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Summary. Malaria is an infectious disease that is caused by a group of parasites of the genus
Plasmodium. Characterizing the association between polymorphisms in the parasite genome
and measured traits in an infected human host may provide insight into disease aetiology and ul-
timately inform new strategies for improved treatment and prevention. This, however, presents
an analytic challenge since individuals are often multiply infected with a variable and unknown
number of genetically diverse parasitic strains. In addition, data on the alignment of nucleotides
on a single chromosome, which is commonly referred to as haplotypic phase, is not generally
observed. An expectation–maximization algorithm for estimating and testing associations
between haplotypes and quantitative traits has been described for diploid (human) populations.
We extend this method to account for both the uncertainty in haplotypic phase and the vari-
able and unknown number of infections in the malaria setting. Further extensions are described
for the human immunodeficiency virus quasi-species setting. A simulation study is presented
to characterize performance of the method. Application of this approach to data arising from a
cross-sectional study of n D 126 multiply infected children in Uganda reveals some interesting
associations requiring further investigation.

Keywords: Expectation–maximization algorithm; Genotype; Haplotype; Human
immunodeficiency virus; Linear model; Malaria; Phenotype; Quasi-species; Strain

1. Introduction

Our investigation is motivated by a study of the human pathogenic species Plasmodium falci-
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parum, the group of parasites that cause malaria. Here, interest lies in characterizing associa-
tions between genetic polymorphisms in the haploid parasite and clinical measures of severity of
disease, such as red blood cell (RBC) count or the amount of parasite in plasma. In this setting,
multiple infections can arise as a result of two or more singly infected mosquitoes taking blood
meals from the same individual, an infected mosquito taking blood meals over several days or a
single multiply infected mosquito taking a blood meal from an individual. These three settings
are indistinguishable from a data analytic perspective and all result in multiple strains within
a single human host. In general, the observed genotype data consist of the set of nucleotides
at each location of the genome across the entire population of organisms within a single host.
Thus, as in the human genetics setting, the specific alignment of these nucleotides on a single
chromosome, which is called the haplotype, is generally unobservable. This constitutes the first
analytic challenge.

The second challenge, rendering the infectious disease setting unique from human investiga-
tions, is that the number of infections is unknown and this number can vary across individuals.
Combined, these two challenges serve as the motivation for our present research. Consider, for
example, an individual who is infected by multiple parasites. Further suppose that the observed
genotype for this individual is Aa at one site and Bb at a second site on the genome, where
A, a, B and b are used to represent the observed nucleotide. In this simple case, there are four
possible haplotypes: h1 = .A, B/, h2 = .A, b/, h3 = .a, B/ and h4 = .a, b/. The precise combina-
tion of these haplotypes within this individual is not observable. In a human population, the
number of homologous chromosomes is fixed at 2 and therefore the truth could be .h1, h4/

or .h2, h3/. However, in the malaria setting, since the number of strains within each person
is also unobserved, the number of copies of each haplotype is unknown. In this case, the true
haplotype combination could be .h1, h4/, .h2, h3/, .h1, h4, h4/ or .h1, h1, h4, h4/, etc. and depends
on whether the individual has two, three or four infections. Note that two distinct strains may
have the same haplotype for the gene under consideration and thus we include, for example,
.h1, h4/ and .h1, h4, h4/ as two distinct possibilities.

Several methods for characterizing population level haplotype frequencies and haplotype–
trait associations in human populations have been described (Excoffier and Slatkin, 1995;
Stephens et al., 2001; Zaykin et al., 2002; Stephens and Donnelly, 2003; Schaid et al., 2002; Lake
et al., 2003; Lin and Zeng, 2006; Foulkes et al., 2008). In this paper, we propose an extension
of the EM approach for haplotype–trait association studies (Lake et al., 2003; Lin and Zeng,
2006) for infectious disease settings. Here interest lies similarly in characterizing the relationship
between genetic information and a trait; however, in the infectious disease context, the genetic
information is typically measured on the infectious agent (such as a parasite or virus) rather
than the human. In both cases, we assume that the trait is a host (human) level measurement.

In previous work, we described an expectation–maximization (EM) type of algorithm for
estimating haplotype frequencies in the malaria setting that uses only the observed genotype
data (Li et al., 2007). This prior work, while extending the methods of Excoffier and Slatkin
(1995) and Hill and Babiker (1995), does not take into account phenotypic or clinical informa-
tion about the host. In this paper, we propose an EM-type algorithm that additionally takes
into account information on a measured trait. This provides a comprehensive framework for
simultaneous estimation of population haplotype frequencies and haplotype–trait associations.
Thus the method that is presented represents an extension of Li et al. (2007) to incorporate
trait information as well as an extension of Lake et al. (2003) and Lin and Zeng (2006) to the
non-diploid setting.

An underlying premise motivating our research is that haplotypes may explain variability in
a measured trait that is not fully captured by consideration of genotype data alone. In human
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genetic settings, haplotype-based investigations are important if the polymorphisms under
consideration are in linkage disequilibrium with the true disease-causing variant but are not
themselves causal. In the malaria settings, the specific combinations of nucleotides on a single
strain may be relevant to protein production and, ultimately, to parasite fitness. The method
that is presented herein provides the framework for evaluating these potential associations.

In Section 2, we describe an extension of the EM framework for estimation and inference
under several models for the distribution of the number of infections. In Section 3, this approach
is applied in a simulation study as well as to data arising from a cohort of n=126 multiply infected
children from Uganda. Section 4 describes extensions for the human immunodeficiency virus
(HIV) quasi-species setting in which multiple strains can arise from repeat infections though,
more generally, this is a result of external pressures, such as treatment exposures. Finally, in
Section 5 we provide a discussion of our findings.

