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A B S T R A C T   

Background: The nextwave of COVID-19 pandemic is anticipated to be worse than the initial one and will strain 
the healthcare systems even more during the winter months. Our aim was to develop a novel machine learning- 
based model to predict mortality using the deep learning Neo-V framework. We hypothesized this novel machine 
learning approach could be applied to COVID-19 patients to predict mortality successfully with high accuracy. 
Methods: We collected clinical and laboratory data prospectively on all adult patients (≥18 years of age) that 
were admitted in the inpatient setting at Aga Khan University Hospital between February 2020 and September 
2020 with a clinical diagnosis of COVID-19 infection. Only patients with a RT-PCR (reverse polymerase chain 
reaction) proven COVID-19 infection and complete medical records were included in this study. A Novel 3-phase 
machine learning framework was developed to predict mortality in the inpatients setting. Phase 1 included 
variable selection that was done using univariate and multivariate Cox-regression analysis; all variables that 
failed the regression analysis were excluded from the machine learning phase of the study. Phase 2 involved new- 
variables creation and selection. Phase 3 and final phase applied deep neural networks and other traditional 
machine learning models like Decision Tree Model, k-nearest neighbor models, etc. The accuracy of these models 
were evaluated using test-set accuracy, sensitivity, specificity, positive predictive values, negative predictive 
values and area under the receiver-operating curves. 
Results: After application of inclusion and exclusion criteria (n=)1214 patients were selected from a total of 1228 
admitted patients. We observed that several clinical and laboratory-based variables were statistically significant 
for both univariate and multivariate analyses while others were not. With most significant being septic shock 
(hazard ratio [HR], 4.30; 95% confidence interval [CI], 2.91–6.37), supportive treatment (HR, 3.51; 95% CI, 
2.01–6.14), abnormal international normalized ratio (INR) (HR, 3.24; 95% CI, 2.28–4.63), admission to the 
intensive care unit (ICU) (HR, 3.24; 95% CI, 2.22–4.74), treatment with invasive ventilation (HR, 3.21; 95% CI, 
2.15–4.79) and laboratory lymphocytic derangement (HR, 2.79; 95% CI, 1.6–4.86). Machine learning results 
showed our deep neural network (DNN) (Neo-V) model outperformed all conventional machine learning models 
with test set accuracy of 99.53%, sensitivity of 89.87%, and specificity of 95.63%; positive predictive value, 
50.00%; negative predictive value, 91.05%; and area under the receiver-operator curve of 88.5. 
Conclusion: Our novel Deep-Neo-V model outperformed all other machine learning models. The model is easy to 
implement, user friendly and with high accuracy.   

1. Key message 

During the current COVID-19 pandemic, health systems have been 

overwhelmed and with the emergence of new strains it has been a 
challenge for clinicians to triage and classify patients at risk of dying. In 
this current study, we developed a machine learning-based mortality 
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prediction model with high accuracy that can help millions of patients. 

2. Detailed key message 

2.1. Viewpoint 

There has been limited use of machine learning as a biomarker for 
outcomes in health care setting. Previously, our group had successfully 
built powerful biological machine learning models to predict mortality 
in intensive care units and inpatient settings. 

2.2. Commentaries 

Many countries like Brazil and India are now experiencing new cases 
of COVID-19 and are overwhelmed, with limited resources. In such a 
situations our one-click algorithm can be utilized to predict mortality 
before it happens. This algorithm can also have the potential to be a 
screening tool for mortality in future COVID-19-like viral pandemics. 

2.3. Innovation 

We successfully built an entirely new framework for this unique 
problem called the Neo-V Framework that is a statistically rigorous 
training method and has wide applications in the healthcare system, for 
training models to predict outcomes across the multiple subspecialties. 

2.4. Key findings 

A total of 1228 participants’ records were retrieved; analysis was 
conducted on 1214 patients after the exclusion criteria were applied. 

Clinically the most significant associations with mortality were 
septic shock (HR, 4.30; 95% 95 %CI: 2.91–6.37), supportive treatment 
(HR, 3.51; 95 %CI: 2.01–6.14), deranged International Normalized 
Ratio (INR) (HR, 3.24; 95% CI:2.28–4.63), intensive care unit admission 
(ICU) (HR, 3.24; 95% CI: 2.22–4.74), treatment with invasive ventila
tion (HR, 3.21; 95% CI, 2.15–4.79) and blood lymphocytic derangement 
(HR, 2.79; 95% CI: 1.6–4.86). However, utilization of systemic steroids 
(n = 430, HR = 0.66, 95 %CI = 0.45–0.97) and presence of fever (n =
768, HR = 0.57, 95 %CI = 0.40–0.81) were associated with better 
overall survival. 

Machine learning results showed that our DNN (Neo-V) model out
performed all conventional machine learning models with a test set 
accuracy of 99.53%, having Sensitivity 89.87%, Specificity 95.63%; 
Positive Predictive Value 50.00%; Negative Predictive Value 91.05%; 
and an Area Under the Receiver-Operator Curve (AUROC) of 88.5. 

3. Key implications 

Policy makers should direct resources to the development of such 
triage tools for clinically relevant problems. While in the immediate 
short term they should facilitate the rolling out of active measures 
enabling the design and use of such predictive tools. 

Program managers should approach clinicians on how they can use 
these easy-to-use tools in their inpatient setting. 

National stakeholders should understand and invest time and effort 
in creating such tools. Facilitation for the support and use of these 
predictive tools shall be invested by stakeholders at national level, and 
efforts and time shall be combined in the formation of such tools with 
clinical value and public health impact. 

