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Evidence from clinical and preclinical research provides an undeniable link between 
disruptions in the circadian clock and the development of psychiatric diseases, including 
mood and substance abuse disorders. The molecular clock, which controls daily pat-
terns of physiological and behavioral activity in living organisms, when desynchronized, 
may exacerbate or precipitate symptoms of psychiatric illness. One of the outstanding 
questions remaining in this field is that of cause and effect in the relationship between 
circadian rhythm disruption and psychiatric disease. Focus has recently turned to uncov-
ering the role of circadian proteins beyond the maintenance of homeostatic systems 
and outside of the suprachiasmatic nucleus (SCN), the master pacemaker region of 
the brain. In this regard, several groups, including our own, have sought to understand 
how circadian proteins regulate mechanisms of synaptic plasticity and neurotransmitter 
signaling in mesocorticolimbic brain regions, which are known to be critically involved in 
reward processing and mood. This regulation can come in the form of direct transcrip-
tional control of genes central to mood and reward, including those associated with 
dopaminergic activity in the midbrain. It can also be seen at the circuit level through 
indirect connections of mesocorticolimbic regions with the SCN. Circadian misalignment 
paradigms as well as genetic models of circadian disruption have helped to elucidate 
some of the complex interactions between these systems and neural activity influencing 
behavior. In this review, we explore findings that link circadian protein function with syn-
aptic adaptations underlying plasticity as it may contribute to the development of mood 
disorders and addiction. In light of recent advances in technology and sophisticated 
methods for molecular and circuit-level interrogation, we propose future directions aimed 
at teasing apart mechanisms through which the circadian system modulates mood and 
reward-related behavior.
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iNTRODUCTiON

Biological rhythms are ubiquitous throughout nature and play a pivotal role in helping organisms 
navigate dynamic environmental conditions to ensure survival and adaptive behaviors (1, 2). These 
complex systems have emerged as the result of evolutionary mechanisms allowing animals to physi-
ologically and behaviorally entrain to a roughly 24-h day length (3). The basis for this entrainment 
ability lies in the molecular clock and the concerted function of several rhythmic tissues throughout 
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the body, and particularly within the brain. In the mammalian 
brain, the suprachiasmatic nucleus (SCN) of the hypothalamus 
sets rhythms in response to light input through intrinsically 
photosensitive retinal ganglion cells (ipRGCs), which form 
the retinohypothalamic tract (4–6). The SCN communicates 
with subsidiary oscillators throughout the brain and in the 
periphery via peptide and neurotransmitter signaling to regulate 
physiology and behavior (7). Molecular clock machinery exists 
in all cells and is driven by transcriptional-translational feedback 
loops (TTFLs) in which the activity of individual components 
is regulated over a diurnal timescale. At the heart of the clock 
are circadian transcription factors Circadian Locomotor Output 
Cycles Kaput (CLOCK), the homologous protein Neuronal PAS 
Domain Protein 2 (NPAS2), and Brain and Muscle Arnt-like 
Protein 1 (BMAL1) with which CLOCK or NPAS2 heterodimer-
ize to activate the transcription of Period (Per1, Per2, Per3) and 
Cryptochrome (Cry1, Cry2) genes. In the cytoplasm, PER and 
CRY proteins are translated and re-enter the nucleus to bind the 
CLOCK/NPAS2:BMAL1 transcriptional complex, inhibiting it 
and forming a negative feedback mechanism, which is completed 
over the course of 1 day (8–11). The clock is further stabilized by 
the nuclear receptors, Rev-erbα and Rorα/β, which act to inhibit 
and activate the transcription of Bmal1 and Clock, respectively, 
through their interaction with ROR elements. Several regulatory 
kinases, phosphatases, and accessory feedback loops complete 
the molecular clock adding additional complexity (12–15). 
Importantly, while participating in hierarchical feedback loops 
to maintain cellular rhythmicity, circadian transcription factors 
also regulate the expression of numerous other clock-controlled 
genes (CCGs). In fact, it is currently estimated that approximately 
43% of the mammalian genome is rhythmic and these CCGs are 
involved in a wide array of physiological functions throughout 
the body and in the brain (16). In addition to the wide array of 
physiological and behavioral functions controlled by the circa-
dian clock, the implications for circadian regulation of mood and 
reward behavior are beginning to be better understood at the 
molecular level.