2. Methods

We begin in this section by outlining our notation and the structure of the data. We then describe
three approaches to estimation of the effect of haplotypes on a quantitative trait that each involve
different assumptions about the distribution of the number of infections:

(a) we assume that the number of infections within a host is fixed at a constant C> 0;
(b) we assume that this number follows a conditional Poisson distribution where we condition

on the presence of at least one infection;
(c) we make no assumption about the distribution of the number of infections and esti-

mate separately the probabilities of having exactly c infections where c=1, 2, . . . , C for C
sufficiently large.

Finally, a formal testing procedure is described.

2.1. Notation
Let G = .G1, . . . , Gn/ where Gi is the unphased (observed) multisite genotype for individual
i. Further suppose that H= .H1, . . . , Hn/ where Hi represents the combination of haplotypes
within individual i. In general, Hi is not known and multiple values of Hi are consistent with
Gi. The set of all haplotype combinations that are consistent with Gi is denoted by S.Gi/.
Let h1, . . . , hK denote the K possible haplotypes over all observed individuals and define θ =
.θ1, . . . , θK/ where θk is the population frequency of hk. Now let Y = .Y1, . . . , Yn/ where Yi is the
trait for i=1, . . . , n. We model Y by using the generalized linear model such that the expected
value of Yi is related to the linear predictor . XT

i HT
i /β through a link function g:

g.E[Yi]/= . XT
i HT

i /β .1/

where Xi is a vector of environmental or demographic covariates, including the intercept as the
first element, Hi is a vector of numerical codes for Hi and β is the corresponding parameter
vector. For a quantitative trait, g.·/ reduces to the identity link. Since the haplotype combination
for individual i is potentially unobserved, we consider all possible Hi that are consistent with
the observed genotype data, as described in Section 2.2. Hi can take many forms depending on
the specific genetic model. For example, we may define Hi as a K × 1 vector of indicators for
the presence of a specific dominant haplotype in individual i. Alternatively, we can set the kth
element of Hi equal to the number of copies of hk in individual i, corresponding to an additive
genetic model. Further discussion of formulations for this design matrix are given in Lin and
Zeng (2006).
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2.2. Estimation
In this section we describe the general EM framework for estimation, assuming a given
distribution for the number of infections. We then elaborate on this algorithm for each of
three distributional assumptions. First note that, for the generalized linear model framework,
we assume that the probability density of Y is from an exponential family, given by

Pr.Y|X, H, β/=L.β|Y, X, H/=
n∏

i=1
exp

[
Yi. XT

i HT
i /β−b{. XT

i HT
i /β}

a.ψ/
+ c.Yi,ψ/

]
.2/

where a, b and c are known functions, ψ is a scale parameter and in our setting H is unknown.
The ambiguity in H renders the haplotype-trait association study a missing data problem and
thus an EM-type algorithm is a natural choice for this setting. The EM algorithm, which was
formalized by Dempster et al. (1977), involves first taking the conditional expectation of the
complete-data log-likelihood (E-step), maximizing this with respect to the parameters of interest
(M-step) and then iterating between these two steps until a convergence criterion has been met.
In our setting, the observed data consist of Y, X and G and are denoted X.obs/, whereas the
complete data consist of Y, X, G and H and are denoted X.com/. Let Φ be the parameters of
interest, as described in each of the following sections. The complete-data likelihood for Φ is
thus given by

L.Φ|X.com//=
n∏

i=1
Pr.Yi|Xi, Hi, β/ Pr.Hi|θ/ .3/

where Pr.Hi|θ/ is the corresponding haplotype set probabilities for the ith individual. Notably,
this likelihood assumes that the haplotype frequencies are independent of environmental or
demographic information. In general, if departures from this assumption are tenable, a stratified
analysis may be appropriate. As seen below, Pr.Hi|θ/ depends on the particular assumptions
that are made with respect to the number of infections.

Let Φ̂
.t/

be the estimate of Φ derived from the tth iteration of the EM algorithm. Formally,
we have that the expectation of the complete-data log-likelihood conditional on the observed
data and the current parameter estimates is given by

E[log{L.Φ|X.com//}|X.obs/, Φ̂
.t/

]=
n∑

i=1

∑
Hi∈S.Gi/

piHi.Φ̂
.t/

/[log{Pr.Yi|Xi, Hi, β/}+ log{Pr.Hi|θ/}]

.4/

where

piHi.Φ̂
.t/

/=p{Hi|Hi ∈S.Gi/, Yi, Xi, Φ̂
.t/}= Pr.Yi|Xi, Hi, β̂

.t/
/Pr.Hi|θ̂.t/

/∑
Hi∈S.Gi/

Pr.Yi|Xi, Hi, β̂
.t/

/Pr .Hi|θ̂.t/
/
: .5/

Next, we maximize the conditional expectation of the complete-data log-likelihood given in
equation (4). It is straightforward to show that the (t + 1)th estimate of Φ can be obtained by
finding the root for the equations

@E[log{L.Φ|X.com//}|X.obs/, Φ̂
.t/

]
@β

=
n∑

i=1

∑
Hi∈S.Gi/

piHi.Φ̂
.t/

/
@ log{L.β|Yi, Xi, Hi/}

@β

=
n∑

i=1

∑
Hi∈S.Gi/

piHi.Φ̂
.t/

/
.Yi −E[Yi|Xi, Hi, β]/ . XT

i HT
i /T

a.ψ/

=0 .6/
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and

@E[log{L.Φ|X.com//}|X.obs/, Φ̂
.t/

]
@θk

=
n∑

i=1

∑
Hi∈S.Gi/

piHi.Φ̂
.t/

/
@ log{Pr.Hi|θ/}

@θk
=0: .7/

As noted in Lake et al. (2003) for the diploid setting, equation (6) reveals that the regression
parameter β can be estimated via weighted regression, where the weights are the posterior
probabilities of the haplotype sets for each individual, allowing us to use standard statistical
software packages at this step. In the following subsections we describe estimation under
specific assumptions for Pr.Hi|θ/. We assume convergence of the algorithm when max.|Φ̂.t/ −
Φ̂

.t+1/|=Φ̂.t/
/ < 1:0×10−5. Alternatively, a convergence criterion can be based on the observed

data likelihood, which is given by
n∏

i=1

∑
Hi∈S.Gi/

Pr.Yi|Xi, Hi, β/ Pr.Hi|θ/:

2.2.1. Fixed number of infections
Let δik denote the number of copies of haplotype hk in the haplotype combination Hi. First
suppose that there are exactly C strains in each individual where C > 0, i.e. assume that each
individual has exactly C infections, where C is some known positive integer. This implies that
ΣK

k=1δik =C, where δik ranges from 1 to C. Pr.Hi|θ/ of equation (3) is thus given by

Pr.Hi|θ/= C!
δi1!. . . δiK!

