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Abstract

Microbial biofilms are often composed of multiple bacterial species that accumulate by adhering to a surface and to each
other. Biofilms can be resistant to antibiotics and physical stresses, posing unresolved challenges in the fight against
infectious diseases. It has been suggested that early colonizers of certain biofilms could cause local environmental changes,
favoring the aggregation of subsequent organisms. Here we ask whether the enzyme content of different microbes in a
well-characterized dental biofilm can be used to predict their order of colonization. We define a metabolic distance between
different species, based on the overlap in their enzyme content. We next use this metric to quantify the average metabolic
distance between neighboring organisms in the biofilm. We find that this distance is significantly smaller than the one
observed for a random choice of prokaryotes, probably reflecting the environmental constraints on metabolic function of
the community. More surprisingly, this metabolic metric is able to discriminate between observed and randomized orders of
colonization of the biofilm, with the observed orders displaying smaller metabolic distance than randomized ones. By
complementing these results with the analysis of individual vs. joint metabolic networks, we find that the tendency towards
minimal metabolic distance may be counter-balanced by a propensity to pair organisms with maximal joint potential for
synergistic interactions. The trade-off between these two tendencies may create a ‘‘sweet spot’’ of optimal inter-organism
distance, with possible broad implications for our understanding of microbial community organization.
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Introduction

In many natural environments, bacteria and other micro-

organisms are part of spatially structured ecosystems, and engage

in complex interactions, involving the exchange of nutrients and

chemical signals [1,2]. Such communities provide their members

with protection from environmental perturbations, and allow for

effective utilization of available resources. Modifications of the

environment, such as a change in diet in a human host, can cause

shifts in the composition of a microbial community. In turn, the

collective metabolic activity of the community itself can substan-

tially modify the environment, and set the stage for transitions

between health and disease states. While 16S rRNA studies [3]

and metagenomic DNA sequencing [4] have been very helpful in

providing provide global snapshots of the composition and

biological functions of a community, a big gap still exists in our

understanding of the forces that shape specific interactions

between different organisms. Systems biology approaches have

started to provide valuable insight into the metabolic basis of

interactions between different species in elementary [5] and

complex [6] microbial ecosystems. However, a lot is still unknown

on how properties of individual species give rise to global

ecosystem organization.

Here, we address this problem by presenting an intermediate-

scale approach to elucidate the role of metabolism in determining

the order of colonization in a microbial community. Our approach

captures the complexity of how eleven species spatially organize in

a biofilm, by using a mathematical description of metabolism that

lies in between the detailed quantitative power of stoichiometric

models [7], and the coarse enrichment analyses typically obtained

from metagenomic studies [4,8–11]. We focus specifically on one

of the most intensively characterized biofilm systems, the dental

biofilm, which plays a crucial role in tooth and gum diseases. Oral

pathogens such as Porphyromonas gingivalis are also known to be able

to enter the blood stream, possibly causing cardiovascular disease.

The collection of bacteria present on the surface of teeth, anchored

to the salivary pellicle, has a specific spatial structure, which has

been mapped and investigated in detail [12–14]. The biofilm

structure is made up of a number of different species, which

aggregate together over time to form a complex structure. The

aggregation process is not random [15]; instead it appears to be a

repeatable sequential process mediated by bacterial adhesins that

allow organisms to aggregate to surfaces and other bacteria by

binding to specific receptor moieties (Fig. 1A). The initial

colonizers are capable of binding to salivary pellicle receptors,

and the subsequent organisms proceed to bind to the initial

colonizers [12,14,16]. Late colonizers, such as P. gingivalis, which

has been linked to periodontal disease, are found in the final layer

of this complex structure [17]. Some steps of the colonization

process can lead to mutual exclusion between closely related
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species (e.g. streptococci), leading to drastically different macro-

scopic disease-related outcomes [18].

In this work we test the hypothesis that metabolism is a

predictor, and potentially a major driving force, of the order of

colonization in the oral biofilm. Specifically, based on the

individual inter-species interactions mapped by Kolenbrander

([12][19], Fig. 1) we quantify the overlap in metabolic functions

between adjacent organisms, and compare the distribution of such

overlaps to the one obtained for randomized biofilms or for

random assemblages of bacteria. We find that the real biofilm is

characterized by a significantly larger overlap in metabolic

functions between adjacent species, relative to randomized biofilm

compositions and structures. Specific metabolic pathways can be

associated with the different layers, providing a snapshot of the

gradient of metabolic requirements across the biofilm. The

observed tendency towards maximal metabolic overlap is likely

counteracted by an opposite trend driven by the synergistic

advantage of combining the metabolic capabilities of sufficiently

different species. In all, these findings suggest that an optimal

tradeoff between resource sharing and functional synergy may

constitute a fundamental property of structured microbial

communities. Our approach, much more detailed than broad

functional enrichment studies, but much less demanding than

stoichiometric flux balance models, should be broadly applicable

to other microbial ecosystems, where spatial or temporal order

matters.