CiRCADiAN RHYTHMS AND 
PSYCHiATRiC iLLNeSS

Circadian disruption appears to be both a symptom and 
a precipitating feature of some psychiatric conditions. For 
instance, the “social jet lag hypothesis” suggests that the weekly 
disturbances in sleep–wake rhythms imposed by work or school 
obligations, particularly in adolescence, correlate with an even-
ing circadian typology as well as changes in overall well-being 
and stimulant consumption measured by self-report (17, 18). 
Sleep problems and seasonal variations in day/light hours can 
also cause some individuals to experience depression and can 
lead to self-medication through drug or alcohol abuse (17, 19, 
20). Additionally, the “social zeitgeber hypothesis” proposes 
the idea that mood episodes may occur when disruptions in 
social routine are experienced, which lead to circadian rhythm 
and behavioral dysfunctions. Circadian rhythms in the use and 
sensitivity to several different classes of drugs have been observed 

as well (21–25). Genome-wide association studies (GWAS) 
link polymorphisms and other mutations in core circadian 
genes with seasonal affective disorder (SAD), major depression 
(MDD), addiction disorders, and bipolar disorder (BD), which is 
characterized by spontaneous mood cycling through depressive, 
euthymic, and manic phases (26–29). For a detailed description 
of known circadian mutations in humans associated with mood 
disorders, refer to an in-depth review by McCarthy and Welsh 
(30). A genetic basis for chronotype (preference for morning or 
evening consolidation of activity) in humans has been suggested 
by a number of studies as well, with “eveningness” a characteristic 
of BD in some patients (31–33). Pharmacological therapies for 
mood-related illnesses such as lithium and agomelatine, an 
antidepressant, may produce therapeutic effects through their 
stabilization of circadian rhythms, further highlighting the role 
of biological clocks in these disorders (34–39). Circadian gene 
mutation and chronotype can also correlate with an abnormal 
response to reward. A particular single nucleotide polymorphism 
(SNP) in the human Period gene, for instance, disrupts prefrontal 
reward responsivity and cortico-striatal activation following a 
rewarding stimulus (40, 41). These and other findings suggest an 
important role for circadian misalignment in the pathophysiol-
ogy of mood and addiction disorders.

Work in pre-clinical animal models of psychiatric disorders 
highlights the central role of proper signaling in several key brain 
regions to maintain biochemical and neurophysiological balance 
within circuits. Reward circuitry is directly impinged upon by 
drugs of abuse and is also the main site of dysregulation in some 
mood disorders including BD (42–45). While direct projection 
targets of the SCN, including the medial pre-optic area (mPOA) 
and dorsomedial hypothalamic nucleus (DmH), are not central 
to the reward circuitry, they may modulate it through indirect 
neural connections (46). Orexinergic neurons in the DmH, for 
instance, encode information about arousal, energy balance, and 
reward, and project to the ventral tegmental area (VTA) a main 
source of dopamine (DA) in the brain (47–50). The dorsal raphe 
(DR) nuclei of the midbrain receive direct light input from the 
circadian visual system and also indirect input from the SCN and 
are the primary regions containing serotonin (5-HT) neurons in 
the brain. 5-HT is an important mood-related neurotransmitter 
(51). The lateral habenula (LHb) in the midbrain also receives 
direct SCN input and has been shown to be an important inhibitor 
of DAergic activity in the VTA, thus exerting a more robust influ-
ence over mood and reward regulation (52–54). In the traditional 
view of the reward system, projections between certain regions 
are highlighted as critical to the expression and maintenance 
of proper reward sensitivity and behavioral response. Among 
these are DAergic and GABAergic projections from the VTA 
and substantia nigra (SN) to the nucleus accumbens (NAc) and 
dorsal striatum (Str), respectively. The NAc is considered to be an 
integrator of sensorimotor information with limbic information 
to gate motivational behavior. Its extensive afferent and efferent 
connections serve to underscore this function. Chiefly, the NAc 
receives glutamatergic inputs from the PFC, amygdala (Amy), 
and hippocampus (Hipp) and provides GABAergic input to the 
VTA as well as the ventral pallidum (VP). The VTA also sends 
afferent inputs to the prefrontal cortex (PFC), a major site of 
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FiGURe 1 | Mesolimbic brain regions display rhythmic patterns in neural activity. The retinohypothalamic tract provides light information and consists of 
ipRGC projections from the retina to the SCN and DR. The SCN provides direct GABAergic input to the LHb, DmH, mPOA, and the PVT. Reward-related pathways 
include a dopaminergic projection from the VTA to the NAc and PFC, glutamatergic inputs from the Hipp, Amy and PFC to the NAc and GABAergic output of the 
NAc to the VP and VTA. Known rhythmic components of neural activity in each of the mood and reward-related extra-SCN brain regions are denoted. ipRGC, 
intrinsically photosensitive retinal ganglion cells; SCN, suprachiasmatic nucleus; DR, dorsal raphe nuclei; LHb, lateral habenula; DmH, dorsomedial hypothalamus; 
mPOA, medial pre-optic area; PVT, paraventricular thalamic nucleus; VTA, ventral tegmental area; NAc, nucleus accumbens; PFC, prefrontal cortex; Hipp, 
hippocampus; Amy, amygdala; VP, ventral pallidum; LC, locus coeruleus; OB, olfactory bulb.
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executive function and cognitive control over behavior, and in 
humans, abnormal dopaminergic signaling within the PFC has 
been correlated with a drug-addicted state (42, 55). Each of these 
critical extra-SCN brain regions has been shown to maintain 
rhythms and to express circadian genes and proteins with clock 
and non-clock regulatory functions (see Figure 1). They therefore 
control mood and reward behavior through both circuit-level and 
molecular mechanisms (56–59).

