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Abstract: Gulf War illness (GWI) is characterized by the persistence of inflammatory bowel disease,
chronic fatigue, neuroinflammation, headache, cognitive impairment, and other medically unexplained
conditions. Results using a murine model show that enteric viral populations especially bacteriophages
were altered in GWI. The increased viral richness and alpha diversity correlated positively with gut
bacterial dysbiosis and proinflammatory cytokines. Altered virome signature in GWI mice also had a
concomitant weakening of intestinal epithelial tight junctions with a significant increase in Claudin-2
protein expression and decrease in ZO1 and Occludin mRNA expression. The altered virome signature
in GWI, decreased tight junction protein level was followed by the presence an activation of innate
immune responses such as increased Toll-like receptor (TLR) signaling pathways. The altered virome
diversity had a positive correlation with serum IL-6, IL-1β, and IFN-γ, intestinal inflammation (IFN-γ),
and decreased Brain-Derived Neurotrophic Factor (BDNF), a neurogenesis marker. The co-exposure of
Gulf War chemical and antibiotic (for gut sterility) or Gulf War chemical and Ribavirin, an antiviral
compound to suppress virus alteration in the gut showed significant improvement in epithelial tight
junction protein, decreased intestinal-, systemic-, and neuroinflammation. These results showed that the
observed enteric viral dysbiosis could activate enteric viral particle-induced innate immune response in
GWI and could be a novel therapeutic target in GWI.

Keywords: Gulf war illness; Virome; microbiome; next-generation sequencing; intestinal inflammation;
neuroinflammation; Ribavirin; IL6

1. Introduction

Gulf war illness (GWI) is a chronic multisymptomatic, medically unexplained disorder that affected
25%–33% of the veterans returned from the Persian Gulf War in 1990–1991 [1]. Gulf war illness is a wide
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range of acute and chronic illnesses characterized by gastrointestinal (GI) discomforts (eg, inflammatory
bowel disease (IBD)), muscle pain, joint pain, chronic fatigue, headache, and cognitive impairment [2,3].
Although the exact cause of these illnesses is unknown, recent research has found an association
between environmental exposures in the Gulf war theatre and symptoms presented by sufferers [4,5].
During the war, veterans were exposed to several chemicals including sarin nerve gas, pyridostigmine
bromide (PB) anti-nerve gas pills, insecticides, and insect repellents (permethrin) [1,6]. In a study by
Koo et al. mimicking physical and mental stress by corticosterone along with war theater toxicants
resulted in enhanced neuroimmune disorder and inflammatory phenotype, in an animal model of
GWI [7]. In other studies, mice treated with PB, pesticides, and permethrin (insect repellent) showed
cognitive impairment, learning difficulty, fatigue and GI dysfunction [8,9]. Similarly, our recent report,
we have shown that mice exposed to PB and permethrin along with stress hormone corticosterone
causes gut microbiome alteration, endotoxemia and intestinal and neuroinflammation [4,10]. However,
how these gut bacterial communities are regulated in GWI is largely unknown. This forms the basis of
our present study.

The gut harbors a complex microbiome community of bacteria, viruses, protozoans, fungi, and
other microorganisms that can impact health and disease [11]. Maintenance of balanced homeostatic
interactions is important for host immune functions [12]. Conversely, alterations in host-microbiota
interactions lead to immune modulation, metabolism regulation and neuroendocrine response in specific
or systemic inflammatory disease phenotypes [13–16]. With the advent of next-generation sequencing
(NGS), metagenomics studies revealed that the healthy microbial composition imparts phenotypic
differences between individuals, helps in complex food digestion and absorption, maintains gut
barrier integrity function, prevents pathogenic microbial-host interaction, and regulates host immune
system [17,18]. Recent reports also suggested that the gut microbial dysbiosis or alteration in a healthy
gut microbial communities is associated with several diseases such as obesity, type 2 diabetes (T2D),
inflammatory bowel disease (IBD), atherosclerosis, allergy, colon cancer, and cognitive behavior [19–25].
However, the role of gut microbiota in a Gulf war illness phenotype is poorly understood.

The enteric virome, which includes eukaryotic viruses and prokaryotic viruses (bacteriophages),
is also implicated in gut inflammation and immunity [26,27]. Alterations in the gut virome and
expansion in Caudovirales bacteriophages are associated with Crohn’s disease and ulcerative colitis [28].
The bacteriophages regulate gut bacterial composition, community structure, and function, and thus
immune responses indirectly [29]. We and others have recently shown that the altered gut bacterial
community is associated with intestinal inflammation, neuroinflammation, myalgic encephalomyelitis,
chronic fatigue syndrome, metabolic syndrome, and Gulf War illness (GWI) [4,10,22,30,31]. In GWI,
the altered gut bacteriome induced by Gulf War chemical exposure follows Toll-like receptor 4 (TLR4)
mediated pathway leading to intestinal and neuroinflammation. Since the gut bacterial community is
hugely regulated by the bacteriophages, therefore, it paved the way for newer investigation of virome
dysbiosis and how this alteration leads to TLR-mediated inflammatory surge in the intestine and
frontal cortex in GWI.

In this study, we examine the effect of Gulf War chemical exposure on the gut virome and
bacterial microbiome in a well-established mouse model of Gulf war illness. Importantly, here we
unravel the TLR-mediated inflammatory pathways induced by enteric viral and bacterial PAMPs
(pathogen-associated molecular pattern). We also test the hypothesis that the use of antibiotics and
antiviral restores bacterial community and viral community respectively to the healthy state and
ameliorate inflammatory surge in GWI.

2. Materials and Methods

2.1. Materials

We purchased pyridostigmine bromide (PB), permethrin (Per), Neomycin trisulfate hydrate,
Enrofloxacin, and Ribavirin from Sigma-Aldrich (St. Louis, MO, USA). Anti-claudin-2, anti-MyD88,
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anti-MCP-1, and anti-β-actin primary antibodies were purchased from Abcam (Cambridge, MA,
USA). anti-β-tubulin, anti-TLR3, anti-TLR7, anti-IKKα, anti-p65, and anti-IL6 primary antibodies
were purchased from Santacruz Biotechnology (Dallas, TX, USA) while anti-TRAF6 was purchased
from Abclonal Technology (Woburn, MA, USA). Species-specific biotinylated conjugated secondary
antibodies and Streptavidin-HRP (Vectastain Elite ABC kit) were purchased from Vector Laboratories
(Burlingame, CA, USA). Fluorescence-conjugated (Alexa Fluor) secondary antibodies and ProLong
Diamond antifade mounting media with DAPI were purchased from Thermofisher Scientific
(Grand Island, NY, USA). All other chemicals used in this study were purchased from Sigma unless
otherwise specified. Animal tissues were paraffin-embedded and sectioned into slides by AML
laboratories (Baltimore, MD, USA).