4. Introduction 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2/ 
COVID-19) has caused 60 million infections and 1.4 million deaths 
worldwide [1] and 800, 000 deaths in the United States [2]. Despite 
strict measures being deployed in terms of lockdowns, mass gatherings, 

the second and third wave is anticipated to be far worse than the first 
[3,4]. As the COVID-19 virus acquires new mutations in India, United 
Kingdom and now a more infectious variant in Vietnam [5–7], the 
pandemic deepens, and we see significant strain on the healthcare sys
tems in all parts of the world. 

With the advent of vaccines, some countries have started to ease 
those earlier restrictions because of economic implications from the 
initial lockdown, which may create a further deepening of the current 
crisis, as cases continue to rise in certain parts of the world (especially 
developing countries) with emerging new strains, hence increasing the 
load on current healthcare systems of those with and without stable 
economies This could overwhelm the already strained healthcare sys
tems across the United States and the world. 

Machine learning has been extensively used in the automotive, de
fense and fin-tech industry over the past couple of years with great 
success. The use of these systems to predict health outcomes have been 
limited. The Epidemic Renormalization Group (eRG) has used a machine 
learning framework to predict the time evolution of the first and second 
wave based on the data from the first wave in Europe [8]. 

In the past we were able to develop machine learning algorithms that 
were capable of predicting mortality in clinical settings and performed 
better than most clinical scales that are utilized currently to predict 
mortality [9–11]. During the current COVID-19 pandemic crisis, our aim 
was to develop a mortality prediction tool that could predict mortality in 
COVID-19 patients during hospital admissions. This would help the 
already strained healthcare systems, physicians and frontline healthcare 
providers around the world in crucial clinical decision making, resource 
allocation and family-counselling. 

In the current manuscript, we hypothesize that machine learning, 
specifically deep-learning, could be applied to COVID-19 patients with 
high accuracy. Using deep learning to predict mortality in these patients 
may assist in clinical decision making, risk stratification and planning 
strategies in future for such pandemics at a larger scale. Currently there 
is not ample work that has been done in mortality prediction in COVID- 
19 patients in Low Middle Income Countries (LMIC) or developing 
countries that not only have compromised healthcare systems, but also 
compromised healthcare status of the population that resides in these 
countries. 

5. Methods 

5.1. Clinical setting and dataset 

This was a cross sectional study for which the data was extracted 
retrospectively from electronic medical records (EMR) of the Aga Khan 
University Hospital (AKUH), Karachi from February 2020 and 
September 2020, on patients admitted with a primary diagnosis of 
COVID-19 infection. 

The Aga Khan University is a state-of-the-art tertiary care hospital 
that received the very first COVID-19 patient when the pandemic hit the 
country for the first time. A COVID-19 Command and Record team was 
immediately created and all the patients with COVID-19 diagnosis were 
admitted to specifically designated care units. The electronic data of all 
patients admitted to the Aga Khan University are only accessible after 
the study receives Ethical Review Committee (ERC) approval for the 
conduct. The COVID-19 patient’s data was assigned a specific repository 
that was accessed after Institutional Review Board (IRB) approval and 
the main study variables were then extracted based on a structured 
Performa that was designed to include all relevant baseline, de
mographic and clinical information of patients that were admitted to the 
hospital with a confirmed diagnosis of COVID-19. 

The dataset was de-identified, and our study complied with the 
ethical principles recommended by the Helsinki declaration (1964) and 
its amendments. The study has received IRB/ERC approval from the Aga 
Khan University Hospital (AKUH), Karachi, Pakistan. 
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5.2. Data collection and selection criteria 

In the current study adult patients (>18 years of age) that were 
admitted to the hospital with a diagnosis of COVID-19 and were tested 
positive during their admission on Reverse-Transcriptase Polymerase 
Chain Reaction (RT-PCR) based on Center for Disease Control and Pre
vention (CDC) and College of American Pathologist (CAP) guidelines 
were included in the study [12,13]. Data was collected on de
mographics, comorbidities at admission, first 24-hours laboratory in
vestigations (hematological and blood biochemistry (Table 1), imaging, 
complete clinical characteristics, history, examination, treatment, hos
pital course and outcomes. All the patients that had RT-PCR negative 
tests for COVID-19 and those with incomplete records or missing in
formation were excluded from the analysis. Two data collectors sepa
rately extracted the relevant information on a google sheet based on a 
structured questionnaire designed to incorporate all clinical and rele
vant information related to the study. 

5.3. Neo-V Framework 

The new variable framework (Neo-V Framework) was developed to 
create a pathway for smaller datasets to have additional variables from 
existing data. The concept is similar to but not the same as a combination 
of different unrelated variables, the combination of these variables are 
biologically related to each other (see discussion). More simply Neo V, is 
a tri-phase bio-statistically rigorous machine learning approach. The 
framework has better accuracy than the currently used clinical scoring 
systems in predicting mortality in the intensive care unit (ICU) patients 
[9,10]. The three phases of the framework are as follows: 

Phase I: Also known as the statistical-phase; in which data was 
analyzed through univariate and multivariate Cox-regression analysis 
[14] using IBM SPSS (version 24.0.0.0) [15] for outcome assessment 
with hazard ratio and confidence intervals. A p-value of <0.05 was 
considered statistically significant. Frequency analysis was also done on 
the selected patients. Statistical analysis was carried out on all the var
iables included in Table 1. 