CiRCADiAN RHYTHMS iN NeURONAL 
ACTiviTY

In SCN neurons and other neuronal populations, the study of 
circadian regulation of ion channel mechanisms suggests further 
roles for these systems in neuronal excitability and signaling 
(11, 60, 61). The SCN is unique in its highly coupled network 
activity, which allows it to maintain robust endogenous rhythms 
in constant conditions by linking the molecular clock with 
machinery that controls cellular excitability (62–64). Insights into 
these mechanisms come from studies in many model organisms, 
including Drosophila melanogaster, which have several conserved 
molecular clock elements. Recent findings by Flourakis and col-
leagues have uncovered an ionic basis for diurnal rhythms in 
membrane excitability of central clock neurons, which are tied to 
the control of morning and evening activity patterns in both flies 

and rodents. Clock-controlled activity of both a resting sodium 
leak conductance and resting potassium conductance demon-
strate an important link between molecular rhythms and mem-
brane excitability across the light/dark cycle (65). Interestingly, 
while other studies have focused on circadian transcriptional 
regulation of ion channel genes themselves, this study finds that 
CLOCK rhythmically binds and activates transcription of a gene 
important for the proper axonal localization of a sodium channel 
that underlies leak conductance (65). This suggests that molecu-
lar oscillations can have diverse influences on cellular excitability 
through direct and indirect means.

Outside of the SCN as well, rhythms in neuronal activity 
have been observed. While it has long been thought that VTA 
DA neurons do not have a diurnal rhythm in firing rate, a recent 
study suggests that this may not be the case as an intra-diurnal 
rhythmic pattern of VTA DA neuronal activity has been measured 
in anesthetized rats (66). It is still unclear whether a strong link 
exists between firing and extracellular release of DA, however, in 
behaving animals. More work is needed to concretely establish 
these mechanisms. Additionally, the neuronal activity of the LHb 
and medial habenula (MHb) show rhythmic oscillation both 
in vitro and in vivo, and firing rates of neurons in both of these 
regions are altered in response to retinal illumination in  vivo. 
The LHb maintains endogenous molecular rhythms as well with 
oscillations in Per2 gene and protein levels across the light/dark 
cycle. Temporal variation in electrophysiological properties in 
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each of these neuronal populations is absent in mice lacking a 
functional intracellular molecular clock. These findings support 
the idea that intrinsic circadian signals can shape the contribution 
of habenular nuclei to affective and reward behavior (30, 67, 68). 
Another reward-related region in the thalamus, the paraven-
tricular nucleus (PVT), which sits at the midline and projects to 
many limbic structures including the NAc, also displays rhythms 
in activity. The PVT receives input from the SCN and the DmH 
and has been shown to play a role in the anticipatory locomotor 
response to food. The firing rate of PVT neurons varies through-
out the day with greatest activity seen during the animal’s active 
phase (69–71). The influence of this small nucleus on reward sen-
sitivity and drug seeking is beginning to be further elucidated (72, 
73). Serotonergic neurotransmission, which is critically involved 
in the regulation of mood behavior, is significantly affected by 
photoperiod. Day length during development can alter firing 
properties of serotonin neurons as well as extracellular levels of 
5-HT and norepinephrine. These light-induced changes further 
affect anxiety and depressive-like behavior (74–77). Work from 
the Aston-Jones lab has provided insights into the circadian regu-
lation of activity of noradrenergic neurons in the locus coeruleus 
(LC), a key mediator of wakefulness and behavioral arousal. 
Using single-unit recordings of LC neurons in anesthetized rats, 
they have demonstrated that the neurons fire significantly faster 
during the active phase compared with rest phases. Additionally, 
the diurnal rhythm of noradrenergic neuronal activity correlates 
with the rhythm of activation of DmH orexin neurons, which 
project preferentially to the LC (78, 79). These and other studies 
highlight that important aspects of neuronal activity throughout 
the brain are under circadian influence and that the rhythmic 
activity of mood and reward-related regions may be relevant for 
behavioral outcomes.