2.2. Animals

Adult wild-type male (C57BL/6J mice, 10 weeks old) were purchased from Jackson Laboratories
(Bar Harbor, ME). Mice were implemented in accordance with NIH guideline for human care and use
of laboratory animals and local IACUC standards. All procedures were approved by the University
of South Carolina at Columbia, SC. Mice were housed individually and fed with a chow diet at
22–24 ◦C with a 12-h light/12-h dark cycle. All mice were sacrificed after animal experiments had been
completed in one week. Serum was prepared from the blood that had been freshly obtained from
mice immediately after anesthesia, by cardiac puncture. It was then preserved at −80 ◦C until needed
for analysis. The mice were dissected, and the frontal cortex and distal parts of the small intestines
were collected, fixed in Bouin’s (Sigma-Aldrich, St. Louis MO, USA) solution or 10% neutral buffered
formaldehyde respectively and further processed for immunostaining and visualizations. Finally, fecal
pellets and luminal contents were collected for microbiome and virome analysis.

2.3. Rodent Model of Gulf War Illness (GWI)

We exposed the mice to Gulf War chemicals (permethrin and pyridostigmine bromide) following
well-established rodent models of Gulf War illness [32,33]. The mice were randomly divided into
four groups and were administered with four doses of vehicle to the control mice and GW chemicals
to the GWI mice by oral gavage. The first group that is controls (n = 11) were treated with vehicle
(6% DMSO diluted in PBS). The second group is GWI (treated group; n = 11), mice received permethrin
(200 mg/Kg, diluted in DMSO and PBS; the final concentration of DMSO was 6%) and pyridostigmine
bromide (2 mg/Kg diluted in PBS) by oral gavage. The third group is GW chemicals and antibiotics
(GWI+AB) (n = 11), mice were exposed to permethrin and PB as group 2 and also exposed to antibiotics
(Enrofloxacin 1 mg/Kg in DMSO and neomycin 45 mg/Kg in PBS, final concentration of DMSO was
6%) by oral gavage and the fourth group is GW chemical and antiviral (Ribavirin) group-(GWI+AV)
(n = 11), mice were treated with permethrin and PB as group 2 and also with broad-spectrum antiviral
drug Ribavirin (100 mg/Kg, PBS) every day for 7 days by IP injections for partial depletion of the gut
virome. This antiviral group was essential to show an association with the virome and GWI pathology
if any.

2.4. Microbiome Analysis

Virus-Like Particle (VLP) Enrichment and Total Nucleic Acid Extraction

VLPs were enriched from mouse stool using a protocol as previously described [28]. Mouse fecal
specimens (control n = 11; GWI n = 11; GWI+AB n = 10; GWI+AV n = 11) were randomized using
random number generator. Mouse fecal specimens (approximately 200 mg) were diluted in SM Buffer
(G-Biosciences) in a 1:6 ratio, vortexed at 3000 rpm for 10 min, then centrifuged at 7000× g for 10 min.
The supernatant was filtered through a 0.45 µm membrane (Celltreat). The stool filtrates were treated
with lysozyme (Sigma) and baseline-ZERO DNase (Lucigen) to degrade unencapsidated DNA. DNase
treatment was inactivated with EDTA (5mM final concentration). Total nucleic acid was extracted
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using the eMAG instrument (bioMérieux). Negative controls were included in the same extraction
process to assess contamination. Controls spiked with Enterobacteria phage λ DNA were used to assess
cross-contamination and amplification. VLP DNA was amplified with GenomiPhi V2 (GE Healthcare)
before Illumina library construction. Samples and negative controls were pooled for sequencing in
three Illumina MiSeq v2 2 × 250 bp sequencing runs (Supplementary Figure S1).

2.5. Virome Analysis

Illumina sequencing reads (2 × 250) (averaged 1.19 ± 0.48 million reads per sample)
were quality filtered to remove adapters and low-quality bases using BBTools (Bushnell B.–
sourceforge.net/projects/bbmap/). High quality-filtered reads were queried against viral RefSeq
+ Neighboring sequences database using BLASTx to identify viral reads. The taxonomic lineage of
viral reads was assigned using MEGAN (version 6.15.2) naïve LCA algorithm with the parameters min
support = 1, min support percentage = 0, and bitscore of 100 [34].

Contamination and run-to-run bias effects were assessed in the following ways: 1) There were no
significant differences in the sequencing depth between the three Illumina runs or between sample types
(Supplementary Figure S1A,B); 2) PCoA analysis of the unweighted Bray–Curtis distances showed that
the viromes were not influenced by Illumina sequencing run (Supplementary Figure S1C); 3) negative
controls were distinct from mouse fecal specimens (Supplementary Figure S1C); 4) Enterobacteria
phage λ (spiked control) were only found in PBS controls and not in mouse specimens (Supplementary
Figure S1D). In order to better identify the divergent phages contig analyses of the virome is also
provided in Supplementary Figure S1L–N. Viral contigs were assembled from quality-filtered reads
individually for each sample using IDBA-UD (Version 1.1.0) [35]. Next, contigs from all samples
were filtered by length (greater than 500 bp), de-duplicated using BBTools (minidentity ≥ 99), and
overlapping contigs merged using Minimus2 [36]. Subsequently, the contigs were processed through
VirSorter to identify viral contigs [37]. VirSorted called viral contigs were collated into a database,
quality filtered reads of each sample were then mapped against the contig database using BWA-MEM
(parameters -L 97, 97, -M) [38].

2.6. Bacteriome Analysis

DNA isolation, sequencing, and analysis of gut microbiome were done at CosmosID (Rockville,
MD, USA) using vendor optimized protocol. Briefly, DNA was isolated from mouse fecal samples using
the ZymoBIOMICS Miniprep kit, following the manufacturer’s instructions. CosmosID’s optimized
16S sequencing was carried out which covers the V3-V4 (341 nt–805 nt) region of the 16S rRNA gene
with a two-step PCR strategy. The first step is to perform PCR using 16S-optimized primer set to
amplify the V3–V4 regions of 16S rDNA within the metagenomic DNA. Next, the PCR products from
the previous steps are mixed at equal amounts and used as templates in the second step to produce
Illumina dual-index libraries for sequencing, with both adapters containing an 8-bp index allowing
for multiplexing. The dual-indexed library amplification products are purified using Ampure beads
(Beckman Coulter). Library quantification is performed using Qubit dsDNA HS assay (ThermoFisher)
and qualified on a 2100 Bioanalyzer instrument (Agilent) to show a distribution with a peak in the
expected range. A final qPCR quantification was performed before loading onto a MiSeq (Illumina)
sequencer for PE250 (v2 chemistry). The sequences for each sample were then run on the 16S pipeline
of the CosmosID GENIUS software, and results were analyzed.