K∏
k=1

θ
δik
k : .8/

In this case, Φ= .β, θ/. Plugging equation (8) into equation (7), we have

@E[log{L.Φ|X.com//}|X.obs/, Φ̂
.t/

]
@θk

=
n∑

i=1

∑
Hi∈S.Gi/

piHi.Φ̂
.t/

/

(
δik

θk
− δiK

θK

)
=0: .9/

Resulting closed form solutions for θ̂k (see Appendix A.1) are given by

θ̂
.t+1/

k =

n∑
i=1

∑
Hi∈S.Gi/

piHi.Φ̂
.t/

/δik

nC
: .10/

2.2.2. Poisson assumption on the numbers of infections
In Section 2.2.1 we assumed that the number of infections is fixed; however, in general this num-
ber may be variable for each individual. In this section we relax this assumption and instead
assume a Poisson distribution on the number of infections per individual, as described in Hill
and Babiker (1995). Since data sets are generally comprised only of individuals with at least
one detectable infection, the conditional Poisson model is considered. Let the Poisson model
conditioning on at least one infection be given by

φc.λ/=
{

λc=c!
exp.λ/−1

c> 0,

0 c=0
.11/

where φc.λ/ is the probability of having c infections. In this case, Φ= .β, θ,λ/. Since the number
of strains ci can be determined from Hi, equation (8) for the haplotype combination probabilities
is now replaced by
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Pr.Hi|θ,λ/=Pr.Hi, ci|θ,λ/=φci .λ/
ci!

δi1!. . . δiK!

K∏
k=1

θ
δik
k .12/

where ci is the number of infections for the ith individual. Estimation of θ proceeds similarly to
the setting in which C is fixed. Straightforward calculation (see Appendix A.2) leads to closed
form solutions for θ̂k given by

θ̂
.t+1/

k =

n∑
i=1

∑
Hi∈S.Gi/

piHi.Φ̂
.t/

/δik

n∑
i=1

∑
Hi∈S.Gi/

piHi.Φ̂
.t/

/ci

: .13/

Estimation of λ is achieved by solving

@E[log{L.Φ|X.com//}|X.obs/, Φ̂
.t/

]
@λ

=
n∑

i=1

∑
Hi∈S.Gi/

piHi.Φ̂
.t/

/
@ log{Pr.Hi|θ,λ/}

@λ

=
n∑

i=1

∑
Hi∈S.Gi/

piHi.Φ̂
.t/

/

{
ci

λ
− exp.λ/

exp.λ/−1

}
=0: .14/

There is no closed form for λ̂ and a Newton–Raphson procedure can be employed. In this set-
ting, the number of possible strains in an individual is not limited, which leads to an infinite sum
in the E-step of the EM algorithm. In practice, we consider the number of strains to be limited
by a large number (C) such that the probability of having more than C infections is small.

2.2.3. Semiparametric approach
Finally, we consider the approach in which no assumptions are made about the distribution of
the number of infections. In this approach, we estimate separately the probabilities of having
exactly c infections where c = 1, 2, . . . , C for C sufficiently large. Let qc be the probability of
having c infections and define q = .q1, . . . , qC/ and Φ= .β, θ, q/. Equation (8) for the haplotype
set probabilities is now replaced by

Pr.Hi|θ, q/= ci!
δi1!. . . δiK!

K∏
k=1

θ
δik
k

C∏
c=1

qI.ci=c/
c .15/

where I.ci = c/ equals 1 if ci = c and 0 otherwise. Estimation of q proceeds by solving

@E[log{L.Φ|X.com//}|X.obs/, Φ̂
.t/

]
@qc

=
n∑

i=1

∑
Hi∈S.Gi/

piHi.Φ̂
.t/

/
@ log{Pr.Hi|θ, q/}

@qc

=
n∑

i=1

∑
Hi∈S.Gi/

piHi.Φ̂
.t/

/

{
I.ci = c/

qc
− I.ci =C/

qC

}
=0 .16/

and resulting closed form solutions (see Appendix A.3) for q̂c are given by

q̂.t+1/
c = 1

n

n∑
i=1

∑
Hi∈S.Gi/

piHi.Φ̂
.t/

/I.ci = c/: .17/

2.3. Inference
Wald tests are used to test hypotheses of haplotype–trait associations. To do this, estimates of the
model parameters and the corresponding variance–covariance matrix are needed. Estimation
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of the variance–covariance matrix proceeds by inverting the observed information matrix,
which is computed via Louis’s method within the EM framework (Louis, 1982). An alternative
approach is to approximate the observed information matrix with the empirical observed infor-
mation matrix which can be computed by (Meilijson, 1989)

Ie.Φ; X/=
n∑

i=1
si.Φ/sT

i .Φ/|Φ=Φ̂ .18/

where Φ̂ is the estimate of the parameters in the last EM iteration and si.Φ/ is the score function
from the observed data likelihood for the ith individual. The score is given by (McLachlan and
Krishnan, 1997)

si.Φ/=EΦ

[
@ log{Li.Φ|X.com/

i /}
@Φ

∣∣∣∣X.obs/
i , Φ̂

]
: .19/

For example, under the fixed number of infections assumption, we have

si.Φ/= ∑
Hi∈S.Gi/

piHi.Φ̂/

⎛⎜⎜⎝
.Yi −E[Yi|Xi, Hi, β]/ . XT

i HT
i /T =a.ψ/

δi1=θ1 − δiK=θK
:::

δik−1=θk−1 − δiK=θK

⎞⎟⎟⎠: .20/

3. Data examples

In the following simulation study and real data example we focus on a quantitative trait for ease
of presentation. In this case, g.·/ of equation (1) is set equal to the identity link and we have the
linear regression model

Yi = . XT
i HT

i /β+ "i: .21/

We further assume the "i are independent and normally distributed with mean 0 and variance
given by σ2. Notably, this model assumes homoscedasticity and is therefore applicable when the
standard deviation of the trait is constant over the values of X and H. In the real data example
that is provided below, we have no biological reason to believe that there is a violation of
this assumption though, in general, evaluation of the appropriateness of the homoscedasticity
assumption can be achieved through close examination of residual plots.