CiRCADiAN RHYTHMS ARe iNvOLveD iN 
SYNAPTiC PLASTiCiTY MeCHANiSMS

A core mechanistic underpinning of many psychiatric illnesses 
is aberrant synaptic plasticity both within limbic regions and 
between cortical and subcortical areas (80–83). DA and gluta-
mate neurotransmission have been implicated by several studies 
to be involved in the pathophysiology of BD, for instance, causing 
the disease to be framed by some as a synaptic plasticity-related 
disorder (84–86). Circadian rhythms in DA, glutamate and 
GABA levels in the dorsal striatum and NAc have been measured 
in awake rats, and these rhythms are independent of light in the 
NAc (87). Manic-like behavior can be modeled in rodents by the 
disruption of DA uptake mechanisms including dopamine trans-
porter (DAT) pharmacological inhibition and genetic knock-
down (88, 89). Additionally, imaging studies point to a decrease 
in DAT availability in the caudate of untreated BD patients (90). 
Along with decreased DAT transcript and protein levels in BD 
post-mortem cortical tissue and the correlation between DAT 
gene polymorphisms with predisposition to BD, there is strong 
evidence to support the role of DA homeostatic dysregulation 
in the disorder (90–93). Deficiency of decision-making seen in 
patients with BD is attributed in part to lower DAT functioning. 

This high-reward sensitivity and risk-preference can be measured 
in humans using the Iowa Gambling Task (IGT). Adaptation of 
the IGT to assess risk-based decision-making in mice reproduces 
human results in DAT-impaired conditions (88). Recent pre-
clinical work points to a circadian regulation of DAT function 
in mice. Ferris and colleagues have demonstrated that diurnal 
variation in DAT activity accounts for rhythms in DA release in 
the striatum, and they have also shown diurnal oscillations in 
presynaptic D2 autoreceptor function (94). These findings could 
help explain how circadian dysregulation might contribute to the 
mood swings seen in BD patients. Interestingly, mood stabilizing 
pharmacological agents including valproate appear to have effects 
on both molecular clock components as well as DAT function and 
mRNA levels in rodents (95, 96). While many mood-stabilizers 
are not specific to any particular neurotransmitter system, it is 
worth noting that some of their targets include DAergic and glu-
tamatergic pathways. DA receptor density changes are somewhat 
inconsistent; however, glutamatergic abnormalities are more 
clearly seen in BD patients. Findings have reported reduced 
levels of ionotropic glutamate receptor α-amino-3-hydroxy-5-
methyl-4-isoxazoleproprionic acid (AMPAR) subunits in cortical 
areas of mood disorder subjects and reduced gene expression of 
the GluA1 subunit in striatal regions of BD patients (97–99). 
Additional proteins associated with the structural integrity of the 
post-synaptic density and proper trafficking of glutamate recep-
tors to the membrane, including the scaffolding protein, PSD-95, 
and synapse-associated protein 102 (SAP102), have been found 
to be altered in post-mortem brains of BD patients (100, 101). 
These alterations may potentially lead to disruptions in excitatory 
signaling in mesocorticolimbic brain regions affecting mood and 
reward behavior. A GluA6 mutant mouse model of bipolar mania 
has also been characterized, as have pharmacological models 
including ketamine administration (102, 103). Additionally, 
polymorphisms in N-methyl-d-aspartate (NMDA) glutamate 
receptor genes correlate with susceptibility to BD (104, 105). 
Given the importance of DA-GLU interaction at postsynaptic 
sites for normal synaptic plasticity processes, it will be critical to 
follow up these findings with functional studies in disease models.

