;len et al., 2013).
OTR-expressing VTA neurons also project to the NAc and other forebrain
regions containing several different types of neurons, including DA
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neurons (less than 10%), glutamate neurons (almost 50%), and GABA
neurons (Dobi et al., 2010; Peris et al., 2017). Glutamate and GABA
neurons expressing OTR in the VTA may play a modulatory role in the
DA-reward circuit (Xiao et al., 2018). OT fibers from mainly the parvo-
cellular neurons in the PVN projecting to the VTA (Hung et al., 2017;
Xiao et al., 2017) are in close apposition to DA neurons in the VTA that
project to the NAc (Melis et al., 2007). OTR is expressed in DA-containing
neurons in the VTA (Hung et al., 2017; Peris et al., 2017) and activation
of OTRs in the caudal VTA leads to DA efflux in the NAc (Melis et al.,
2007; Shahrokh et al., 2010).

Maintaining social interactions in mice is associated with the acti-
vation of NAc-projecting VTA DA neurons (Gunaydin et al., 2014).
Moreover, the OT neurons in the PVN that project to the VTA tightly
mediate the extent of social interaction between mice (Hung et al., 2017;
Borland et al., 2018). Selective inhibition of OTRs in the NAc (Dolen
et al., 2013) or the OT neurons projecting into the VTA (Hung et al.,
2017) induces a deficit in social contact/preference in the conditioned
social place preference test and the social interaction test in male mice. It
has been hypothesized that OT facilitates social contact and attachment
by stimulating the transition from novelty investigation to contact pref-
erence with increasing familiarity (Tops et al., 2013; Beier et al., 2015).
Accordingly, it has been indicated (Xiao et al., 2017; Charlet and Gri-
nevich, 2017) that parvocellular OT neurons in the PVN projecting to the
VTA facilitate the behavioral transition from investigatory behavior to
partner-directed (contact) behavior by inhibiting the parvocellular
OT-projecting DA circuits in the substantia nigra. The DA circuits of the
VTA-NAc are stimulated by OT input, mediating the balance of excitation
and inhibition in the neurons (Hung et al., 2017) via presynaptic
endocannabinoid-dependent mechanisms (Xiao et al., 2018).

NAc neurons are also mediated by axonal projection from the insular
cortex (Wright and Groenewegen, 1996), by which sensory and social
information is integrated and reaches the reward system to regulate so-
cial approach behavior. The insular cortex receives inputs from almost all
brain regions, including the sensory cortices, thalamus, and amygdala,
and sends back projections to a wide range of brain sites, such as the
amygdala, PAG, BNST, and NAc (Gehrlach et al., 2020). The insular
cortex contains dense OTR binding (Dumais et al., 2013) that receives OT
inputs from the parvocellular neurons of the PVN (Knobloch et al., 2012;
Tang et al., 2020). Thus, a blockage of OTR in the insular cortex disrupts
approach behavior to stress-related social stimuli depending on the age of
the opponents (Rogers-Carter et al., 2018). Chemogenetic inhibition of
NAc-projecting neurons in the posterior insular cortex blocks social
approach behavior towards stressed juvenile conspecifics in rats.
Furthermore, inactivation of the posterior insular cortex reduces the
freezing response of rats to predatory odor (Rodriguez et al., 2020), while
inactivation of the anterior insular cortex attenuates the acquisition of
the contextual fear response in rats (Alves et al., 2013). The insular cortex
may act via OTR neurons projecting to the NAc as a mediator of
stress-related defense behavior in a context-dependent manner. Sensory
signal integration generated in the insular cortex interconnected with
stress-related neural circuits, including those in the BNST and amygdala,
may induce a modification of reward-relevant prosocial behaviors via the
insular cortex-NAc pathway. These circuits would allow animals to
regulate flexible approach-contact responses depending on the social
reward characteristics of the opponents (Steinman et al., 2019).