3.1. Simulation study
To evaluate the performance of the methods that were described in Section 2, we conduct a
simulation study and report the type 1 error rates (ERs) and power under each of the three
models for the number of infections: fixed, Poisson and semiparametic. The simulation starts
by generating the number of infections c for each individual. Under the fixed number model,
the number of infections is set equal to a constant C. Under the Poisson assumption, c is gener-
ated randomly from a conditional Poisson distribution with assumed rate parameters λ=2 and
λ=3. Finally, under the semiparametric approach, we assume that the number of infections c
ranges from 1 to 4 with corresponding probabilities q = .0:3, 0:3, 0:2, 0:2/.

Next we simulate the haplotype combination for each individual on the basis of the
multinomial distribution. Four haplotypes, which are given by h1 = .A1, B1/, h2 = .A1, B2/,
h3 = .A2, B1/ and h4 = .A2, B2/, with corresponding population frequencies of θ= .0:25, 0:35,
0:20, 0:20/, are assumed. The trait Y is generated by using random sampling with the error
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generated from a normal distribution. A single haplotype effect is assumed with an effect size
ranging from 0.2 to 0.8. For simplicity of presentation, we let σ2 =1 and vary β. In addition, we
consider a model in which there is no haplotype effect, in which case the response is generated
simply from a normal distribution with mean and variance equal to 1. In all cases, a dominant
genetic model is assumed. For each configuration, B=200 data sets with sample sizes of n=500
are generated. Analysis is performed using genotype data and trait information only, i.e. we
assume that the haplotypic phase and the number of infections are unknown and apply the
methods that were described in Section 2.

Simulation results are provided in Table 1. Bias, coverage rates, power and ER are reported.
Bias is defined as the absolute difference between the mean parameter estimates over the
simulations and the true value. The estimated standard error of the parameter estimates based
on the simulations is given by ŝe. The parameter β1, the haplotype effect for the first haplotype
h1 = .A1, B1/, is varied across the simulations. Power is defined as the proportion of simulations
in which we detect the true haplotype effect. The ER is the proportion of simulations for which
an incorrect haplotype is detected, averaged over the haplotypes that are assumed to have no
effect.

Under each of the three model assumptions and a range of haplotype effect sizes, the bias
ranges from less than 0.001 to 0.086 and the coverage rates are between 0.92 and 0.97. This
suggests that our algorithm results in reasonably well-calibrated interval estimates. As expected,
the power for detecting the haplotype effect increases as the effect size increases from 0.0 to 0.8.
In general, for samples of size of n=500, we achieve greater than 80% power to detect moderate
effect sizes of greater than 0.40. Notably, however, we see a reduction in power and an increase
in the bias for β1 as the number of infections (parasite strains) is increased from 2 to 4 under
the fixed number assumption. This is likely to be the result of increased ambiguity associated
with more possible haplotype combinations within an individual as the number of infections
(C) increases.

To evaluate the performance of the proposed method when the number of infections violates
model assumptions, we conduct several sensitivity analyses. First, we perform estimation by
using the fixed approach, assuming that the number of infections is equal to 2, when in fact
the probabilities of having c infections for c = 1, . . . , 5 are all equal to 0.2. The results are
presented in Table 2, part (a). Comparing this with correct application of the semiparametric
method (Table 1), we see a dramatic loss of power and a less severe, but noteworthy, decrease
in coverage rates for both β and θ. In addition, the type 1 ER is substantially larger for β1 �0:4.
Secondly, we perform estimation by using the fixed number approach, again assuming that
the number of infections is equal to 2, when in fact the number of infections arises from a
conditional Poisson distribution with λ= 2. The results are presented in Table 2, part (b).
Comparing these results with correct application of the Poisson approach with λ=2 (Table 1),
we see a more dramatic decrease in coverage rates for both β and θ. In addition, a significant
decrease in power and increase in the type 1 ER are observed for β�0:2. These findings support
the use of the more sophisticated modelling approaches in these settings.

Next, we perform estimation by using the Poisson approach when in fact the probabilities
of having c infections for c = 1, . . . , 5 are all equal to 0.2 and we present the results in Table 2,
part (c). Here the modelling approach provides estimates of λ and, from this, we calculate q̂c

as .λ̂
c
=c!/={exp.λ̂/ − 1}. As expected under this type of model misspecification, the coverage

rates for qc are very low (0.12–0.15). Interestingly, the coverage rates for both β and θ remain
at approximately 95% and the power and ER are reasonable, though slightly worse than using
the correct model (Table 1). Finally, we evaluate performance in applying the semiparametric
approach when the number of infections actually arises from a Poisson distribution with λ=2.
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Table 1. Simulation results for the dominant model under three assumptions†

β1‡ Bias (ŝe)§ Coverage rates§§ PowerÅ ERÅÅ

β̂1 λ̂ ¯̂θ β1 λ θ̄

Fixed number model
C = 2 0.0 0.0038 (0.132) — 0.0008 (0.016) 0.95 — 0.95 0.05 0.06

0.2 0.0009 (0.138) — 0.0005 (0.015) 0.96 — 0.95 0.35 0.07
0.4 0.0060 (0.138) — 0.0013 (0.015) 0.96 — 0.95 0.82 0.06
0.6 0.0002 (0.126) — 0.0003 (0.016) 0.95 — 0.95 0.99 0.06
0.8 0.0016 (0.122) — 0.0008 (0.015) 0.94 — 0.95 1.00 0.05