Phase II: New variables were created from the existing dataset called 
neo-variables. These variables included a combination of variables with 
two clinically relevant laboratory investigations that were significant in 
both the univariate and the multivariate analysis (Table 1). The selec
tion of these variables was done on the basis of clinical and biological 
relevance to each other and was not a simple combination of the vari
ables. These variables also underwent univariate and multivariate 
analysis for outcome assessment with hazard ratio and confidence in
tervals (cox-regression analysis). 

Phase III: Biological datasets are highly imbalanced with respect to 
the outcomes (i.e., survival is greater than mortality and machine 
learning models are very sensitive to imbalanced data and can produce 
variable and non-reproducible results. To address this, optimization was 
done using Synthetic Minority Over-sampling Technique (SMOTE) al
gorithm during the training process only [16]. In the machine learning 
phase, we used all variables that were statistically significant in phase I 
and II in both the univariate and multivariate analysis (non-significant 
risk factors were excluded). After applying the data partitioning scheme, 
the final dataset was randomized and divided into a training and testing 
set with a 70/30 percent split respectively (30% data left out to test the 
models) through train-test holdout validation. After partitioning the 
data, vector features were allocated in the training instances by X_train 
with the corresponding outcome label as Y_train. Similarly, the test-set 
was allocated in X_test and Y_test as testing vector instances and corre
sponding outcomes, respectively. The models were trained on X_train 
and Y_train. The models tried to learn the behavior/distribution of the 
data and generate a hypothesis/fitting function. Once the training was 
concluded the model tested the X_test and produced an output (predic
tion) called Y_pred. A comparison was done between Y_pred and Y_test 
(see Fig. 3). Our previous work shows that reduction of the number of 

irrelevant risk factors can produce better performances and significantly 
improve classifications. In this study conventional machine learning 
models were utilized including Random Trees (CART), K-Nearest 
Neighbor (KNN), Support Vector Classifier - Radial Basis Function (SVC - 
RBF), Ada-Boost-Classifier (ABC) and Quadratic Discriminant Analysis 
(QDA) and a deep neural network (DNN). 

5.4. Neo-V models 

Using the Neo-V Framework, we were able to train a number of 
different conventional models that included Random Forest (RF), k- 
nearest neighbors (KNN), Support Vector Machines - Radial Basis 
Function (SVM-RBF), Decision Trees (DT), Approximate Bayesian 
Computing (ABC) and Quadratic Discriminant Analysis (QDA). A deep 
neural network-based model (Deep-Neo-V) was also trained. The Deep- 
Neo-V model has 3 layers in the following order: input, hidden and 
output layers. 

5.5. Deep-FLAIM model 

The Deep-FLAIM model was built using the FLAIM framework (a 
two-phase statistically rigorous machine learning framework) which our 
group had previously developed to predict mortality in the inpatient 
settings, including critical care and non-critical care settings with high 
accuracy [9,10,17]. The Deep-FLAIM model was developed using this 
framework and results were compared with the Neo-V model (trained 
using the Neo-V Framework). 

5.6. Performance, primary and secondary outcomes analyses 

Performance of all models were evaluated by comparing their 
respective accuracies (training and test sets) and area under the 
receiver-operator curves (AUROC). Primary outcomes measures 
included mortality prediction for the test set using sensitivity and 
specificity, while secondary outcomes included positive predictive 
values (PPV) and negative predictive values (NPV). 

6. Results 

From a total of 1228 adult patients, 14 were excluded based on our 
selection criteria. The final analyzed dataset had 1214 adult participants 
with confirmed COVID-19 diagnosis on RT-PCR. Baseline frequency 
analysis of demographics showed a median age of 55 years (range 
19–96 years), of which around 28% (n = 336) of the admitted patients 
were elderly (>65 years of age). Majority of the admitted patients were 
male (61.5%). The median length of stay (LOS) for admitted patients 
was 5 days (range 1–54 days). 

Among the study participants the most common comorbid conditions 
were hypertension (43%, n = 521) and diabetes (36%, n = 441). The 
presenting symptoms ranged widely from being completely asymp
tomatic to having shortness of breath. The most significant clinical risk 
factors associated with in-hospital mortality included chronic kidney 
disease (CKD) (n = 71, HR = 2.74, 95 %CI = 1.63–4.61), ischemic heart 
disease (n = 158, HR = 1.80, 95 %CI = 1.19–2.73), other comorbidities 
(n = 571, HR = 1.72, 95 %CI = 1.21–2.45), shortness of breath (n = 570, 
HR = 1.96, 95 %CI = 1.35–2.86), other symptoms (non-respiratory and 
non-gastrointestinal symptoms)(n = 321, HR = 1.66, 95 %CI =
1.16–2.38), acute kidney injury (AKI) (n = 179, HR = 2.47, 95 %CI =
1.74–3.51), acute respiratory distress syndrome(ARDS)/respiratory 
failure (n = 147, HR = 2.53, 95 %CI = 1.77–3.63), septic shock (n = 49, 
HR = 4.30, 95 %CI = 2.91–6.37), admission to the intensive care unit 
(ICU) (n = 106, HR = 3.24, 95 %CI = 2.22–4.74), frequency of ICU 
admissions during current hospitalization (range = 0–2, HR = 2.01, 95 
%CI = 1.49–2.87), mechanical/invasive ventilation (n = 74, HR = 3.21, 
95 %CI = 2.15–4.79), non-invasive ventilation (BiPAP/CPAP) (n = 243, 
HR = 1.87, 95 %CI = 1.32–2.67), supportive treatment (n = 617, HR =
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Table 1 
Demographics with Univariate and multivariate analysis of clinical variables as part of Phase I of the Neo-V and FLAIM machine learning frameworks.     