Pre-clinical studies from our own group in a genetic mouse 
model of circadian disruption, the ClockΔ19 mice, have uncov-
ered additional DAergic genes that are direct transcriptional 
targets of the core circadian transcription factor, CLOCK. These 
include tyrosine hydroxylase (TH), the rate-limiting enzyme in 
DA synthesis, and cholesystekinin (Cck), a peptide negatively 
associated with DA activity in vivo, which has been implicated 
in anxiety and drug response (106, 107). In addition to the 
regulation of DA synthesis and transmission, DA degradation 
has also been shown to be under circadian control. The clock 
proteins, PER1 and PER2 are rhythmically expressed in the 
striatum and Per2 mutation disrupts the rhythmic activity of 
monoamine oxidase A (MAOA), the critical enzyme involved in 
DA catabolism (108). Recently, we have also demonstrated that 
CLOCK regulates the expression of TH by binding enhancer 
box (E-box) sequences at proximal and distal promoter regions 
of the gene. Known dopaminergic targets of circadian genes 
are summarized in Figure  2. In wild-type mice, CLOCK is a 
negative regulator of TH activation, and the dominant negative 
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FiGURe 2 | elements of dopaminergic transmission are under direct circadian control. Within the VTA-NAc circuitry, clock genes regulate the transcription 
of several genes involved in the synthesis, uptake, transmission and degradation of dopamine, including tyrosine hydroxylase (TH), dopamine transporter (DAT), 
pre-synaptic dopamine type-2 receptor (D2R), dopamine type-3 receptor (D3R), monoamine oxidase A (MAOA), and cholecystokinin (CCK). Within the NAc, diurnal 
rhythms in levels of the neurotransmitters, dopamine, glutamate, and GABA have been measured as well. The transcription of TH is repressed by the circadian 
transcription factor, CLOCK, as well as the nuclear receptor, REV-ERBα, which bind to enhancer box (E-Box) and ROR response-element (RRE) sites in the 
promoter region, respectively.
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CLOCK protein in Clock mutant mice is therefore unable to 
repress TH transcript and protein levels, which are increased 
throughout the light/dark cycle. Consequently, extracellular 
DA levels are also increased in striatal regions in mutants (107). 
Behaviorally, the mutant mice show robust hypersensitivity 
to rewarding substances, reduced anxiety and depressive-like 
behavior and hyperactivity in response to novelty (109–111). 
The effect of these elevated DA levels on synaptic transmission 
and efficacy in target regions is being investigated on a func-
tional level. Correlative evidence of circuit-level disruptions in 
Clock-mutant mice that may be the result of synaptic weight 
changes in cortico-limbic regions has also been demonstrated. 
Mutants display a decrease in cross-frequency phase coupling 
of low-gamma oscillations with delta oscillations within the 
accumbens corresponding to the time during which they 
explore open arms in an elevated zero maze (112). This suggests 
signaling deficits that may contribute to their reduced anxiety-
like behavioral phenotype. These deficits may in part be due to 
altered excitatory drive onto accumbal medium spiny neurons 
as computational models suggest (112, 113). Interestingly, 
protein levels of the AMPA receptor subunit, GluA1, and phos-
phorylated GluA1, are decreased in the NAc of Clock mutants 
compared with wild-type littermates, indicating a post-synaptic 
adaptation that may be secondary to the increased DAergic tone 
in these animals (114). It will have to be determined whether the 

CLOCK protein directly regulates any aspects of glutamatergic 
signaling in this region.