Both virome and bacteriome ecological analyses (richness, alpha diversity—Shannon Index) were
performed using Vegan R package (version 2.5-2) [39]. Bray–Curtis distance (beta diversity) was
calculated from an unweighted presence-absence species data matrix using QIIME and visualized in
R [40]. Statistical significance was assessed using a non-parametric Mann–Whitney U test.
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Transkingdom interactions were assessed by calculating Pearson’s correlation coefficients between
bacteria and viruses using the R package gplots (Figure 5E) and Originlab2019b package (Supplementary
Figure S2). Hierarchical clustering was performed on the control group, and the same clustering order
was used to visualize correlations of the other datasets (GWI, GWI+AB, and GWI+AV).

2.7. Availability of Data and Materials

Sequence data will be deposited to the NCBI Sequence Read Archive under BioProject accession
number PRJNA561629.

2.8. Immunohistochemistry

Paraffin-embedded tissues of frontal cortex or the distal part of the small intestine were prepared
according to standard protocols and sectioned to 5 µM thick. These sections were subjected to
deparaffinization using a standard protocol. Epitope retrieval solution and steamer (IHC-Word,
Woodstock, MD, USA) were used for epitope retrieval of the tissue sections. Three percent H2O2

was used to block the endogenous peroxidase. After serum blocking, the tissue was incubated
overnight at 4.0 ◦C with primary antibodies against MCP1 and IL6. Species-specific biotin-conjugated
secondary antibodies and streptavidin-conjugated with HRP were used to implement antigen-specific
immunohistochemistry. 3,3’-Diaminobenzidine (DAB) (Sigma Aldrich, St Louis, MD, USA) was used
as a chromogenic substrate. Mayer’s Hematoxylin solution (Sigma Aldrich) was used as a counterstain.
Sections were washed between the steps using PBS and tween-20 (PBS-T, 1X). Finally, stained sections
were mounted with Aqua mount (Lerner Laboratories, Kalamazoo, MI, USA). Tissue sections were
observed using an Olympus BX51 microscope (Olympus, America). Cellsens software from Olympus
America (Center Valley, PA, USA) was used for morphometric analysis of images.

2.9. Immunofluorescence Staining

The paraffin-embedded distal part of the small intestine or frontal cortex were deparaffinized
using a standard protocol. Epitope retrieval solution and steamer were used for epitope retrieval of
sections. Primary antibodies such as TLR3, TLR7, TLR9, MyD88, β tubulin, TRAF6, Claudin-2, CD40,
and CD11b were used at the recommended dilution. Species-specific secondary antibodies conjugated
with Alexa Fluor (633-red and 488-green) were used at recommended dilution. The stained sections
were then mounted using Prolong Diamond antifade reagent with DAPI. Sections were observed
under Olympus fluorescence microscope using 20×, or 40× objective lenses. Cellsens software from
Olympus America (Center Valley, PA, USA) was used for morphometric analysis of images.

2.10. Real-Time Quantitative PCR

mRNA expression in the small intestine and frontal cortex was examined by quantitative real-time
PCR analysis. Total RNA was isolated by tissue homogenization in TRIzol reagent (Invitrogen,
Carlsbad, CA, USA) according to the manufacturer’s instructions and purified with the use of RNeasy
mini kit columns (Qiagen, Valencia, CA, USA). cDNA was synthesized from purified RNA (1 µg)
using iScript cDNA synthesis kit (Bio-rad, Hercules, CA, USA) following the manufacturer’s standard
protocol. Real-time qPCR (qRTPCR) was performed with the gene-specific primers using SsoAdvanced
SYBR Green Supermix and CFX96 thermal cycler (Bio-rad, Hercules, CA, USA). Threshold cycle (Ct)
values for the selected genes were normalized against respective samples internal control 18S. Each
reaction was carried out in triplicates for each gene and for each sample. The relative fold-change was
calculated by the 2−∆∆Ct method. The sequences for the primers used for real-time PCR are provided
in Table 1.



Viruses 2019, 11, 968 6 of 23

Table 1. The sequences for the primers used for real-time PCR.

Gene Sequences (3′-5′)

ZO1 Sense: CCACCTCTGTCCAGCTCTTC
Antisense: CACCGGAGTGATGGTTTTCT

Occludin Sense: GTGAGCTGTGATGTGTGTTGAGCT
Antisense: GTGGGGAACGTGGCCGATATAATG

BDNF Sense: TGCAGGGGCATAGACAAAAGG
Antisense: CTTATGAATCGCCAGCCAATTCTC

2.11. Western Blot

30 µg of denatured mouse small intestine and frontal cortex protein was loaded per well on Novex
4%–12% bis-tris gradient gel and subjected to standard SDS-PAGE. Separated protein bands were
transferred to nitrocellulose membrane using the Trans-Blot Turbo transfer system (Bio-rad, Hercules,
CA). After Ponceau S staining then the membrane was blocked with 5% non-fat milk solution for
1 h and then incubated with primary antibodies for overnight at 4 ◦C. A species-specific anti-IgG
secondary antibody conjugated with HRP was used to tag the primary antibody. ECL Western blotting
substrate was used to develop the blot. Finally, the blot was imaged using G: Box Chemi XX6 and
subjected to densitometry analysis using Image J software.

2.12. Serum ELISA

Serum IL6 and IFNβ, IFNγ was estimated using an ELISA kit from ProteinTech (Rosemont, IL,
USA) following manufacturer protocol.

2.13. Statistical Analysis

Prior to initiation of the study, we conducted calculations for each experimental condition with
appropriate preliminary data to confirm that the sample number is sufficient to achieve a minimum
statistical power of 0.80 at an alpha of 0.05. We used a total of 11 mice for both the control group
and GW treated groups; 9 mice for both GW+AB and GW+AV treated mice. Data from each group
were pooled. Student’s t-test was used to compare means between two groups at the termination
of treatment. A one-way ANOVA was applied as needed, to evaluate differences among treatment
groups followed by the Bonferroni post-hoc correction for intergroup comparisons. Association was
estimated by performing a Pearsons Rank Product moment coefficient analysis.

3. Results

3.1. Gulf War Chemical Exposure Alters the Gut Virome

Exposure to Gulf War chemicals leads to profound intestinal inflammatory injury and perturbations
of the gut microbiome [4]. Hence, we sought to understand the role of the gut virome in GWI. Using
a mouse model of GWI, we performed next-generation sequencing to characterize the gut virome
of C57BL/6J mice exposed to GWI chemicals. GW chemical-exposed mice had decreased relative
abundance of Microviridae bacteriophages and increased relative abundance of Siphoviridae and
Myoviridae bacteriophages compared to control mice (Figure 1A). Further, GW chemical exposure led
to an increase in viral richness (Figure 1B) and alpha diversity (Figure 1C).