Univariate Multivariate   

n = 1214 (n, affected) 
and Ranges 

p-value HR 95 %CI p-value HR 95 %CI 

Demographics AGE range (19–96 years) <0.001* 1.04 1.03–1.06 – – –  
Age > 50 years 755 <0.001* 3.15 1.81–5.50 – – –  
Age > 65 years 336 <0.001* 2.43 1.72–3.44 – – –  
Female 467 0.489 0.88 0.61–1.27 – – –  
Readmission 46 0.147 0.05 0.01–2.95 0.951 0.001 0.01–3.40E+164  
Mortality 130 (10.7%) – – – – – –  

Blood 
Grouping 

A- 6 0.289 2.91 0.41–20.90 0.553 1.822 0.26–13.18  

A+ 132 0.642 0.88 0.51–1.51 0.561 0.852 0.5–1.47  
B- 19 0.332 1.64 0.60–4.45 0.858 1.098 0.4–3.02  
B+ 233 <0.05* 1.5 1.03–2.18 0.051 1.459 1–2.13  
O- 13 0.27 0.04 0.00–11.71 0.947 0.001 0.01–2.07E+130  
O+ 183 0.224 1.28 0.86–1.90 0.25 1.262 0.85–1.88  
AB- 6 <0.05* 3.88 1.23–12.27 <0.001* 7.634 2.39–24.48  
AB+ 48 <0.05* 2.55 1.29–5.04 <0.001* 2.483 1.26–4.93  

Comorbidities Chronic kidney disease 71 <0.001* 3.45 2.08–5.72 <0.001* 2.737 1.63–4.61  
Chronic liver disease 13 0.15 2.32 0.74–7.33 0.125 2.467 0.78–7.82  
Chronic obstructive lung disease 14 <0.05* 2.93 1.19–7.21 0.163 1.918 0.77–4.79  
Diabetes 441 <0.05* 1.45 1.03–2.05 0.261 1.224 0.87–1.74  
Hypertension 521 0.58 1.41 0.99–2.01 0.493 1.137 0.79–1.64  
Ischemic heart disease 158 <0.001* 2.24 1.62–3.62 <0.05* 1.801 1.19–2.73  
Other Comorbidities 571 <0.05* 1.76 1.24–2.48 <0.05* 1.721 1.21–2.45  

Symptoms Asymptomatic 87 0.177 0.38 0.12–1.27 0.269 0.497 0.15–1.72  
Chest pain (non-cardiac) 56 0.252 1.63 0.71–3.71 0.434 1.395 0.61–3.21  
Cough 522 0.110 0.76 0.54–1.07 0.28 0.823 0.58–1.18  
Fatigue/lethargy 52 0.793 1.15 0.42–3.12 0.63 0.78 0.29–2.14  
Fever 768 <0.001* 0.56 0.39–0.79 <0.05* 0.568 0.4–0.81  
Gastrointestinal symptoms 93 0.875 0.94 0.42–2.14 0.626 0.813 0.36–1.88  
Headache 16 0.367 0.05 0.01–34.53 0.953 0.001 0.01–4.24E+150  
Hemoptysis 9 0.609 0.05 0.01–5037.35 0.961 0 0–1.48E+166  
Malaise 83 0.976 0.99 0.41–2.43 0.537 0.752 0.31–1.87  
More than 2 symptoms 901 0.975 1.01 0.66–1.56 0.817 0.95 0.62–1.47  
Myalgia 28 0.284 1.88 0.6–5.94 0.221 2.06 0.65–6.54  
Nasal obstruction 2 0.788 0.05 0.01–157108055.1 0.969 0.001 0.01–4.22E+198  
Other symptoms 321 <0.001* 1.97 1.38–2.8 <0.05* 1.66 1.16–2.38  
Pneumothorax (clinical/radiological) 22 <0.05* 2.00 1.17–3.43 <0.05* 2.014 1.18–3.46  
Rhinorrhea 7 0.502 0.05 0.01–327.09 0.964 0.001 0.01–1.70E+200  
Sore throat 58 0.240 0.51 0.16–1.59 0.637 0.758 0.24–2.41  
Sputum 29 0.070 2.03 0.95–4.35 0.247 1.576 0.73–3.41  

Clinical Acute Kidney Injury 179 <0.001* 2.95 2.08–4.18 <0.001* 2.465 1.74–3.51  
ARDS/Respiratory failure 147 <0.001* 2.81 1.96–4.03 <0.001* 2.527 1.77–3.63  
Septic Shock 49 <0.001* 5.05 3.43–7.43 <0.001* 4.299 2.91–6.37  
Shock Liver 3 <0.001* 11.63 2.84–47.73 <0.001* 11.476 2.77–47.68  
Shortness of breath 570 <0.001* 1.81 1.24–2.62 <0.001* 1.96 1.35–2.86  

Point of Care Special care unit 308 0.355 1.18 0.84–1.68 0.577 1.106 0.78–1.58  
Days spent in the ICU Range (0–20 days) 0.187 1.03 0.99–1.07 0.133 1.029 1–1.07  
Intensive care unit (ICU) 106 <0.001* 2.71 1.88–3.92 <0.001* 3.241 2.22–4.74  
Number of admissions ICU during current 
hospitalization 