Results

Metabolic Proximity among Different Layers in the Oral
Biofilm

We ask whether the order of colonization in the human dental

biofilm may reflect a quantitative principle of microbial ecosystem

organization. While the structure of the biofilm from the

Kolenbrander model (Fig. 1A, and [12]) reflects known mutual

binding between adjacent species, we develop our analysis based

on the premise that such binding effects reflect fundamental

adaptations to environmental gradients and mutual metabolic

exchange between species. Hence, we analyze the biofilm structure

in terms of mutual distances between adjacent organisms. 16S

rRNA-based distances are standard practice when estimating the

similarity of organisms without dealing with the complexities of

whole genome alignment [3,10]. The assumption that 16S rRNA

is conserved allows investigators to ascertain evolutionary

relationships between organisms. Here, however, we wish to

utilize a metabolic, rather than an evolutionary distance [17] (See

Figure 1. A simplified model of dental biofilm. (A) Rectangular nodes represent components of the salivary pellicle while circular nodes
represent organisms in the biofilm. Lines represent known interactions (often mediated by adhesin molecules) between different components of the
biofilm. The organism abbreviations are as follows: Layer 1: SM-Streptococcus mitis, SS-Streptococcus sanguinis and SG-Streptococcus gordonii. Layer 2:
CO-Capnocytophaga ochracea,VS-Veionella (represented by Veillonella parvula), and PA-Propionibacterium acnes. Layer 3: FN-Fusobacterium
nucleatum. Layer 4: AA-Aggregatibacter actinomycetemcomitans, TD-Treponema denticola, ES-Eubacterium (represented by Eubacterium eligens), and
PG-Porphyromonas gingivalis. The salivary receptors have the following abbreviations: SMU-Sialylated mucins, BCF-Bacterial cell fragment, PRP-Proline
rich protein, SA-Salivary agglutinin, S- Statherin and AAM-Alpha amylase. (B) A schematic representation of one of the many possible step-wise orders
of colonization that conforms to the layered organization inferred from the literature, i.e. is such that the path that walks through the different
species is monotonically departing from the salivary pellicle upwards. In our calculations of inter-species metabolic distances, we average the
distances between any two species connected by a segment. This calculation is performed for all paths that reflect the order of colonization, giving
rise to the distributions shown in Fig. 2. (C) A schematic representation of one of the many possible randomized orders of colonization that do not
follow the order of the literature-derived layers; for the 11 organisms present in the biofilm there are 11! possible permutations.
doi:10.1371/journal.pone.0077617.g001
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Methods). Such a metabolic distance will provide a method to

gauge the difference in biochemical functions between different

species. It is important to note that a metabolic metric can be used

to compare biochemical abilities of different organisms without

constructing full-fledged genome-scale stoichiometric models, such

as the ones built for several microbial species [20–26], including

the oral pathogen P. gingivalis [17]. We expect that organisms with

similar enzyme profiles (based on the above metric) will have a

comparable ability to utilize and process metabolites from their

environment. The specific metabolic distance we use in this work

is a standard metric (Jaccard’s distance, J) gauging the degree of

dissimilarity between the sets of enzymes present in the two

organisms (see Methods).

As a first step towards ascertaining the validity of this premise,

one can test whether the 11 organisms that are in the dental

biofilm are on average closer to each other than 11 randomly

chosen prokaryotes from the KEGG database [27–30]. To this

end, 1000 random groups of 11 organisms were chosen from the

list of KEGG prokaryotes and the sum of pairwise metabolic

distances were calculated for each permutation (11 factorial

potential orders) for a given random group. The average of all

permutation scores was calculated for each random group. We

found that the groups of 11 organisms belonging to the oral

biofilm model tend to have a smaller average of pairwise metabolic

distances (J) than 1000 randomly selected groups of prokaryotes

(Fig. 2). This is not unexpected, as the organisms inhabit the same

niche in the human body and hence must have some underlying

metabolic similarity to cope with the common environment. It is

interesting to note that the mean distance value between

organisms of the dental biofilm is far from being close to a global

minimum, when compared to its position in the distribution. This

could be due to the fact that organisms with similar metabolic

requirements will compete for the same environmental niche and

probably would not be found in close proximity to each other

within a complex multi-species biofilm.