Since GWI has been associated with bacterial dysbiosis [4], we evaluated the effects of two
broad-spectrum antimicrobial interventions in GWI-induced mice: 1) a combination of Neomycin
and Enrofloxacin antibiotics, and the 2) antiviral nucleoside Ribavirin. Antibiotic treatment of GW
chemical-exposed mice (GWI+AB) did not significantly alter the virome as compared to GWI mice
in terms of virome composition, richness and alpha diversity (Figure 1A–C). However, antiviral
(Ribavirin)-treated mice exposed to GW chemicals (GWI+AV) had decreased viral richness and alpha
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diversity when compared to GWI mice (Figure 1B,C). With antiviral treatment, the virome of mice was
altered in a manner that resulted in mice having a virome composition that was more similar to control
mice that were not exposed to GW chemicals as assessed by an unweighted Bray–Curtis distance
PCoA analysis (Figure 1D). These data suggest that GW chemicals exposure leads to significant virome
alterations that can be reversed in part by antiviral treatment, but not by antibiotics.Viruses 2019, 11, x FOR PEER REVIEW 7 of 25 
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Figure 1. Virome alterations in a mouse model of Gulf War Illness. (A) The relative abundance of DNA
virome is shown of the treatment group average (left) and by individual mice (right). (B) Rarefaction
curves of virome richness are plotted with an increasing number of mice sub-samplings from each
treatment group. Curves represent the average of 500 iterations at each sub-sampling depth. (C) Viral
species richness of each group and (D) Shannon diversity index of virus species is shown. Statistical
significance was assessed by Mann–Whitney U test; * p < 0.05, ** p < 0.01, *** p < 0.001, ns not significant.
(E) Principal coordinate analysis (PCoA) of binary Jaccard distance of virome species. Treatment groups
are indicated respectively. The 95% confidence intervals of the control group (blue) and GWI group
(red) are shaded accordingly.

3.2. Gut Bacterial Dysbiosis Induced by Gulf War Chemical Exposure Is Altered by Antibiotics but Not by
Antiviral Treatment

Using the same GWI mouse model, we assessed the effects of antibiotics and antiviral treatments
on gut bacterial microbiota. Consistent with our previous study, the gut bacterial microbiomes were
predominantly colonized by Firmicutes and Bacteroidetes (Figure 2A). GW chemical exposure led to a
significant increase in Shannon alpha diversity (Figure 2B, p = 0.016). Conversely, antibiotic treatment
in GW-exposed mice led to decreased alpha diversity (p = 0.002) to levels that were not significantly
different from control mice (Figure 2B, p = 0.261). In contrast, there was no significant difference
in the bacterial microbiome alpha diversity between antiviral-treated GW mice and control mice.
This suggests that while antibiotics treatment significantly altered the bacterial dysbiosis induced by
Gulf War chemical exposure, antiviral treatment had minimal impact on the bacterial microbiome
(Figure 2C).
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Figure 2. Gut bacterial dysbiosis induced by Gulf War chemical exposure is altered by antibiotics but
not by antiviral treatment. (A) The relative abundance of bacteriome is shown of the treatment group
average (left) and by individual mice (right). (B) Alpha diversity (Shannon index) of bacterial taxa is
shown. Statistical significance was assessed by Mann–Whitney U test; * p < 0.05, ** p < 0.01, ns not
significant. (C) Principal coordinate analysis (PCoA) of unweighted Bray–Curtis distance of bacteriome
is shown. Treatment groups are indicated respectively.

Trans-kingdom interactions between bacteria and viruses play an important role in intestinal
immunity and inflammatory disease [41]. Therefore, we assessed the effects that GW chemicals and
subsequent antimicrobial treatments had on transkingdom interactions between the gut bacteria and
bacteriophages. In control mice, Ruminococcaceae and Bacteroidia microbiota were positively correlated
with bacteriophages, while Clostridia and Lactobacillaceae microbiota were inversely correlated with
bacteriophages (Figure 3). GW chemical exposure (GWI) led to significant alterations. In particular,
there were more positive interactions with Caudovirales bacteriophages (including Siphoviridae and
Myoviridae) with bacteria such as Clostridia and Ruminococcaceae species. Antibiotic treatment was
associated with primarily stronger negative bacterial interactions (Sutterella, Anaerostipes, Akkermansia).
The antiviral treatment restored specific transkingdom interactions (Bacteroides and Clostridia), but also
had new strongly positive interactions between Caudovirales bacteriophages and Lactobacillaceae and
Lachnospiraceae bacterial microbiota. Taken together, this further indicates that virome-bacterial
relationships are implicated in GWI.
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Figure 3. GWI and intervention alterations in bacteria-bacteriophage interactions. Heatmap of Pearson
correlations between bacteria (rows) and bacteriophages (columns) are shown. Clustering was performed
on the control group (left), and the same clustering order maintained in the correlation plots of Gulf
War illness (GWI), GW chemicals and antibiotics (GWI+AB), and GW chemical and antiviral (Ribavirin)
(GWI+AV) groups (right).



Viruses 2019, 11, 968 9 of 23

3.3. Gut Bacterial and Viral Dysbiosis Induced Alteration of Intestinal Epithelial Tight Junction Proteins Is
Restored by Antibiotics and Antiviral Treatment

In our recent reports, we have shown that gut microbial dysbiosis induced by Gulf War (GW)
chemicals exposure led to gut leaching [4,10]. Therefore, we assessed the effects that GW chemicals
and subsequent antibacterial (Enrofloxacin and Neomycin) and/or antiviral (Ribavirin) treatments had
on tight junction proteins of mouse intestinal epithelia. The mouse exposed with GW chemicals (GWI)
showed increased expression of Claudin-2 as compared to control groups (Figure 4A,B, p < 0.001).
Interestingly, similar mouse model co-exposed with GW chemicals and antibiotics (GWI+AB) or
antiviral (GWI+AV) showed significantly decreased Claudin-2 expression (similar to control) as
compared to GWI group (Figure 4A,B, p < 0.001). Similarly, mRNA expression of ZO1 and Occludin
(tight junction genes) showed a significant decrease in GWI group of mice as compared to control
(Figure 4C, p = 0.03 and p = 0.023). Interestingly, antibiotic treatment (GWI+AB) recovers both ZO1 and
Occludin gene expression as compared to GWI groups (Figure 4C, p = 0.02 and p = 0.026). Similarly,
antiviral treatment (GWI+AV) significantly improves both ZO1 and Occludin gene expression as
compared to GWI groups (Figure 4C, p = 0.008 and p = 0.03). These data suggest that while antibiotic
treatment significantly altered the bacterial dysbiosis and antiviral treatment for gut partial virome
depletion significantly improved viral dysbiosis induced by GW chemical exposure, these treatments
also restored tight junction protein levels along the intestinal epithelial barrier.
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Figure 4. Anti-viral or antibiotic intervention improves intestinal epithelial membrane integrity and
tight junctions in GWI. (A,B) Representative immunofluorescence images of small intestine showed
Claudin-2 (red) expression and localization in Control, GWI (Gulf War chemical exposed mice),
GWI+AB (Gulf War chemical and antibiotic exposed mice), and GWI+AV (Gulf War chemical and
antiviral-treated mice). All intestine sections were counterstained with DAPI (blue) and 3–10 images
were taken from the different microscopic field of each group at 20×magnification. The morphometric
analysis (calculated as % ROI of red immunofluorescence image (n = 3–10)) of images were plotted
as a bar graph as Claudin-2 (B). (C) mRNA expression of epithelial tight junction proteins ZO1 and
Occludin in GWI, GWI+AB and GWI+AV groups. Data points were represented with means ± SEM.
Statistical significance was calculated using unpaired t-test; * p < 0.05, ** p < 0.01, *** p < 0.001.
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3.4. Viral Dysbiosis in GWI Mice Was Accompanied by Intestinal Inflammation in GWI