Range (0–2) <0.001* 1.78 1.3–2.43 <0.001* 2.066 1.49–2.87  

Radiology Bilateral chest X-ray abnormalities 753 0.484 1.14 0.8–1.64 0.34 1.195 0.83–1.72  
Unilateral chest X-ray abnormalities 131 0.911 0.97 0.56–1.7 0.997 0.999 0.58–1.75  

Day One labs Abnormal blood lymphocyte count 378 <0.001* 3.02 1.74–5.26 <0.001* 2.786 1.6–4.86  
Abnormal blood neutrophil count 1044 <0.05* 2.5 1.17–5.36 <0.05* 2.657 1.24–5.7  
Abnormal platelets count 363 <0.05* 1.43 1.01–2.03 <0.05* 1.413 1–2.01  
Abnormal serum albumin 49 0.296 1.45 0.73–2.87 0.207 1.552 0.79–3.07  
Abnormal serum ALT 946 0.380 1.23 0.78–1.95 0.475 1.183 0.75–1.88  
Abnormal serum APTT 347 0.217 1.26 0.88–1.81 0.137 1.32 0.92–1.9  
Abnormal serum bilirubin 69 0.587 0.82 0.4–1.69 0.33 0.699 0.34–1.42  
Abnormal serum BUN 382 <0.001* 3.15 2.19–4.52 <0.001* 2.784 1.94–4.01  
Abnormal serum calcium 387 0.596 0.91 0.62–1.33 0.633 0.91 0.62–1.35  
Abnormal serum creatinine 373 <0.001* 3.21 2.24–4.6 <0.001* 2.73 1.9–3.94  
Abnormal serum hematocrit 505 <0.001* 1.87 1.33–2.65 <0.05* 1.808 1.26–2.61  
Abnormal serum hemoglobin 879 <0.05* 1.67 1.08–2.58 <0.05* 1.63 1.05–2.55  
Abnormal serum INR 198 <0.001* 3.38 2.38–4.8 <0.001* 3.243 2.28–4.63  
Abnormal serum LDH 751 0.597 1.11 0.77–1.58 0.806 1.047 0.74–1.5  
Abnormal serum magnesium 268 0.535 0.88 0.57–1.35 0.841 0.957 0.63–1.48  
Abnormal serum phosphorus 32 0.893 1.08 0.4–2.91 0.58 0.752 0.28–2.07  
Abnormal serum potassium 241 0.886 0.97 0.64–1.49 0.678 0.914 0.6–1.41 

(continued on next page) 
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1.87, 95 %CI = 1.32–2.67) and having an AB positive blood group (n =
48, HR = 2.48, 95 %CI = 1.26–4.93). Utilization of systemic steroids (n 
= 430, HR = 0.66, 95 %CI = 0.45–0.97) and presence of Fever (n = 768, 
HR = 0.57, 95 %CI = 0.40–0.81) were associated with better overall 
survival. 

The most significant abnormal laboratory findings associated with 
mortality were white blood cell count (leucocyte count) (n = 455, HR =
2.09, 95 %CI = 1.47–2.59), lymphocyte counts (n = 378, HR = 2.79, 95 
%CI = 1.60–4.86), neutrophil count (n = 1044, HR = 2.67, 95 %CI =
1.24–5.70), platelets count (n = 363, HR = 1.41, 95 %CI = 1.00–2.01), 
hematocrit (n = 505, HR = 1.81, 95 %CI = 1.26–2.61), hemoglobin (n =
879, HR = 1.63, 95 %CI = 1.05–2.55), blood urea nitrogen (BUN, n =
382, HR = 2.78, 95 %CI = 1.94–4.01), creatinine (n = 373, HR = 2.73, 
95 %CI = 1.90–3.94), International Normalized Ratio (INR, n = 198, HR 
= 3.24, 95 %CI = 2.28–4.63) and prothrombin time (PT, n = 378, HR =
1.79, 95 %CI = 1.24–2.59) (Table 1) 

There were some risk factors that were significant for mortality but 
had very few patients including i.e shock liver (n = 3, HR = 11.47, 95 % 
CI = 2.77–47.68), blood group AB negative (n = 6, HR = 7.63, 95 %CI =
2.39–24.48), rhinorrhea (n = 7, HR = 0.001, 95 %CI = 0.01–1.7e200), 
treatment with intravenous IgG (immunoglobulin G) (n = 6, HR = 3.95, 
95 %CI = 1.25–12.49) and pneumothorax (clinical or radiological, n =
22, HR = 2.01, 95 %CI = 1.18–3.46). Table 1 shows results from uni
variate and multivariate analysis (hazard ratios, confidence intervals 
and p-values) of all the clinical and laboratory data. 

In phase II (new variable phase) 11 new variables (neo-variables) 
were computed; all these variables were statistically significant in the 
univariable and the multivariable analysis except the total number of 
symptoms (Table 2). 