C = 3 0.0 0.0035 (0.180) — 0.0007 (0.018) 0.94 — 0.94 0.08 0.07
0.2 0.0122 (0.181) — 0.0009 (0.017) 0.95 — 0.95 0.22 0.08
0.4 0.0136 (0.187) — 0.0006 (0.017) 0.95 — 0.95 0.59 0.08
0.6 0.0265 (0.181) — 0.0011 (0.017) 0.95 — 0.95 0.88 0.08
0.8 0.0291 (0.177) — 0.0004 (0.017) 0.95 — 0.94 0.97 0.07

C = 4 0.0 0.0128 (0.206) — 0.0066 (0.019) 0.94 — 0.92 0.07 0.06
0.2 0.0078 (0.223) — 0.0037 (0.019) 0.97 — 0.94 0.20 0.09
0.4 0.0443 (0.212) — 0.0065 (0.020) 0.96 — 0.94 0.38 0.06
0.6 0.0856 (0.185) — 0.0048 (0.020) 0.93 — 0.95 0.62 0.07
0.8 0.0627 (0.197) — 0.0046 (0.018) 0.92 — 0.95 0.88 0.06

Poisson model
λ=2 0.0 0.0098 (0.126) 0.0022 (0.111) 0.0025 (0.020) 0.96 0.94 0.94 0.04 0.05

0.2 0.0011 (0.150) 0.0093 (0.105) 0.0011 (0.019) 0.95 0.95 0.95 0.41 0.05
0.4 0.0001 (0.128) 0.0101 (0.089) 0.0013 (0.020) 0.96 0.96 0.97 0.87 0.06
0.6 0.0240 (0.129) 0.0042 (0.116) 0.0018 (0.020) 0.94 0.98 0.96 1.00 0.03
0.8 0.0160 (0.146) 0.0091 (0.104) 0.0012 (0.019) 0.96 0.95 0.94 0.99 0.05

λ=3 0.0 0.0022 (0.131) 0.0087 (0.123) 0.0017 (0.019) 0.96 0.97 0.94 0.04 0.03
0.2 0.0312 (0.129) 0.0372 (0.124) 0.0027 (0.019) 0.95 0.96 0.95 0.44 0.04
0.4 0.0002 (0.122) 0.0043 (0.137) 0.0017 (0.020) 0.94 0.96 0.95 0.91 0.05
0.4 0.0055 (0.129) 0.0216 (0.137) 0.0009 (0.018) 0.93 0.96 0.94 0.99 0.06
0.8 0.0120 (0.116) 0.0067 (0.126) 0.0024 (0.020) 0.97 0.96 0.94 1.00 0.06

¯̂q q̄

Semi-parametric model
0.0 0.0034 (0.117) 0.0112 (0.033) 0.0024 (0.019) 0.95 0.79 0.96 0.05 0.03
0.2 0.0082 (0.108) 0.0119 (0.030) 0.0027 (0.018) 0.94 0.85 0.95 0.38 0.06
0.4 0.0024 (0.118) 0.0119 (0.029) 0.0018 (0.018) 0.96 0.81 0.96 0.94 0.06
0.6 0.0321 (0.141) 0.0132 (0.032) 0.0027 (0.019) 0.97 0.83 0.96 1.00 0.04
0.8 0.0015 (0.116) 0.0119 (0.032) 0.0007 (0.018) 0.96 0.83 0.95 1.00 0.05

† ¯̂θ and ¯̂q denote averaging across all θ̂s and q̂s respectively. θ̄ and q̄ denote averaging across all θs and qs respec-
tively.
‡β1 is the effect of haplotype h1 = .A1, B1/ on Y.
§Bias is defined as the absolute difference between the mean of the estimate over the simulations and the true
parameter value.
§§Coverage rate is defined as the proportion of simulations for which the true parameter value is within the cor-
responding 95% confidence interval.
ÅPower is the specific power for the haplotype effect of the first haplotype h1.
ÅÅER is the type 1 error rate.

These results are given in Table 2, part (d), and, as expected, we see a slight loss of power for the
smaller effect sizes. For example, for an effect size of 0.4, the power of correctly using the Poisson
approach is 0.87 (Table 1). Power for the semiparametric approach is estimated to be 0.81. Since
we are not incorporating knowledge about the distribution of the number of infections the loss
of power is expected.
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Table 2. Sensitivity analysis to model misspecification

βÅ
1 Bias Coverage rates Power ER

β̂1 ¯̂q ¯̂θ β1 q̄ θ̄

(a) Incorrect application of the fixed approach under semiparametric data†
0.0 0.0016 (0.133) 0.0332 (0.044) 0.95 0.90 0.03 0.04
0.2 0.0441 (0.165) 0.0334 (0.045) 0.93 0.92 0.22 0.04
0.4 0.0810 (0.187) 0.0366 (0.042) 0.92 0.86 0.59 0.12
0.6 0.0761 (0.251) 0.0303 (0.041) 0.92 0.88 0.88 0.22
0.8 0.1081 (0.329) 0.0214 (0.044) 0.93 0.93 0.95 0.30

(b) Incorrect application of the fixed approach under Poisson-distributed data‡
0.0 0.0158 (0.178) 0.0640 (0.104) 0.93 0.99 0.08 0.07
0.2 0.1112 (0.175) 0.0850 (0.083) 0.89 0.92 0.13 0.09
0.4 0.1499 (0.187) 0.0985 (0.065) 0.91 0.64 0.30 0.16
0.6 0.2177 (0.219) 0.0972 (0.068) 0.86 0.68 0.65 0.25
0.8 0.3546 (0.353) 0.0722 (0.092) 0.87 0.98 0.83 0.40