Gut microbial homeostasis regulates innate and adaptive immune response [17]. Recent studies
suggest that viral and bacterial dysbiosis is directly associated with intestinal inflammatory disease
such as IBD, Crohn’s disease, and ulcerative colitis [23,26,42,43]. In this study, we observed significant
dysbiosis in both virome and bacteriome in mice exposed to GW chemicals. Based on such rationale,
we assessed the association of gut virome dysbiosis in intestinal inflammation. We found that the mice
exposed with GW Chemicals (GWI group) that had an altered virome diversity compared to controls
showed a significant increase in monocyte chemoattractant protein 1 (MCP1) and interleukin 6 (IL6)
as compared to control mice group (Figure 5Ai,ii,Bi,ii,C, p < 0.001). Interestingly, mice co-exposed
with GW chemicals and antibiotic (GWI+AB) showed a significant decrease in both MCP1 and IL6
immunoreactivity as compared to GWI groups of mice (Figure 5Aii,iii,Bii,iii,C; p < 0.006). Similarly,
antiviral treatment to the mice exposed with GW chemical (GWI+AV) showed a significant decrease
in both MCP1 and IL6 immunoreactivity as compared to GWI groups of mice (Figure 5Aii,iv,Bii,iv,C;
p < 0.001). We also studied whether the GW chemical exposure to the mice imposed any systemic
inflammation. Results showed that the GW chemical-exposed mice (GWI) that had virome dysbiosis
was strongly associated with a significant increase in serum IFNγ and IL6 levels as compared to control
mice (Figure 5D; p < 0.002). Interestingly, antibiotic treatment (GWI+AB) showed reduced serum IFNγ

and IL6 levels as compared to the GWI mice (Figure 5D; p < 0.017). Similarly, the antiviral-treated
group (GWI+AV) also showed significantly decreased serum IFNγ and IL6 levels as compared to
GWI mice (Figure 5D; p < 0.03). Since GWI disease pathology was associated with an elevated
inflammatory profile, we examined the effects of inflammation on the virome. Indeed, lower levels of
serum proinflammatory cytokine IL6 was associated with a lower virome diversity (i.e., control or
antiviral treatment) (Figure 5E). Conversely, elevated levels of serum proinflammatory cytokine IL6
was associated with a higher virome diversity. Serum IFN-γ and IL-1β also positively correlated with
increased virome diversity found in GWI (Supplementary Figure S2).

3.5. Altered Resident Enteric Virome Signature Was Accompanied by Activated TLR Signaling in Intestinal
Inflammatory Phenotype of GWI

In recent studies, enteric viruses have been identified to alter the innate immune response in several
diseases [44,45]. Because enteric viruses interact with Toll-like receptors (TLRs: e.g., TLR3, TLR7, TLR9)
to activate pro-inflammatory or anti-inflammatory signaling in intestinal inflammation, we investigated
the role of gut viral dysbiosis in alteration of the innate immune system in GWI. We observed that
viral dysbiosis in GW chemical-exposed group (GWI) activates TLR7 and TLR9 signaling pathway.
GW chemical exposure that had altered virome signature showed significant increased level of TLR7
and TLR9 colocalization with MyD88 adapter molecule (p < 0.05, n = 15)), a likely event of TLR
activation as compared to the control group (Figure 6Ai,ii,Bi,ii,D,E). However, the antiviral or antibiotic
intervention significantly decreased the TLR7 and TLR9 expression (red) and colocalization with
MyD88 (Figure 6Aii–iv,Bii–iv,D,E; p < 0.03). Further, TNF Receptor Associated Factor 6 (TRAF6), that
plays a significant role in TLRs signaling cascade was studied. The immunoreactivity of TRAF6 showed
an increase in GWI+AB compared to GWI (Figure 6Ci–iii,F; p > 0.061) while the same was unchanged
when compared between controls and GWI mice. However, antiviral-treated mice (GWI+AV) showed
a significantly decreased immunoreactivity as compared to GWI mice (Figure 6Cii–iv,F; p < 0.04).
Next, to investigate total protein expression of TLRs signaling cascade, western blot of TLR signaling
molecules were carried out in intestinal protein lysate. Results showed that the expression of TLR7,
MyD88, and p65 were significantly increased in GWI groups that had altered virome diversity as
compared to control groups (Figure 6G,H,J,M; P < 0.029; n = 5). Importantly, TLR9, IKK-α, and
TRAF6 showed a increase in GWI groups as compared to control group (Figure 6G,I,K,L; p < 0.06;
n = 5). Interestingly, expression of these cascade molecules in GWI+AB groups and GWI+AV groups
showed a significant decrease in TLR7, TLR9, MyD88, TRAF6, and IKK-α in GWI+AB groups (p < 0.01)
and TLR7, TLR9, TRAF6, IKK-α, and p65 in GWI+AV groups (p < 0.030) respectively (Figure 6G–M;
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n = 5). We also observed a non-significant decrease inp65 in GWI+AB groups (p = 0.08) and MyD88 in
GWI+AV groups (p = 0.09) respectively (Figure 6G–M, n = 5).Viruses 2019, 11, x FOR PEER REVIEW 11 of 25 
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Figure 5. Anti-viral or antibiotic intervention ameliorates intestinal inflammation in GWI. Representative
immunohistochemistry images of small intestine showed immunoreactivity of MCP1 (A) and IL6 (B) in
control, GWI (Gulf war chemical exposed mice), GWI+AB (Gulf War chemical and antibiotic exposed
mice), and GWI+AV (Gulf War chemical and antiviral-treated mice). 3–10 images were taken from the
different microscopic field of each group at 20×magnification. (C) The morphometric analysis (calculated
as % ROI) of images were plotted as a bar graph. (D) Serum IFNγ and IL6 levels in pg/mL were plotted
as a bar graph. IFNγ levels in GWI+AV group were below the detection limit and represented as
ND (not detectable). For both (C) and (D) data points were represented with means ± SEM. Statistical
significance was calculated using unpaired t-test; * p < 0.05, ** p < 0.01, *** p < 0.001. (E) Correlation plot
of virome Shannon diversity index by serum IL-6. Results of multivariate analyses for association with
serum ELISA measurements are shown. Linear regression is shown in red, 95% confidence bands are
indicated in gray. False discovery rate (FDR), FDR adjusted q-value; Coefficient, regression coefficient.
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Figure 6. Gut viral dysbiosis activates TLR7 and TLR9 pathway in GWI. Representative immunofluorescence
images of small intestine showed (A) TLR7 (red) and MyD88 (green); (B) TLR9 (red) and MyD88 (green)
and (C) TRAF6 (green) immunoreactivity in Control, GWI (Gulf war chemical exposed mice), GWI+AB
(Gulf War chemical and antibiotic exposed mice), and GWI+AV (Gulf War Chemical and antiviral-treated
mice). All intestine sections were counterstained with DAPI (blue) and 3–15 images were taken from the
different microscopic field of each group at 20× or 40× analysis of colocalized area (yellow, calculated as
% ROI) of TLR7-MyD88 (D), TLR9-MyD88 (E), and immunoreactivity of TRAF6 (F) was plotted as a bar
graph. (G) Western blot analysis of TLR7 and TLR9, and its signaling cascade molecules such as MyD88,
TRAF6, IKK-α, and p65 were plotted as immunoblot. (H–M) Morphometry analysis of all immunoblot
(n = 3–8) normalized against β-actin was plotted as a bar graph. Data points were represented with
means ± SEM. Statistical significance was calculated using unpaired t-test; # p < 0.1, * p < 0.05, ** p < 0.01.
ns = non-significant at p ≥ 0.1.
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A recent study suggests that dsRNA viruses activate TLR3 pathways resulting in interferon-beta
(IFNβ) production [46]. In another study, IFNβ is shown to have antiviral and anti-inflammatory
properties [47]. Based on the above rationale, we investigated the TLR3 mediated anti-inflammatory
response in this study. Results showed a significant increase of TLR3 expression in GWI group as
compared to control group (p < 0.05) and a significant decrease in GWI+AB or GWI+AV groups
as compared to GWI group (p < 0.05) (Supplementary Figure S3A–D). Similarly, a nonsignificant
increase in serum IFN-β was observed in GWI group as compared to control. Also, GWI+AB group
showed a nonsignificant decrease as compared to GWI group (Supplementary Figure S3E). However,
antiviral-treated group (GWI+AV) showed a significant decrease in serum IFN-β as compared to GWI
group (Supplementary Figure S3E). The above data suggested that enteric viral dysbiosis primarily
activated TLR7 and TLR9 mediated proinflammatory response in GWI while TLR3 mediated pathways
might be an adaptive response from the host. Also, treatment with Ribavirin (broad-spectrum antiviral)
downregulated TLR3 and TLR7 pathway and thus played a significant role in intestinal inflammation
in GWI that also had viral alterations.