The performance of our previously designed Deep-FLAIM model was 
compared to the Neo-V framework (including Deep-Neo-V and other 

conventional machine learning algorithms) see Table 3. Performance 
results show Deep-FLAIM (training accuracy = 86.7%, testing accuracy 
= 84.7%, sensitivity = 68.9, specificity = 86.9, PPV = 42.5, NPV = 95.2, 
FPR = 13.1 and AUROC = 86.9); while conventional machine learning 
show: Random Forest (RF, training accuracy = 94.9%, testing accuracy 
= 85.8%, sensitivity = 28.9, specificity = 93.4, PPV = 32.4, NPV = 90.4, 
FPR = 6.25 and AUROC = 69.5), k- Nearest Neighbors (k-NN, training 
accuracy = 92.3%, testing accuracy = 77.8%, sensitivity = 42.2, spec
ificity = 82.8, PPV = 25.7, NPV = 91.1, FPR = 17.2 and AUROC = 66.5), 
Simple Vector Classifier – Radial Basis Function (SVC – RBF, training 
accuracy = 69.0%, testing accuracy = 65.8%, sensitivity = 75.6, spec
ificity = 64.4, PPV = 23.0, NPV = 94.9, FPR = 35.6 and AUROC = 80.8), 
Decision Trees (DT, training accuracy = 98.9%, testing accuracy =
85.2%, sensitivity = 42.2, specificity = 91.3, PPV = 40.4, NPV = 91.8, 
FPR = 8.8 and AUROC = 66.7), Adaptive Boosted Classifier (ABC, 
training accuracy = 90.1%, testing accuracy = 85.5%, sensitivity =
48.9, specificity = 90.6, PPV = 42.3, NPV = 82.7, FPR = 9.4 and 
AUROC = 77.65) and Quadratic discriminant analysis (QDA, training 
accuracy = 94.6%, testing accuracy = 87.4%, sensitivity = 60.0, spec
ificity = 91.3, PPV = 49.1, NPV = 94.2, FPR = 8.74 and AUROC =
80.84). 

Our best model was a deep neural network (Deep-Neo-V) with 
training accuracy = 98.7%, testing accuracy = 87.7%, sensitivity =
33.3, specificity = 95.3, PPV = 50.0, NPV = 91.1, FPR = 4.69 and 
AUROC = 88.5 (see Fig. 2). All receiver operator curves are shown in 
Supplemental Fig. 1. 

There were 45 cases that were discordant with the predicted out
comes in our study with 15 cases that were predicted to have mortality 
but survived their hospital admission. While thirty patients were pre
dicted to survive but died during their hospital stay. More detailed sub- 
analysis of these patients is presented in Supplemental Table 1. 

Table 1 (continued )    

Univariate Multivariate   

n = 1214 (n, affected) 
and Ranges 

p-value HR 95 %CI p-value HR 95 %CI  

Abnormal serum procalcitonin 523 0.312 1.2 0.85–1.69 0.485 1.132 0.8–1.61  
Abnormal serum PT 378 <0.05* 1.5 1.05–2.15 <0.05* 1.787 1.24–2.59  
Abnormal serum sodium 458 0.250 1.23 0.87–1.73 0.501 1.127 0.8–1.6  
Abnormal white cell count 455 <0.001* 2.08 1.45–2.96 <0.001* 2.089 1.47–2.98  

Treatment Anti-malarial 2 0.385 2.4 0.34–17.27 0.587 1.73 0.24–12.51  
Anti-viral drugs 99 0.715 0.9 0.51–1.6 0.538 0.835 0.47–1.49  
CRRT 7 <0.05* 2.72 1.19–6.23 0.054 2.287 0.99–5.3  
Hydroxychloroquine 77 0.230 0.61 0.27–1.38 0.336 0.667 0.3–1.53  
Intravenous IgG 6 <0.05* 3.87 1.23–12.23 <0.05* 3.945 1.25–12.49  
Invasive ventilation 74 <0.001* 2.79 1.89–4.1 <0.001* 3.208 2.15–4.79  
Lopinavir/Ritonavir 1 0.616 0.05 0.01–6488.77 0.962 0.001 0.01–6.44E+175  
Non-invasive ventilation (BiPAP/CPAP) 243 <0.001* 1.96 1.38–2.8 <0.001* 1.872 1.32–2.67  
Plasmapheresis 96 0.317 1.25 0.82–1.91 0.234 1.294 0.85–1.98  
Supportive treatment 617 <0.001* 3.89 2.22–6.81 <0.001* 3.507 2.01–6.14  
Symptomatic treatment 1056 <0.05* 0.6 0.36–0.98 0.058 0.613 0.37–1.02  
Systemic steroids 430 0.238 0.8 0.55–1.17 <0.05* 0.657 0.45–0.97  

Table 2 
Derivative variables and their univariate and multivariate analysis with mortality during hospital stay.     

Univariate Multivariate 
Derivatives for machine learning Variables  p-value HR 95%CI p-value HR 95%CI  

Total No. Comorbidities Range (0–6)  <0.001*  1.44 1.27–1.64  <0.001*  1.301 1.14–1.49  
More than 2 comorbidities 499  <0.001*  2.28 1.59–3.28  <0.001*  1.788 1.23–2.61  
Total No. symptoms Range (0–6)  0.379  1.08 0.92–1.27  0.439  1.066 0.91–1.26  
Total No. Treatments received Range (0–6)  <0.001*  1.31 1.14–1.51  <0.05*  1.268 1.11–1.46  
CR or BUN 517  <0.001*  0.31 0.21–0.46  <0.001*  0.356 0.24–0.54  
HB or HCT 883  <0.05*  0.55 0.35–0.87  <0.05*  0.562 0.36–0.89  
PLT or INR 460  <0.001*  2.21 1.55–3.16  <0.001*  2.087 1.47–2.98  
PT or INR 502  <0.001*  0.46 0.33–0.66  <0.001*  0.414 0.29–0.6  
TLC or LYMP 882  <0.001*  0.18 0.08–0.4  <0.001*  0.186 0.09–0.43  
TLC or NEU 1085  <0.05*  0.2 0.07–0.61  <0.05*  0.18 0.06–0.57  
Total No. laboratory abnormalities Range (0–17)  <0.001*  1.22 1.16–1.3  <0.001*  1.216 1.15–1.3  
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7. Discussion 

As the third wave of COVID-19 has started to unfold, the already 
stained healthcare systems globally are being pushed to the limit with 
hospital and intensive care unit (ICU) beds reaching full-capacity. 
Impact of the virus has been global with developed countries even 
struggling with infection rates and hospitalization [18]. The second 
wave is anticipated to be much tougher than the first one [19]. With new 
vaccines on the horizon infection rates in the United states have sky
rocketed to 1.34 million cases being diagnosed in the second week of 
December 2020 and more than 1100 deaths (weekly) [20]. 