(c) Incorrect application of the conditional Poisson model§
0.0 0.0086 (0.115) 0.0492 (0.009) 0.0023 (0.022) 0.97 0.15 0.95 0.02 0.04
0.2 0.0110 (0.142) 0.0491 (0.009) 0.0019 (0.022) 0.95 0.14 0.95 0.37 0.07
0.4 0.0026 (0.129) 0.0489 (0.008) 0.0011 (0.020) 0.96 0.12 0.94 0.90 0.05
0.6 0.0039 (0.141) 0.0492 (0.008) 0.0010 (0.021) 0.94 0.13 0.96 0.99 0.05
0.8 0.0134 (0.102) 0.0492 (0.009) 0.0010 (0.020) 0.95 0.15 0.94 1.00 0.06

(d) Incorrect application of the semiparametric approach under Poisson-distributed data§§
0.0 0.0113 (0.114) 0.0027 (0.019) 0.96 0.95 0.04 0.05
0.2 0.0166 (0.123) 0.0025 (0.021) 0.95 0.95 0.34 0.04
0.4 0.0316 (0.147) 0.0025 (0.020) 0.97 0.96 0.81 0.04
0.6 0.0191 (0.115) 0.0022 (0.021) 0.95 0.95 1.00 0.05
0.8 0.0233 (0.121) 0.0010 (0.019) 0.94 0.94 1.00 0.04

†The data are simulated assuming between one and five infections with equal probabilities of 0.20
whereas the estimation approach assumes c = 2 fixed infections. See the caption for Fig. 1 for defi-
nitions of terms.
‡The data are simulated assuming a conditional Poisson distribution with λ= 2, whereas the esti-
mation procedure assumes c=2 fixed infections.
§The data are simulated assuming between one and five infections with equal probabilities of 0.20.
§§The data are simulated assuming a conditional Poisson distribution with λ= 2. The number of
infections is assumed to range from 1 to 10.

3.2. Multiply infected children with malaria
Malaria is an infectious disease affecting millions of individuals globally. In fact, each year an
estimated (1–3)-million people die as a result of infection with the human pathogenic Plasmo-
dium species, the group of parasites that causes malaria (Breman, 2001). The majority of these
deaths are in children under the age of 5 years and in resource-constrained settings since current
treatment options are costly or unavailable (Greenwood et al., 2005; Guerra et al., 2008). Recent
advances in sequencing technologies provide new opportunities for population-based genetic
association studies to uncover complex relationships between genetic polymorphisms and
measures of progression of disease. Ultimately, these discoveries may help to inform novel
strategies for vaccine development.

One of the biggest challenges in characterizing genotype–trait associations in this setting
arises from the fact that individuals can be infected simultaneously with multiple parasitic
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strains. In the present investigation, we apply an EM approach (see Section 2) to data arising
from a cross-sectional study of n = 126 malaria-infected children from Uganda. We focus
on haplotypes in one polymorphic circumsporozoite protein (CSP) region (CSP-TH3) of the
gene that encodes for a cellular adhesion domain of the CSP. The CSP facilitates adhesion
of the parasite to liver cells, which is a critical initial step in its replication process in a hu-
man host (Zavala et al., 1983; Hollingdale et al., 1984). The goal of our analysis is to uncover
haplotype associations with RBC count (log-transformed). The RBC count is a well-known
diagnostic tool for detecting anaemia, which is a common and often lethal manifestation of
malaria.

Data on 12 sites, 10 of which are polymorphic in our sample, are considered. Notably, sites that
are constant across our data do not inform the analysis but are included for completeness. Across
all individuals, we see up to three different nucleotides at a site and, within a single individual,
one or two nucleotides are present at any given site. A total of 35 unique genotypes are observed
in our data and a sample of the data is provided in Li et al. (2007). For computational purposes,
the set of possible haplotypes is limited to those with estimated frequencies of greater than 0.01
where frequency estimates are obtained by using the approach of Li et al. (2007). We assume
a Poisson distribution and apply the approach of Section 2.2.2. A dominant genetic model is
assumed, as in the simulation study.

Estimated haplotype effects on the RBC and corresponding p-values for tests of the null
hypotheses that these effects equal 0 are provided in Table 3. The p-values are unadjusted for mul-
tiple comparisons. Using a Bonferroni adjustment, p-values that are less than 0.05/14 = 0.0036
are considered significant at the 0.05-level. A significant association is observed between the
RBC count and the three haplotypes numbered 8, 11 and 12. Interestingly, the effect of carrying
at least one copy of haplotype 11 appears to increase the RBC count exp.0:344/=1:41-fold, sug-
gesting a potential protective effect. In contrast, haplotypes 8 and 12 result in a lower RBC count
with estimated decreases of exp.−0:484/=0:616-fold and exp.−0:137/=0:872-fold respectively.

Table 3. Estimated haplotype effects for Uganda†

Unique haplotype Estimated Estimated Standard p-value
frequency θ̂ effect (β̂) error

1 T G A A C G C C G A G C 0.328 −0.108 0.099 0.278
2 T G A A C G C C G A G A 0.241 −0.066 0.092 0.471
3 T G A A C G C G A A G A 0.103 −0.032 0.106 0.762
4 T G A A C G C G G A G A 0.057 −0.148 0.150 0.324
5 T G G G T A C G G A G A 0.044 −0.257 0.151 0.089
6 T G G G C G C G G A G C 0.046 −0.081 0.240 0.737
7 T G A A C G C C A A G A 0.046 −0.023 0.165 0.891
8 T G G A C G C C G A G C 0.041 −0.484 0.133 <0.001‡
9 T G A A C G C G G A G C 0.034 0.200 0.583 0.731

10 T G G G C A C G G A G A 0.022 0.159 0.331 0.631
11 T G G G T G C G G A G A 0.011 0.344 0.008 <0.001‡
12 T G G A C G C C G A A T 0.005 −0.137 0.000 <0.001‡
13 T G G G C G A G A A G A 0.011 0.292 0.806 0.717
14 T G G A C G C C G A G A 0.009 0.206 2.031 0.919

†The results are based on a sample of size n = 126 and assume a Poisson model for the
number of strains per individual.
‡The haplotype effect on the RBC count is significantly different from 0 after applying a
Bonferroni adjustment for multiple comparisons.
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Notably, the estimated number of individuals with each of these haplotypes (which is given by
126θ̂k) is small and further confirmatory research is required to make firm conclusions.