3.6. Inhibition of Virome Alteration by Ribavirin in GWI Decreased TLR4 Activation but Had Limited Impact
on TLR4 Protein Levels

We and others have shown that the TLR4 is a prime innate immune molecule, activated by
DAMPs and PAMPs in Gulf war illness [4,10]. Consistent with our previous finding, results in this
study showed higher TLR4-flotillin immunoreactivity in GWI groups as compared to control groups
(Figure 7Ai,ii,B; p < 0.1). Also, a significant increase in TLR4 protein was observed in immunoblot
analysis (Figure 7D,E; p < 0.001). On the other hand, antibiotic-treated (GWI+AB) and antiviral-treated
(GWI+AV) groups showed a significant decrease in the TLR4-Flotillin colocalization (Figure 7Aii–iv,B,C;
p < 0.008) but did not impact TLR4 protein levels (Figure 7D,E).

3.7. Altered Gut Virome and Microbiome in Gwi Mice Was Associated with Blood–Brain Barrier (BBB) Integrity
Loss and Neuroinflammation While Antiviral Ribavirin Reversed Outcomes

We and others have shown that GW chemical exposure led to neuroinflammation [4,10]. A healthy
BBB plays a gatekeeper role in protecting the brain from unwanted circulatory agents which might
be harmful to the brain. Therefore, in this study, we investigated the integrity of BBB and microglial
activation leading to neuroinflammation. Results showed that Claudin-5 protein (brain endothelial
tight junction protein) expression significantly decreased in GWI mice as compared to control in western
blot analysis (Figure 8A,B; p < 0.001). Interestingly, GWI+AB group showed significant improvement
in Claudin-5 as compared to GWI (Figure 8A,B; p < 0.001) and antiviral treatment (GWI+AV) also
showed higher expression as compared to GWI but was not significant (Figure 8A,B; p = 0.097). Next,
we investigated cortical microglia activation by using both the resting stage marker (CD11b) and active
stage marker (CD40). Immunofluorescence imaging showed that a significant higher immunoreactivity
and colocalization of both CD11b and CD40 marker in GWI group as compared to control group
(Figure 8Ci,ii,E; p = 0.005). However, GWI+AB group showed a nonsignificant decrease as compared
to GWI (Figure 8Cii,iii,E; p = 0.064) while antiviral treatment (GWI+AV) showed a significant decrease
in CD11b–CD40 expression and colocalization as compared to GWI (Figure 8Cii–iv,E; p = 0.019).
Further, we tested mice for the expression of pro-inflammatory cytokine IL6 in the frontal cortex.
Immunohistochemistry results showed a significant increase in IL6 immunoreactivity (blue circled) in
GWI groups as compared to control (Figure 8Di,ii, F; p < 0.002). Interestingly, both the GWI+AB group
and the anti-viral treated group showed a significant decrease in IL6 immunoreactivity as compared
to GWI (Figure 8Dii–iv,F; p < 0.004). Next, we examined the mRNA expression of Brain-Derived
Neurotrophic Factor (BDNF; regulate neuronal health) in the frontal cortex. We found a significant low
level of BDNF mRNA expression in GWI as compared to control (p = 0.02) and GWI+AB group showed
a nonsignificant increases BDNF levels. Interestingly, GWI+AV group showed significant increase in
BDNF expression as compared to GWI (Figure 8G, p = 0.19 and 0.04 respectively). These data suggested
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that the alteration in gut virome and microbiota induced intestinal and systemic inflammation led to
BBB integrity loss, microglial activation, and neuroinflammation in GWI. Treatment with antibiotic or
antiviral compound improved outcomes. Interestingly, BDNF, a neurogenesis marker was negatively
correlated with GWI virome diversity (Supplementary Figure S2).