Transcription factors are important in positive and negative 
regulation of plasticity-related genes and neuronal activity. The 
study of this regulation in other models sheds light on how these 
mechanisms might be occurring to control mood and reward 
behavior. For instance, social-defeat stress, a validated model of 
depression in mice, is thought to rely partly on the actions of cAMP 
response-element binding protein (CREB) to affect excitability of 
NAc medium spiny neurons, which are integral to affective and 
reward-related behavior (115). CREB signaling is increased in 
fibroblasts from BD patients as well (116). Another transcription 
factor, nuclear factor kappa B (NfκB), which is prominent in 
the striatum, is involved in reward processing and is increased 
following repeated cocaine administration (117, 118). Evidence 
for the positive regulation of NfκB-mediated transcription by 
CLOCK (independent of BMAL1 binding) indicates that circa-
dian transcription factors can affect the activity of non-circadian 
transcription factors through protein interactions (119). Genes 
involved in accessory or stabilizing loops of the molecular clock 
machinery can also be important for behavior. It has recently 
been shown that the circadian nuclear receptor, REV-ERBα, 
which represses the transcription of Bmal1, has a key function in 
the direct regulation of TH expression in the ventral midbrain as 
well (120). By competing with the DA neuron-enriched nuclear 
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receptor, NURR1, REV-ERBα is able to contribute to the rhyth-
micity of the DAergic system and affect mood behavior (120). 
This further suggests that clock proteins have a role in reward 
behavior outside of molecular clock functions.

RHYTHMS iN LeARNiNG AND 
STRUCTURAL PLASTiCiTY

The effects of circadian disruption on long lasting or homeostatic 
plasticity in reward and mood-related circuitry need to be further 
elucidated. Circadian rhythms in learning and memory processes 
help underscore the importance of these mechanisms for adaptive 
behavior requiring plasticity. Hippocampal-dependent learning 
in rodents as measured by the novel-object recognition task 
fluctuates over a diurnal timescale with performance peaking 
during the dark (active) phase (121, 122). In diurnal grass rats, 
long-term retention of reference memory in the Morris Water 
Maze is highest during the day, which is anti-phase to the perfor-
mance of nocturnal rats (123). Many studies have found circadian 
oscillations of hippocampal signaling events in mice, and that 
these events are required for memory formation and adaptation 
to novel environments. Bmal1 null mutant mice display impaired 
contextual fear and spatial memory as well as hyperactivity in 
novel environments and reduced habituation. Additionally, 
long-term potentiation (LTP) in hippocampal slices from these 
mutants is significantly decreased compared with wild-type mice 
(124, 125). Npas2 mutant mice also show impairments in cued 
and contextual fear memory (126). Interestingly, daily changes 
have been demonstrated in the expression of genes encoding 
synaptic scaffolding proteins and also in the morphology of den-
drites themselves. Circadian peaks in the stress hormone, corti-
costerone (CORT) enhance the formation of spines on pyramidal 
neurons in the motor cortex of rats (127–129). Functional effects 
of circadian oscillations on synaptic plasticity in the somatosen-
sory cortex of mice have been examined in constant darkness 
conditions where the cyclic changes in the density of excitatory 
synapses on spines were abolished. These findings suggest that the 
density of excitatory synapses shows daily changes while the den-
sity of inhibitory synapses in this cortical region shows circadian 
changes (130, 131). Recent important work from the laboratory of 
Takao Hensch demonstrates that the Clock gene regulates critical 
period plasticity in the primary visual cortex of mice. They have 
found that CLOCK plays a role in the functional maturation of 
parvalbumin (PV) neuronal circuits, which comprise a primary 
source of inhibitory activity in the neocortex (132). A number 
of psychiatric conditions, including schizophrenia and autism, 
are characterized by abnormal excitatory/inhibitory balance in 
cortical circuits, and specifically, reduced functionality of PV 
interneurons; therefore, clock-mediated regulation of genes con-
trolling synaptic and homeostatic events is of particular interest 
(133–135).

Outside of the retina and SCN, there are few studies that have 
systematically examined structural circadian remodeling of syn-
apses in the brain. A small number of studies have demonstrated 
a circadian regulation of electrical activity in the olfactory bulb 
(OB) where the functional interaction of AMPARs with connexins 

to form gap junctions underlies the firing of action potentials. In 
this region, GluA1 mRNA and protein in particular were found 
to be strongly rhythmic across 24- and 48-h timescales. These 
synaptic interactions that govern the circadian synchronization 
of action potentials in the OB may impact olfactory coding and 
learning (136, 137). In zebrafish, a diurnal vertebrate model 
organism, a transparent body offers the unique advantage of 
visualizing structural plasticity. Synapses on hypocretin neurons 
important for sleep homeostasis show dynamic diurnal changes 
in live zebrafish. Rhythmic synaptic density in hypocretin axons 
is primarily regulated by the circadian clock potentially through 
transcriptional control of the expression of nptx2b, a gene that 
is important for AMPA receptor clustering (138, 139). Given 
the relevance of expression and function of synaptic proteins 
in disease states, the continued study of possible mechanistic 
influences of circadian clock elements in these processes will be 
critical.