There are some sex-specific differences in the effects of the interaction
between OT and DA on the expression of social behaviors (Gillies et al.,
2014). Studies in both male and female rodents have established a crit-
ical role associated with social reward effects for OTRs in the VTA in
activating DA-containing neurons (Xiao et al., 2017; Hung et al., 2017).
However, same-sex social interactions are more rewarding in females
than in males in mouse models. For example, basal extracellular levels of
DA in the NAc are higher in female rats than in males (Virdee et al.,
2014), and females display a higher rate of DA uptake and release than
males (Walker et al., 2000). The effect of exogenous OT on the amount of
social interaction is also sex-specific–the effect of OT infusion in the VTA
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is induced by smaller amounts in females than in males (Borland, 2019).
Despite these sex-specific differences in the response to OT in the VTA, no
such differences in terms of the number of OT-containing neurons acti-
vated by same-sex social interactions were observed in either the PVN or
SON (Borland, 2019).

5-HT neurons projecting to the VTA might play a role in sustaining
social contact behavior. Serotoninergic neurons, including those in the
dorsal and median raphe nuclei, project to the mesolimbic structures of
the NAc and VTA (Mylecharane, 1996). Serotonergic input from the
dorsal raphe to the VTA is involved in vulnerability to social stress (Zou
et al., 2020). Selective inhibition of serotonergic neurons from the dorsal
raphe into the VTA enhanced social avoidance to social aversive
(defeated) stimuli (Zou et al., 2020). GABAergic signals in the VTA
mediate social avoidance behavior, which can be ameliorated by 5-HT2A
receptor agonists (Kimmey et al., 2019). 5-HT2C receptors are also
involved in DA firing activities in the VTA (Bubar et al., 2007). The
stimulation of 5-HT2C receptors induced inhibition of DA firing in the
VTA and release of DA in the NAc (Di Giovanni et al., 2001; Theile et al.,
2009), which is mediated by GABAergic neurons in the VTA (Bubar et al.,
2011). 5-HT2A suppresses but 5-HT2C upregulates GABA neurons in the
VTA, which underlies neural plasticity in behavioral responses. These
5-HT microcircuits in the VTA indirectly sustain social approach/contact
by inhibiting withdrawal/avoidance responses. Thus, 5-HT is a major
player interacting with OT in terms of functional links between the raphe
nucleus and the PVN-amygdala-VTA in the sequential processes of
behavioral regulation.

12. Conclusion

In this review, we propose a model for a better understanding of the
multifactorial processing of OT underlying prosocial communicative
behavior in rodent models. Social interaction between conspecifics is a
dynamic sequence of behavioral patterns associated with multimodal
regulation, and the role and effect of OT in this process changes from
moment to moment to accommodate temporal behavioral expressions.
Moreover, OT also functionally cooperates with other neuromodulators
such as 5-HT and DA. Significant efforts need to be undertaken to
elucidate the temporal dynamics of OT function in the regulation of
prosocial processing. Prosocial behaviors in rodents are multi-modal
(e.g., olfactory and tactile), distance-based processes characterized by
the detection and discrimination of social cues, followed by approach/
evaluation of familiarity, and ultimately leading to contact/huddling
with each other as a form of prosocial behavior. Central OT action plays a
fundamental role in these sequential processes. It facilitates the fine-
tuning of social olfactory signals from a potential social partner via
various processes through the olfactory bulb to the olfactory cortices. OT
also coordinates with 5-HT to stimulate approach/investigatory behav-
iors in response to the social stimuli via the hypothalamic PVN to MeA
circuits. Finally, OT-DA processes in the VTA to NAc circuits maintain
social contact-based prosocial relationships with social partners, with
modifications by insular cortex-BNST circuits. Recent technical advances,
such as viral-targeted manipulation of specific neuronal circuits and real-
time in vivo monitoring of targeted neuronal activities, allow researchers
to illustrate the temporal sequential maps of neural processes during
complex prosocial interactions. Incorporating behavioral analysis of the
sequential processing of prosocial interactions promises a more precise
understanding of the temporal neuroregulatory mechanisms involving
OT and other related factors. The strategy delineates the circuit dynamics
in the sequence of behaviors by adding a new motif to the complex
picture of OT circuit interactions that critically regulate prosocial
behaviors.
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