The next question we ask is whether a special pattern of inter-

species metabolic distances can be observed between adjacent

organisms in the layered structure of the oral biofilm. In Fig. 1A

we present a simplified version of the model presented in [12]. The

simplified model contains only organisms whose genome has been

sequenced, and whose annotation is available in KEGG. We

translate the Kolenbrander map into a set of possible orders of

colonization by assuming that an organism can join the biofilm

only if it can bind to an organism that that is already present in the

biofilm, or to an environmental anchor point. In this way, we

determine 864 orders in which the bacteria may join, consistently

with the reduced Kolenbrander model (Fig. 1B). The 864 orders

(3!63!64!) come from all permutations that allow organisms to be

placed in their correct layers. Conversely, there would be

39,916,800 (i.e. 11!) orders which disregard the network of

experimentally known interactions that constitute the layered

model (Fig. 1A). For each given order of colonization, we compute

the average Jaccard’s distance between metabolic compositions of

adjacent organisms (,J., see Methods). Fig. 2 shows that the

distribution of average distances for the orders of colonization

compatible with the Kolenbrander model is markedly shifted to

the left relative to the background distribution of random orders

(P,2?1027). This implies that spatially adjacent organisms in the

biofilm have a larger number of common metabolic enzymes

relative to randomly chosen pairs. In order to ascertain the overall

robustness of this result we repeated the analysis upon different

types of perturbations. In particular, we tried to omit from the

calculation the Streptococci species, which are phylogenetically and

metabolically very close to each other, and might therefore bias

the result towards high significance. Despite removing these

organisms, we still found a statistically significant p-value

(P,1.2?1024). Furthermore we verified that the results are not

too sensitive to removal of specific enzymes. In fact, we found that

the result is still significant when up to 60% of the enzymes used in

the analysis are removed (Fig. S1). The ‘‘minimal metabolic

distance’’ criterion apparently satisfied by the non-random orders

of colonization may be indicative of the way dental biofilm is

thought to form. Each group of organisms creates a micro-

environment that is conducive for the next set of organisms. Each

new organism joining the biofilm can take advantage of the micro-

environment generated by organisms that precede it, provided that

the inter-species metabolic distance is small enough to make this

build-up favorable.

The above analysis demonstrates that adjacent species in the

correct order of colonization tend to minimize their mutual

metabolic enzyme distance. This finding does not rule out the

possibility that similar effects might be observable based on

alternative metrics that take into account other (non-metabolic)

gene categories. In other words, is the order of colonization

pattern reported predominantly a metabolic effect, or does it

reflect a general inter-species distance? To address this question,

we performed the same analysis shown in Fig. 2 for a large set of

non-metabolic genes (see Methods). As shown in Fig. 3A, the

correct and random order distributions are still significantly

different (P,0.0023), but their separation is much less dramatic

than what is found with metabolic enzymes (P,2?1027). Given

this result, we can infer that metabolism is one of the most

important factors in oral biofilm organization, more so than other

classes of genes as a whole.

Finally, to confirm that the pattern observed is not strongly

dependent on the metric used, we verified that an alternative,

widely used metric can discriminate between correct vs. random-

ized order of colonization. In particular, we calculated the amount

of Shannon information that each organisms adds to the system

relative to the previous organism in the order of colonization (see

Methods). As with the distance calculation, the overall score is the

sum of the pairwise added information values for a given order of

colonization. Using a 2-sample Komogrov-Smirnov test [31], we

found that literature-informed orders are significantly

(P,4.5?1026) smaller than randomized distributions (Fig. 3B).

An interesting aspect of the information content metric is that, in

contrast to the metabolic distance defined above, it can also

capture directionality, i.e. discriminate between a colonization

order that starts with the Streptococci layer (the first, pellicle-bound

layer of the biofilm, Fig. 1A) and one that ends with Streptococci

layer.