RHYTHMS iN NeUROADAPTATiONS 
ASSOCiATeD wiTH DRUGS OF ABUSe

The investigation of neuroadaptations in reward-related brain 
regions following exposure to addictive substances, including 
methamphetamine, cocaine, morphine, and alcohol has been 
a mainstay of addiction research for decades. Many of these 
adaptations also involve the neuromodulatory effects of DA on 
glutamatergic and GABAergic synapses to re-wire circuits for 
abnormal reward learning (80, 140–142). Drugs of abuse can 
alter rhythmicity of core clock genes, and the activity of these 
genes can in turn affect the expression of proteins important for 
plasticity, suggesting a bidirectional relationship between the 
circadian and reward systems (143–146). Drugs provide potent 
non-photic entrainment cues affecting behavioral rhythms in a 
time-of-day dependent manner and potentially acting upon SCN 
electrical rhythms directly (23, 147, 148). Diurnal variations in 
amphetamine-induced locomotor activity, conditioned place 
preference for amphetamine, and the expression of TH mRNA 
in the VTA and NAc have been observed (149). Mutations of cir-
cadian genes, Per1 and Per2 in mice have led to opposing reward 
phenotypes where mPer1 mutant mice display a lack of cocaine 
sensitization in response to repeated injections of the drug, while 
sensitization is robustly increased in mPer2 mutants. Cocaine 
reward as assessed by place preference showed similar trends in 
the mutants, respectively. Cocaine-related reward behaviors in 
C57/BL6J mice are under circadian control and vary by zeitgeber 
time, highlighting the importance of taking into account diurnal 
differences in reward response (150). Abnormally increased 
alcohol consumption in Per2(Brdm1)-mutant mice is associated with 
altered glutamatergic activity where lower levels of the glutamate 
transporter gene, Eaat1, lead to increased extracellular levels of 
glutamate in the brain. Furthermore, acamprosate, a therapeutic 
agent used to prevent craving and relapse in alcoholic patients, is 
effective in normalizing glutamate levels and alcohol consump-
tion in mutant mice (151).

Our group has characterized reward-related dysfunction 
in ClockΔ19 mice including a robust sensitization to cocaine, 
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increased preference for cocaine, and increased goal-directed 
behavior, and motivation in measures of cocaine self- 
administration. Additionally, these mice exhibit higher motiva-
tion for self-stimulation of the medial forebrain bundle and 
preference for sucrose and alcohol (109–111). Interestingly, while 
Npas2 is thought to be a paralog of Clock with high structural 
and functional homology, Npas2-mutant mice show a decrease 
in cocaine-conditioned place preference, a measure of reward 
sensitivity (146, 152, 153). This discrepancy in the role of the 
two circadian transcription factors in mediating reward response 
could be due to differential expression of the genes in the brain. 
Clock is ubiquitously expressed throughout the brain, while 
Npas2 is highly enriched in the forebrain, including specifically 
the NAc, and is not expressed in the VTA where Clock is known to 
be critical for reward behavior (126). Additionally, viral-mediated 
knockdown of NPAS2 within the NAc itself is sufficient to decrease 
cocaine preference in C57/BL6 mice. In this brain region, NPAS2 
also directly regulates the expression of the DA D3 receptor by 
binding to a non-canonical E-box sequence in the promoter 
region of the Drd3 gene. Chronic cocaine administration also 
increases the expression of Npas2 in the striatum where the gene 
has been shown to be highly enriched in the D1 DA receptor 
containing medium spiny neurons (146). The two main subpopu-
lations of MSNs, D1 receptor- and D2 receptor-containing, are 
differentially involved in reward regulation due to the opposing 
actions of the receptor types on cellular activity via G-protein 
signaling mechanisms, and the projection pathways of neurons. 
D3 receptors have been proposed to play a role in reward seeking 
potentially through membrane interactions with D1 receptors 
(154–157). The myriad ways in which clock proteins directly and 
indirectly mediate drug response potentially through the control 
of synaptic proteins will have to be investigated further.