Multiple vaccines now approved by the FDA in the United States and 
other developed nations, and high vaccination rates within these 
countries have helped in controlling the pandemic. However, the new 
United Kingdom variant (B.1.17 variant), double mutant in India 
(B.1.617.1 aka Kappa and B.1.617.2 aka Delta variants) and now a new 
Vietnam variant (a hybrid of the UK and India) threaten to worsen the 
pandemic even further. Studies are still ongoing if these new variants 

can be controlled by the original viral vaccine. This still is a major 
problem for healthcare systems to accommodate these patients such as 
in India, that is reporting over 3500 deaths a day and an infection rate of 
over 414,000 per day (May 2021). The losses are even greater owing to 
the shortage of oxygen, hospital bed, ICU space and ventilators in the 
country. 

However, there is a need for the development of clinical biomarkers 
and predictive models for mortality among vulnerable patient pop
ulations. Machine learning has been used to predict mortality in cancer 
[21], cardiac disease [22]; similarly our own work on mortality pre
diction on trauma patients, postoperative ileus cases in the ICU [9,10] 
and diverticulitis in the inpatient setting [17] has also predicted the 
same with good accuracy. A lot of epidemiological studies reporting 
clinical, laboratory and mortality outcomes have been done worldwide 
including in developed and developing countries, but very few actually 
reported or developed a machine learning model for predicting the 
outcomes with a set. 

In the current study we were able to develop a new machine learning 

Table 3 
Primary and secondary outcomes machine learning results.   

FLAIM 
Framework  

Test set (n = 365) Deep-FLAIM Deep-Neo-V RF (d = 10, e =
2) 

KNN (k = 3) SVC - RBF DT (d = 10) ABC QDA 

Test set accuracy 84.66 87.67 85.75 77.81 65.75 85.21 85.48 87.4 
Training set accuracy 86.69 98.70 94.94 92.34 69.02 98.94 90.11 94.58 
Precision 0.44 0.61 0.37 0.38 0.46 0.46 0.46 0.49 
Sensitivity 68.89 33.33 28.89 42.22 75.56 42.22 48.89 60 
Specificity 86.88 95.31 93.75 82.81 64.38 91.25 90.63 91.25 
Positive predictive value 42.47 50.00 39.40 25.68 22.97 40.43 42.31 49.09 
Negative predictive value 95.21 91.05 90.36 91.07 94.93 91.82 92.65 94.19 
Area Under Receiver- 

Operator Curve 
86.90 
(0.18–0.29) 

88.50 
(0.18–0.30) 

69.50 
(0.18–0.29) 

66.50 
(0.16–0.27) 

80.80 
(0.13–0.23) 

66.74 
(0.17–0.29) 

77.65 
(0.18–0.29) 

80.84 
(0.18–0.30)  

Fig. 1. Experimental design of the Framework.  

M. Naseem et al.                                                                                                                                                                                                                                



International Journal of Medical Informatics 154 (2021) 104556

7

mortality prediction tool based on a novel framework (Neo-V Frame
work) that uses a smaller number of cases to train a deep neural network 
to give better predictions. This model is different from our previously 
developed FLAIM Framework (two-phase) and has a tri-phase structure 
(Fig. 1). Numerous studies are reported and conducted in various 
healthcare settings over different parts of the world as the pandemic is 
amidst us since almost a year and a half. 

Clinical data analysis showed that with increasing age the patients’ 
mortality also increases. There are number of clinical risk factors that 
were associated with worse outcomes and documented in the clinical 
literature like chronic obstructive lung disease [COPD] [23], chronic 
kidney disease [CKD] [24], ischemic heart disease [IHD] [25], pneu
mothorax (radiological or clinical diagnosis) [26], acute respiratory 
syndrome [ARDS] [27], septic shock [28], shortness of breath [29], ICU 
admission [30], AB+ Blood group [31] and recurrent admission to the 
ICU. Hematological labs that were associated with mortality (previously 
presented in the results) were also seen in other studies [32]. 
Biochemical laboratory abnormalities like creatinine, blood urea nitro
gen [33], INR and PT [34] were also associated with mortality. Patients 
managed with invasive ventilation [35] and non-invasive ventilation 
[36] which actually signifies that the patients that were not able to 
maintain normal respiratory physiology had worse outcomes. Having 
fever [37] and the use of systemic steroids [38] as an early symptom of 
COVID-19 had better prognosis in our patient population. 