Figure 7. Gut bacterial dysbiosis activates TLR4 pathway in GWI. (A) Representative immunofluorescence
images of small intestine showed TLR4 (red) and flotillin (green, lipid raft) immunoreactivity in Control,
GWI (Gulf war chemical exposed mice), GWI+AB (Gulf War chemical and antibiotic exposed mice), and
GWI+AV (Gulf War Chemical and antiviral-treated mice). All sections were counterstained with DAPI
(blue) and 3–15 images were taken from different microscopic field of each group at 20×magnification.
(A-iia) 3× digital zoom of boxed area of image A-ii showing colocalization events. (B) The morphometric
analysis of TLR4 (red) immunoreactivity calculated as % ROI were plotted as bar graph. (C) The
morphometric analysis of TLR4 (red)- Flotillin (green) colocalization (yellow) events calculated as %
ROI were plotted as bar graph. (D) Western blot analysis of TLR4 and β-actin protein in small intestine
of Control, GWI, GWI+AB, and GWI+AV. (E) Morphometry analysis of TLR4 immunoblot (n = 5)
normalized against β-actin was plotted as a bar graph. Data points were represented with means ± SEM.
Statistical significance was calculated using unpaired t-test; # p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001.
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Figure 8. Anti-viral or antibiotic intervention improves neuroinflammation in GWI. (A) Western blot
analysis of Claudin-5 and β-actin protein in the frontal cortex of Control, GWI (Gulf war chemical
exposed mice), GWI+AB (Gulf War chemical and antibiotic-treated mice), and GWI+AV (Gulf War
Chemical and antiviral-treated mice). (B) Morphometry analysis of Claudin-5 immunoblot (n = 5)
normalized against β-actin were plotted as a bar graph. (C) Representative immunofluorescence
images of frontal cortex showed CD40 (red) and CD11b (green) immunoreactivity and colocalization
(yellow, marked with the arrows) in Control, GWI, GWI+AB, and GWI+AV mice. All sections were
counterstained with DAPI (blue) and 3–15 images were taken from the different microscopic field of
each group at 20X magnification. (D) Immunohistochemistry images for IL6 expression in the frontal
cortex of Control, GWI, GWI+AB, GWI+AV. The prominent immunoreactivities were marked with
the blue circles. (E) The morphometric analysis of colocalized area (yellow, calculated as % ROI) of
CD11b-CD40 was plotted as a bar graph. (F) Morphometric analysis of IL6 immunohistochemistry
images (n = 3–15) calculated at % ROI. (G) mRNA expression of BDNF in mouse frontal cortex of
Control, GWI, GWI+AB, and GWI+AV. The RT-PCR data were normalized against internal control 18S
and plotted as fold-change to the control. Data points were represented with means ± SEM. Statistical
significance was calculated using unpaired t-test; # p < 0.10, * p < 0.05, ** p < 0.01, *** p < 0.001.
ns = non-significant at p ≥ 0.1.
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4. Discussion

The well-characterized GWI symptoms are GI inflammatory disease, chronic fatigue,
neuroinflammation, and cognitive impairment [48]. The current study investigates a mechanistic
analysis of the gut virome-bacteriome mediated GI and neuroinflammation. To our knowledge,
this is the first study that examined GW chemical-induced virome dysbiosis and bacteriome-virome
interactions in GWI. In our previous study, we have shown that GW chemical exposure causes bacterial
dysbiosis and that led to the loss of healthy gut bacteria such as Lactobacillus and Bifidobacterium [4].
Gut dysbiosis induced leaky gut symptoms and systemic inflammation in GWI [4]. In a recent
review, it has been reported that gut virome is the missing link between bacterial dysbiosis and
host immunity [11]. The same study also described the role of virome in TLR signaling and GI
diseases and hence concluding that virome analysis may lead to a novel therapeutic strategy for GI
complications [11,17,49]. The above study prompted us to explore the role of enteric viruses in GWI
pathology and as a probable therapeutic target. In the present study, we found that the GW chemical
exposure led to an increase in virome richness and relative abundance of dsDNA bacteriophages
Myoviridae, Siphoviridae, and Caudovirales and decreased relative abundance of ssDNA bacteriophages
Microviridae. We used a broad-spectrum antiviral compound Ribavirin to test the hypothesis that (a)
inhibition of gut viruses in the host may prove the role of gut virome in GWI and (b) antiviral treatment
may help to reconstruct and restore the virome signature in GWI. Ribavirin has been extensively
used as a therapeutic drug in several viral infections including Paramyxovirus, Adenovirus, and
RSV infections [50–52]. Our results showed that Ribavirin reverses GWI-induced alterations of the
enteric viral community. The enteric bacteriophage-bacteria (parasite-host) interaction is an essential
phenomenon to regulate both bacterial and viral community in the gut and play as a key role in gut
health [53]. Here, we found an independent or cumulative effect of both virome and bacteriome
dysbiosis in weakening of GI tight junctions (increased Claudin-2 and decreased ZO1 and Occludin),
GI inflammation (increased MCP1 and IL6), systemic inflammation (increased serum IFNγ and IL6)
and neuroinflammation (increased microglia activation and brain IL6). The present study also showed
that Ribavirin treatment improved GI tight junction assembly and subsequently decreasing GI and
neuroinflammation. Interestingly, inducing gut sterility by using antibiotics also improves such GI and
neurological complications. Results reported here are also strongly supported by previous such studies
where Ribavirin or antibiotics were applied as therapeutics in other GI complications and neurological
illnesses [15,54–57]. However, nonavailability of germ-free and gnotobiotic mice or mice completely
devoid of gut viruses prove to be a serious handicap in establishing the exact role of viruses in GWI or
any other disease pathology though use of antiviral cocktails similar to our approach have been shown
to serve the purpose.

Gut microbiome is a collection of trillions of microorganisms that modulated host pathology
and physiology through different mechanisms. Previous reports have suggested that the intestinal
microbiota had a strong influence on the mucosal immune system and vice versa [58]. A balanced
pathogen and commensal microbiome composition maintain the microbiome-host immune homeostasis.
However, any alteration in the microbiome may activate innate and adaptive immune responses and
may progress to an inflammatory phenotype [17,26,58–60]. In the present study we have shown that
the GW chemical-induced virome richness and dysbiosis showed a strong association with activated
Toll-like receptor-7 (TLR7) and TLR9 mediated proinflammatory pathways. We also found that the
expression and activation of downstream signaling molecules including TLR7-MyD88 (binding of
TLR7 with adaptor molecule myosin D88), TLR9-MyD88, or TLR4-Flottilin (localization of TLR4
in lipid raft) complex formation, TRAF6, IKK-α, and p65 (NFκB activation) have been increased
upon gut virome and microbiome dysbiosis. The dysbiosis was also accompanied by increased
inflammation while use of Ribavirin or antibiotics independently downregulated these pathways and
subsequently inflammation. The above results prompted us to study whether virome diversity had a
direct connection to a sustained systemic inflammatory response via increased serum IL6 or vice versa.
We found that IL6 and virome diversity had a positive correlation in GWI. Studies have shown that the
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enteric viruses can activate TLR3 signaling pathway to induce anti-inflammatory response via IFNβ

production [61,62]. However, it has always been a conflict whether viral-induced TLR3 activation leads
to pro- or anti-inflammatory response in viral pathogenesis [45,63,64]. In our study, we observed that
increased TLR3 might switch to pro-inflammatory response via IL6 or fail to produce significant IFNβ

in order to support its anti-inflammatory role in GWI though such mechanisms in the host remain
inconclusive at this time.