4. Further extensions for the quasi-species setting

In the methods that were described above for estimation of haplotype effects on a trait, we
incorporate population level haplotype frequencies. These frequencies can be thought of as the
amount of each parasite strain circulating in the mosquito population that infects humans.
Importantly, we assume that the frequencies within individuals reflect these population level
parameters. In other words, the probability of being infected with a given strain does not depend
on prior infections and is equal to the proportion of this strain in the general population.
Patients who are infected with HIV similarly host a population of viruses; however, the pres-
ence of such a quasi-species generally results from external pressures, such as drug exposures,
rather than multiple repeat infections. As a result, the frequencies of each haplotype within an
individual may not reflect the true population level frequencies. This is evidenced, for example,
by the existence of latent reservoirs of resistant variants that rapidly emerge in the presence of
a drug.

For this reason, rather than using population level haplotype frequencies in the HIV setting,
we consider the probabilities that an individual in the target population carries a given haplo-
type. Although this distinction is subtle, it does require modification of the estimation approach
that was described in Section 2. Again let Gi be the unphased (observed) multisite genotype
for the ith individual where i = 1, . . . , n. Further suppose that Hi represents the combination
of unique haplotypes within individual i where Hi is generally unobservable and multiple val-
ues of Hi are consistent with Gi. We emphasize unique here since, in the previously described
approach, such a minimal set was not required, i.e. we are now interested in whether an individual
carries a specific haplotype and not in the number of copies. Again, the set of all combinations
that are consistent with Gi is denoted S.Gi/ and h1, . . . , hK denotes the K possible haplotypes
over all observed individuals. Let α= .α1, . . . ,αK/ whereαk is the probability that an individual
carries at least one copy of hk and define

δik =
{

1 if hk is present in the ith individual,
0 if hk is not present in the ith individual.

.22/

Under the model that is given in equation (1), the complete likelihood function can again be
written as in equation (3) where Pr.Hi|θ/ is replaced with

Pr.Hi|α/=
K∏

k=1
α
δik
k .1−αk/1−δik : .23/

In this case, estimation of the regression parameter β proceeds as described above and an esti-
mate of α is obtained by finding the root of the equation

@E[log{L.Φ/|X.com/}|X.obs/, Φ̂
.t/

]
@αk

=
n∑

i=1

∑
Hi∈S.Gi/

piHi.Φ̂
.t/

/
@ log{Pr.Hi|α/}

@αk

=
n∑

i=1

∑
Hi∈S.Gi/

piHi.Φ̂
.t/

/

(
δik

αk
− 1− δik

1−αk

)
=0: .24/

Resulting closed form solutions (see Appendix A.4) for α̂k are given by



Haplotype–Trait Associations in Non-diploid Populations 675

α̂
.t+1/
k =

n∑
i=1

∑
Hi∈S.Gi/

piHi.Φ̂
.t/

/δik

n
: .25/

5. Discussion

In this paper, we describe an approach to estimate and test haplotype–trait associations between
individuals with multiple strains of an infectious agent. Three approaches to modelling the
number of infections were described in Section 2. The first, which involves fixing the number of
infections to be a constant C, is presented since it represents a natural extension of the diploid
setting, within which C =2 and our approach reduces to the EM method of Lake et al. (2003).
Since in the infectious disease setting the number of infections is rarely known with certainty,
this first approach may be more relevant to investigations of polyploidy organisms in which the
number of homologous chromosomes is greater than 2, such as flatworms, goldfish, salmon and
a variety of ferns and flowering plants. Note that the assumption of independent segregation
that is made in equation (8) needs to be addressed specifically for each of these settings.

Our simulation study suggests that application of the Poisson approach, when in fact the
numbers of infections are c =1, . . . , 5 with equal probabilities, results in reasonable power and
type 1 ERs but substantial bias in these probability estimates. The semiparametric approach
performs reasonably well under the Poisson model with a slight loss of power. Incorrect
application of the fixed number approach leads to more substantial losses of power, reductions
in coverage rates and increases in type 1 ERs. Applications of the correct models lead to
reasonable power and control of type 1 ERs.

Coupled with this investigation is the need for appropriate methods for controlling type 1
ERs in the context of multiple comparisons. In Section 3.2, we applied a Bonferroni correction
to assess significance. Alternative single-step and step-down methods that are based on the false
discovery rate and that account for the correlated nature of these tests (Benjamini and Hochberg,
1995; Benjamini and Yekutieli, 2001; Storey and Tibshirani, 2003) are also tenable. In addition,
further consideration of resampling-based approaches and related extensions (Westfall and
Young, 1993; Pollard and van der Laan, 2004; Foulkes and DeGruttola, 2007) may be appro-
priate. Extensions of the mixed effects modelling approaches that were developed originally for
the diploid setting (Foulkes et al., 2007, 2008) would offer a single degree of freedom omnibus
test for association across all haplotypes.

Notably, our analysis is limited to data arising from individuals who visited one of the
designated clinics. This may lead to ascertainment bias for several reasons, including that the
individuals under study exhibited symptoms that were sufficiently severe to warrant at least
one visit to the doctor. This is a potential limitation of the method that is described herein.
Specifically, a population level prevalence greater than 0 of infection by a strain that results in
mild symptoms may result in overestimation of the frequencies of haplotypes that lead to more
severe symptoms.