Machine learning has been used to predict mortality in the inpatient 
and the ICU setting in a number of different clinical conditions including 
our prior papers. The methods need to continue to evolve to have better 
outcome predictions, previously our group was able to develop the 
FLAIM-Framework approach, which was an attempt to build a workflow 
pipeline to produce more accurate results. The Neo-V Framework builds 
on our previous work and has the statistical power of FLAIM, but it can 
be used to apply deep learning to smaller datasets. This technique was 
named “horizontal expansion” of the dataset in which the dataset is 
expanded horizontally by combining two or more existing variables to 
create new-variables (Neo-V), without the need of recollecting the data. 
The combination was conditional that the variables were clinically 
relevant e.g., BUN and creatinine. In contrast, vertical expansion of the 
dataset is adding new patients or cases. There are publications that have 
used machine learning for rapid diagnosis of COVID-19 at admission 
[39,40]. 

The discordant cases in our study showed there were a number of 

different risk factors that were distributed unevenly throughout the 
discordant cases further categorized in Supplemental Table 1. 

To present a wholistic picture of the use of machine learning and 
mortality prediction in COVID-19 we have compared our own model to a 
number of models that are available at the time of this publication 
[41–45]. The comparison is presented in Table 4. The most comparable 
of these models is from Vaid et al. that had a much larger dataset from 5 
different hospitals across the city of New York, they also used RT-PCR 
positive adult patients in their study and developed multiple models. 
Their best model (MLP federated, median) when compared to our Deep- 
Neo-V model showed an AUROC of 0.809 vs 0.885, test-set accuracy of 
87.7% vs 76.2%, sensitivity of 77.8% vs 33.3% and a specificity of 
69.9% vs 95.3%. The model presented by Booth et al., had a better NPV 
and PPV, however our data was normalized before any training was 
done on the models and has a testset that is much larger. 

Our Deep-Neo-V model outperforms all our conventional models and 
our Deep-FLAIM model. It also outperformed the currently available 
Deep-learning model by Zhu et al. in terms of training set accuracy, 
testing set accuracy, AUROC, Precision, specificity and positive predic
tive value [41]. However, the Deep-Neo-V model underperformed in 
terms of sensitivity and slightly with negative predictive value. The 
Deep-Neo-V will continue to improve and develop and will potentially 
be replaced by a model with better performance parameters (accuracy, 
PPV and NPV). This model in its current configuration can be used to 
predict mortality after day-1 (considers labs and clinical characteristics 
in the first 24 h) of hospital admission and can help in the stratification 
of patients. It can help clinicians answer a number of questions and aid 
in decision-making like triaging patients, should an elderly patient 
receive aggressive treatment, or a younger patient receive life support
ive management. These are tough questions, and the model will give 
clinicians clarity about the course and plan for the patient. This model 
can also help clinicians with family counselling, appropriate decision 
making, limit excessive intervention or aggressive treatments and 
effective resource management. Like most digital tools this current al
gorithm is user-friendly, can provide results instantaneously and is easy 
to use. After further validation this model can be incorporated into 
hospital patient management systems and ready for clinical use. We 
have also developed a web-based application for testing out the algo
rithium [46] 

Our work does have limitations that include single institution data
set, retrospective nature of the dataset and data from a single hospital, 

Fig. 2. Receiver Operating Curve for Deep-Neo-V with AUROC.  
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analyzed at admission and day-one data; other observational study 
confounders may exist and are unaccounted for. In the immediate future 
our group is actively looking to validate these findings in an external 
dataset. In the longer term we will continue to develop an algorithm 
built on the Neo-V Framework approach that has the potential to be 
implemented, initially in future pandemics because of its ability to 
accurately predict outcomes using smaller datasets. 

8. Conclusion 

Deep-Neo-V is a statistically robust machine learning model that is 
developed for clinical use to predict mortality risk in patients admitted 
with RT-PCR proven COVID-19 infection. The mortality prediction was 
modeled based on clinically relevant variables (patient associated risk 

factors and the first 24-hours labs. Our experimental results show that 
with a high accuracy and specificity it has the potential to develop as a 
test of choice for predicting mortality in COVID-19 patients. These 
findings need further external validation. 
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Table 4 
Comparison of currently available Deep learning models for mortality in the inpatient setting.   
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(2021)Ø 

Booth et al. 
(2021)^ 

Chowdhury MEH et al. 
(2021)*** 
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Endpoints End of 

admission 
ICU admission and 
mortality 

End of admission 7-day mortality End of admission End of admission 

Clinical setting In-patient Non-ICU and ICU In-patient In-patient In-patient In-patient 
Training and Test (set) 

split 
70/30 90/10 85/15 70/30 80/20  

Datapoint/Variables 47 15 Top 5 lab features 38 Top 5 lab features Top 5 lab features 
Testing accuracy 87.7 85.3 nr 76.2# (median) nr nr 
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Specificity 95.3 87.2 nr 69.9# (median) 91.0§ 89.0–95.0 
PPV 50.0 52.2 nr nr 62.5§ 9.1# 
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# Calculated from data given in paper. 
^ Top 5 serum markers for mortality form 26 only lab parameters, with an unbalanced training set. 
§ Non-normalized AUROC, sensitivity, specificity, PPV, NPV. 
Ø MLP federated model (best model, median values were calculated from Supplemental Table 6), some variables have large amount of missing data Supplemental 

Table 1. 
* Mortality data used. 
** Top 5 variables and cut off (very high cutoffs) > 6.7 mg/L for D-dimer, <94 for O2 index, >10 for NE:LY, >93 mg/L for CRP, and >450 U/L for LDH. 
*** Top 5 feature for mortality prediction: lactate dehydrogenase, neutrophils (%), lymphocytes (%), high-sensitivity C-reactive protein, and age score (TP = 160, FP 

= 16, FN = 14 and TP = 184). 
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