Another significant area of GWI pathology concerns neurological illness which includes
neuroinflammation, cognitive impairment, neurodegeneration and memory loss [48,65,66].
The blood–brain barrier (BBB) is selective and prevents harmful mediators such as reactive oxygen
species (ROS), inflammatory cytokines, pathogen-associated molecular patterns (PAMPs), and
damage-associated molecular patterns (DAMPs) to reach the brain [67,68]. Reports suggest that
in several microbial infections, the integrity of blood–brain endothelial cytoskeleton and tight junctions
are likely to be compromised [69]. Similarly, stress along with systemic inflammation (such as in
GWI) can increase BBB permeability [70,71]. Our results showed decreased levels of Claudin-5 (tight
junction protein of BBB) in GWI which is prevented upon antibiotic treatment but was not significantly
different with the antiviral treatment though the virome alterations in the gut was strongly associated
with low Claudin-5. This compromised BBB that was reflected by decreased Claudin-5 in our model
might be caused by a leaky gut and systemic inflammation. This hypothesis has been supported by
another study that discussed leaky gut and leaky brain in celiac disease [72]. Also, an evidence of
circulatory IL6 modulating blood–brain barrier function in the ovine fetus seems to support our present
finding where we find higher circulatory IL6 and decreased Claudin-5 [73]. An altered virome in our
GWI mouse model and subsequent restoration of virome diversity similar to controls (healthy) by
Ribavirin treatment and its relationship with IL6 and Claudin-5 levels show a strong correlation of host
viruses likely playing a central role in systemic and neuroinflammation. Therefore, we can justifiably
assume that altered virome associated leaky gut and systemic inflammation likely contributes to
BBB integrity loss/dysfunction though much mechanistic details are yet to emerge. Studies have
shown that BBB dysfunction leads to various neurological diseases such as dementia, Alzheimers,
autism spectrum disorders, depression, chronic headache and neuroinflammation [72]. Our results of
increased microglia activation and proinflammatory cytokine IL6 in the frontal cortex of GWI mice with
altered virome signature has great clinical significance in understanding persistent neuroinflammation
in GWI veterans. Since activated microglia can secrete IL6, it is likely that the observed increased IL6
may be playing a central role in the neurological symptoms in GWI. The fact that altered virome is
strongly correlated with higher circulatory IL6 and microglial activation, the present study may throw
important viewpoints for further mechanistic studies into cognitive impairment associated with GWI.

Limitations of the study: GWI is a complex neuroimmune disease and modelling the disease in
mice is always a challenge. Our model, though has established its closeness to the human disease is
not perfect. The results reported here needs to evolve and future studies should test the results in
multiple rodent models that currently exist. Administration of Gulf war chemicals such as permethrin,
DEET or other organophosphates should be tested for application through the dermal routes to study
whether the virome or bacteriome diversity still occurs due to change of the route of administration.
Secondly, the models used routinely are acute in nature that tests the alterations immediately after
the administration of chemicals are concluded. The approach should take into consideration the time
lag between the war and the present day to suitably model the current day veteran. Persistence of
the bacteriome and virome diversity in GWI should be tested in persistence models of GWI to better
obtain a likely scenario of today’s Gulf War veterans. This might help in finding an effective cure for
our veterans.

In summary, we present first direct evidence that Gulf War theater chemicals might increase
host gut virome richness, and cause both virome and bacteriome dysbiosis. Further, altered virome
associated gut membrane integrity loss probably activated the innate immune response in the intestine
via virome particle-induced activation of TLR7 and TLR9. The viral diversity in GWI via IL6 may cause
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BBB dysfunction and neuroinflammation. The study also presents evidence that the use of antivirals
like Ribavirin or along with the combinations of complementary and alternative compounds and
probiotics might restore gut biome homeostasis and can form the basis of a novel treatment strategy
for GWI and similar disorders.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4915/11/10/968/s1,
Supplementary Figure S1. Gut virome sequencing in the mouse model of Gulf War Illness and controls.
(A) Sequencing read depth of samples from the three Illumina MiSeq runs. Statistical significance was assessed
by Mann–Whitney U test; ns, not significant. (B) The plot shows viral sequencing reads identified within each
treatment group. Statistical significance was assessed by Mann–Whitney U test; ns, not significant. Principal
coordinate analysis (PCoA) of unweighted Bray–Curtis distance of virome is shown colored by the Illumina
NGS run (left); or by specimen type (right): stool samples (control, GWI, GWI+AB and GWI+AV groups), PBS
extraction negative controls. (D) The relative abundance of the 30 most abundant virus species is shown of PBS
extraction negative controls and stool samples, per Illumina run. (E) Microviridae family and (F) Caudovirales
order abundance, (G–H) Principal coordinate analysis (PC1, PC2 and PC1-PC2) of binary Jaccard distance of
virome species, (I) PCoA plot of virome unweighted Bray-Curtis distance. 95% confidence intervals of each group
are shaded accordingly. (J) Rarefaction curves of bacterial richness (species) and (K) bacterial species richness of
each group is plotted. (L) Viral contig richness and (M) Shannon diversity index of viral contigs for each group is
shown. (N) PCoA analyses of binary Jaccard distance of viral contigs is shown. 95% confidence intervals of each
group are shaded accordingly. (O) Heatmap shows Pearson correlations of Bacteriophage contigs (columns) and
bacteria (rows). Clustering was performed on the control group (left) and the same clustering order maintained
in correlation plots for GWI, GWI+AB and GWI+AV groups. Supplementary Figure S2. Pearson’s correlation
analysis of Virome alpha diversity and gene expression of tight junctions and inflammatory markers. Correlation
plot of virome alpha diversity by serum (A) IL-1β (pg/mL), (B) IFN-γ (pg/mL) and (C) IL-6 (pg/mL), and gene
(mRNA) expression of (D) IFNγ, (E) TNF-α, (F) ZO1, (G) Claudin-2 and (H) BDNF. Results of multivariate analyses
for association measurements are shown in table and linear regression is shown in red. Supplementary Figure S3.
Gut viral dysbiosis activates TLR3 pathway but did not show a protective role in GWI via IFN β. Representative
immunofluorescence images of small intestine showed TLR3 (red) and β-tubulin (green) immunoreactivity in
Control, GWI (Gulf war chemical exposed mice), GWI+AB (Gulf War chemical and antibiotic exposed mice),
and GWI+AV (Gulf War Chemical and antiviral-treated mice). All sections were counterstained with DAPI
(blue) and 3–15 images were taken from the different microscopic field of each group at 20× magnification.
(B) The morphometric analysis of TLR3 immunoreactivity calculated as % ROI were plotted as a bar graph.
(C) Western blot analysis of TLR3 and β-actin protein in the small intestine of Control, GWI, GWI+AB, and
GWI+AV. (D) Morphometry analysis of TLR3 immunoblot (n = 5) normalized against β-actin was plotted as a
bar graph. (E) Serum level of IFNβ (U/mL) in Control, GWI, GWI+AB, GWI+AV. Data points were represented
with means ± SEM. Statistical significance was calculated using unpaired t-test; # p < 0.1, * p < 0.05, ** p < 0.01,
*** p < 0.001. ns = non-significant at p ≥ 0.1.
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