Application of this EM approach to a small cohort of children in Uganda revealed three
potentially informative haplotypes within the CSP region of the parasite genome. In general,
characterizing the association between polymorphisms in the parasite genome and measured
traits in an infected human host may provide greater insight into disease aetiology and help
to inform new strategies for treatment and vaccine development efforts. Drawing meaningful
biological and clinical conclusions, however, will require further analysis. Specifically consid-
eration of host level factors, such as host genetic profile and clinical or demographic features,
may be warrented. The methods that are described herein provide a general framework and the



676 X. Li, B. N. Thomas, S. M. Rich, D. Ecker, J. K. Tumwine and A. S. Foulkes

analytic tools to investigate such associations under several models of association and models
for the numbers of infections.
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Appendix A

A.1. Estimation under fixed number of infections
Note that the sum of the population level haplotype frequencies must equal 1, so we have θK =1−ΣK−1

k=1 θk.
Equation (9) is then given by

@E[log{L.Φ|X.com//}|X.obs/, Φ̂
.t/

]
@θk

=
n∑

i=1

∑
Hi∈S.Gi/

piHi
.Φ̂

.t/
/

⎛
⎝ δik

θk

− δiK

1−
K−1∑
k=1

θk

⎞
⎠=0

for k =1, . . . , K −1 or, equivalently,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n∑
i=1

∑
Hi∈S.Gi/

piHi
.Φ̂

.t/
/δi1=θ1

n∑
i=1

∑
Hi∈S.Gi/

piHi
.Φ̂

.t/
/δi2=θ2

:::
n∑

i=1

∑
Hi∈S.Gi/

piHi
.Φ̂

.t/
/δiK−1 =θK−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n∑
i=1

∑
Hi∈S.Gi/

piHi
.Φ̂

.t/
/δiK

/(
1−

K−1∑
k=1

θk

)

n∑
i=1

∑
Hi∈S.Gi/

piHi
.Φ̂

.t/
/δiK

/(
1−

K−1∑
k=1

θk

)

:::
n∑

i=1

∑
Hi∈S.Gi/

piHi
.Φ̂

.t/
/δiK

/(
1−

K−1∑
k=1

θk

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

: .26/

Note that all the elements of the vector on the right-hand side of equation (26) are equal. Therefore, we
can set the first element of the vector on the left-hand side of equation (26) equal to each of the remaining
elements of this vector, which yields

θk =

n∑
i=1

∑
Hi∈S.Gi/

piHi
.Φ̂

.t/
/δik

n∑
i=1

∑
Hi∈S.Gi/

piHi
.Φ̂

.t/
/δi1

θ1: .27/

Thus we can derive an estimate of θ1 and use equation (27) to find estimates of θk for k = 2, . . . , K − 1.
From the first element of equation (26) we have

θ1

n∑
i=1

∑
Hi∈S.Gi/

piHi
.Φ̂

.t/
/δiK =

n∑
i=1

∑
Hi∈S.Gi/

piHi
.Φ̂

.t/
/δi1

⎧⎪⎪⎨
⎪⎪⎩1−θ1 −θ1

K−1∑
k=2

n∑
i=1

∑
Hi∈S.Gi/

piHi
.Φ̂

.t/
/δik

n∑
i=1

∑
Hi∈S.Gi/

piHi
.Φ̂

.t/
/δi1

⎫⎪⎪⎬
⎪⎪⎭

=
n∑

i=1

∑
Hi∈S.Gi/

piHi
.Φ̂

.t/
/δi1 −θ1

K−1∑
k=1

n∑
i=1

∑
Hi∈S.Gi/

piHi
.Φ̂

.t/
/δik
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or equivalently

θ1

n∑
i=1

∑
Hi∈S.Gi/

piHi
.Φ̂

.t/
/

K∑
k=1

δik =
n∑

i=1

∑
Hi∈S.Gi/

piHi
.Φ̂

.t/
/δi1: .28/

Finally, since ΣK
k=1δik =C and ΣHi∈S.Gi/ piHi

=1, equation (28) yields

θ̂
.t+1/

1 =

n∑
i=1

∑
Hi∈S.Gi/

piHi
.Φ̂

.t/
/δi1

nC
:

A.2. Estimation under Poisson assumption
Under the Poisson assumption, we have ΣK

k=1 δik = ci and therefore equation (28) is written

θ1

n∑
i=1

∑
Hi∈S.Gi/

piHi
.Φ̂

.t/
/ci =

n∑
i=1

∑
Hi∈S.Gi/

piHi
.Φ̂

.t/
/δi1

resulting in

θ̂
.t+1/

1 =

n∑
i=1

∑
Hi∈S.Gi/

piHi
.Φ̂

.t/
/δi1

n∑
i=1

∑
Hi∈S.Gi/

piHi
.Φ̂

.t/
/ci

:

A.3. Estimation for semiparametric approach
Note that the sum of the qc must equal 1, so we have qC =1−ΣC−1

c=1 qc and equation (16) is given by

@E[log{L.Φ|X.com//}|X.obs/, Φ̂
.t/

]
@qc

=
n∑

i=1

∑
Hi∈S.Gi/

piHi
.Φ̂

.t/
/

{
I.ci = c/

qc

− I.ci =C/

1−
C∑

c=1
qc

}
=0

for c=1, . . . , C −1. Using the same approach as described in Appendix A.1, we have

q̂.t+1/
c = 1

n

n∑
i=1

∑
Hi∈S.Gi/

piHi
.Φ̂

.t/
/ I.ci = c/: .29/

A.4. Estimation for quasi-species setting
From equation (24), we have

n∑
i=1

∑
Hi∈S.Gi/

piHi
.Φ̂

.t/
/δik

αk

=

n∑
i=1

∑
Hi∈S.Gi/

piHi
.Φ̂

.t/
/.1− δik/

1−αk

or equivalently

αk

n∑
i=1

∑
Hi∈S.Gi/

piHi
.Φ̂

.t/
/=

n∑
i=1

∑
Hi∈S.Gi/

piHi
.Φ̂

.t/
/δik: .30/

Since Σn
i=1 ΣHi∈S.Gi/piHi

.Φ̂
.t/

/=n, equation (30) yields

α̂.t+1/
k =

n∑
i=1

∑
Hi∈S.Gi/

piHi
.Φ̂

.t/
/δik

n
:
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