FUTURe DiReCTiONS

As we continue to piece together the mechanisms by which the 
circadian system regulates neuronal activity, synaptic plasticity, and 
behavior, it will be valuable to take stock of the variety of techniques 
available for further interrogation as well as the many outstand-
ing questions. We have uncovered aspects of clock function in 
core limbic circuitry; however, other brain regions will need to 
be investigated as well since we know that psychiatric conditions 
involve disruptions in many mesocorticolimbic structures and 
pathways. Addiction, for instance, is believed to progress through 
cascades of dysfunction affecting several brain regions (158). 
Additionally, the study of other neurotransmitter systems beyond 
DA in circadian gene models of mood and reward disorders will 
be important. Mood cycling in BD has been proposed to involve 
neurotransmitter switching, for instance (159). Recent advances 
in technology for interrogating circuitry include optogenetics and 
pharmacogenetics. Beyond the use of traditional opsins that alter 
neuronal excitability by depolarizing and hyperpolarizing cell 
membranes (channelrhodopsin and halorhodopsin) a variety of 
other, sophisticated constructs have been designed to target cel-
lular mechanisms including G-protein signaling (Opto XRs) and 
designer receptors activated by designer drugs (DREADDs) (160, 
161). These tools can be applied in the ongoing effort to understand 

how direct and indirect SCN projections to mesocorticolimbic 
areas affect behavior in a regionally and temporally specific manner. 
The contribution of subsidiary oscillatory networks in extra-SCN 
regions to behavior can be assessed further by anatomical mapping 
and pathway-specific manipulations.

As noted by our group and others, clock genes can exert dif-
ferential effects in extra-SCN brain regions that may have diverse 
or opposing influences on behavior. The differences in expression of 
these genes and proteins though they may have overlapping roles in 
the SCN are important to consider, as the downstream effectors may 
be cell-type or circuit-specific. Microarray analysis and Chromatin-
immunoprecipitation followed by deep sequencing have allowed 
us to identify several target genes that are bound by circadian 
transcription factors in normal or altered physiological conditions. 
These genes can be categorized by their cellular functions and 
profiles can be made of binding activity across diurnal time scales. 
Following up these large-scale analyses with reporter gene assays 
to determine transcriptional activity of circadian proteins is also 
critical to understand their function. These methods have proven 
very useful in the identification of clock gene targets that regulate 
DAergic transmission and post-synaptic activity in the VTA-Str 
circuitry. Many other genes relevant to synaptic plasticity known 
to have rhythmic activity can be explored, as some of their protein 
products are targets of pharmacotherapeutic agents. One promising 
new advance involves the optical control of transcriptional effectors 
by custom constructs utilizing cryptochrome proteins. While this 
TALE-LITE system has primarily been validated in vitro, it holds 
the potential to be useful for the precise manipulation of circadian 
transcription factors in key brain regions (162). Altering the rhyth-
micity of these proteins may provide insights into how their regular 
function affects cellular and synaptic activity and the consequences 
of circadian misalignment on these functions. The benefits provided 
by these approaches extend beyond the traditional use of genetic 
mutant models and viral-mediated gene transfer though these have 
proved extremely useful in first characterizations of the effects of 
circadian disruption on behavior.

While animal models are very valuable, a variety of cell 
models can be put to use to gain mechanistic information and 
for the direct translational potential of studying human patient 
populations. Blood biomarkers, inducible pluripotent stem cells 
(iPSCs) and skin fibroblasts for instance have yielded a wealth 
of information about cellular abnormalities in disease states and 
point to possible further diagnostic measurements (30, 163). 
Lastly, work over many decades has helped to characterize the 
electrophysiological properties of SCN neurons and the signaling 
networks that exist within the nucleus to orchestrate molecular 
rhythms. However, these same methods can be applied in meso-
corticolimbic areas to uncover rhythms in cellular and network 
activity relevant to behavior. It will be important to continue 
to directly measure synaptic function at key microcircuits in 
circadian-mutant models with abnormal mood or reward-related 
phenotypes, or following circadian misalignment paradigms such 
as photoperiod manipulation or “shift-work” simulation. Given 
the regulatory role of clock proteins in activating or repressing 
transcription of CCGs and the relevance of synaptic plasticity to 
normal behavior and psychiatric illness, more work is needed to 
understand the intersection of these systems.
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