If, as suggested by the above results, metabolism is a

fundamental determinant of the order of colonization, we would

expect to be able to find that specific metabolic pathways can be

associated with different layers of the biofilm. Indeed, by

performing a GSEA (Gene Set Enrichment Analysis) for metabolic

functions (see Methods and Dataset S1), we found that gradients of

metabolic functionalities span the different layers (Fig. 4). The

pathways that displayed significant enrichment are: arginine and

proline metabolism, biosynthesis of alkaloids, carbon fixation,

glyoxylate and dicarboxylate metabolism, glycine, serine and

threonine metabolism, nitrogen metabolism, porphyrin and

chlorophyll metabolism, pentose and glucuronate interconver-

sions, propanoate metabolism, pyruvate metabolism, terpenoid

backbone biosynthesis, and tricarboxylic acid cycle. Enzymes

related to carbohydrate and proline metabolism are enriched at

the initial colonizer stage, possibly allowing for utilization of

available carbohydrates as a source of energy that is present in the

Metabolic Proximity in a Microbial Colony
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Figure 2. Metabolic distance distributions for correct and randomized orders of colonization. Distributions of average pairwise Jaccard’s
distance are compared across different computational realizations of the 11-species biofilm. In particular, we show in red (C) the distribution of
average pairwise distances between the 11 organisms for all paths that reflect the layered structure of the Kolenbrander map (see Fig. 1B). In blue (B)
we show the distribution obtained for all possible random orders that do not necessarily reflect the layered order of colonization (e.g. path shown in
Fig. 1C). The last distribution (grey, A) is obtained from choosing in random order 11 random prokaryotes from the KEGG database.
doi:10.1371/journal.pone.0077617.g002

Figure 3. Distributions of alternative metrics for correct and randomized orders of colonization. (A) Similar to what shown in Fig. 1B and
Fig. 2, we computed inter-species distance between organisms along paths that respect (red) or do not respect (blue) the layered order of
colonization of the Kolenbrander map. Here, however, as opposed to Fig. 2, we compute the Jaccard distance between two species based on their
profiles of non-enzyme genes (as identifiable through KEGG KO numbers). (B) The correct and incorrect orders of colonization are compared based on
an information metric, rather than on the Jaccard distance. In walking along a colonization order path from one organism to the next, we compute (in
Nats) the amount of information added due to the presence of previously absent enzymes. The added information for each pair of adjacent
organisms is summed to form the added information score, along paths that respect (red) or do not respect (blue) the layered order of colonization.
The purple distribution is obtained by computing the added information scores for orders of colonization that reflect the layered structure, but walk
through it in reverse order (i.e. from the outer layer downwards towards the salivary pellicle).
doi:10.1371/journal.pone.0077617.g003
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saliva [32]. The second biofilm layer contains both propionate and

TCA pathways. Both require, as input, compounds such as lactate,

a byproduct of carbohydrate metabolism which in turn is

converted into cytotoxic byproducts [33]. Additionally, butyrate

is known to affect gingival epithelial cells inducing apoptosis in

sufficient concentrations [34]. Apoptosis of tissues provides

organisms with a highly enriched food source [35]. Fumarase

and succinate dehydrogenase, are both enriched in this layer of the

biofilm. Both enzymes provide a pathway for proline metabolism

byproducts to be funneled into energy production which takes

advantage of proline catabolism enrichment in the previous

biofilm layer. The third layer of the biofilm is enriched for

porphyrin metabolism, a pathway that is essential to Porphyromonas

gingivalis. The organism has a well-known requirement for heme

and has been implicated in a number of disease processes such as

chronic periodontitis [36]. It is however not capable of producing

heme for itself, and must therefore scavenge it from the

environment. Correspondingly, we found enrichment for enzymes

related to heme production, in particular along a pathway that

converts L-glutamate to 5-aminolevulinate, a precursor of heme.

In the fourth layer of the colonization process, we find enrichment

for nitrogen-related and TCA-cycle genes. This specific combina-

tion could reflect amino acids from tissue degradation being

shunted into cellular metabolism via entry points within the TCA

cycle.

Determination of Optimal Metabolic Overlap Using Flux
Modes

The above analysis of metabolic distances between adjacent

organisms in the oral biofilm demonstrates that the correct order

of colonization displays close to minimal average metabolic

distance relative to randomized orders. Another way of formulat-

ing this principle is that, within a biofilm, organisms next to each

other will be as close as possible in terms of their metabolic enzyme

content. Taken to the extreme, this principle would suggest that

biofilms may be preferably composed of rather similar and

uniform species (compatibly with the biofilm size and environ-

mental gradients). This is likely not the case, both because

organisms metabolically too close to each other may engage in

fierce competition for survival [37], and because there may be a

physiological advantage to pairing organisms that are neither too

close nor too distant from each other.

To formulate a specific hypothesis about this last scenario, we

evaluated the metabolic potential of conjoined metabolic networks

as a function of their metabolic distance, using elementary flux

modes. Elementary flux modes analysis identifies all minimal non-

zero flows through a metabolic network [38]. At a first

approximation, the number of elementary flux modes can be

thought of as an estimate of the size of the space of possible paths

through a metabolic network. Here, we sought to estimate the

increase in the number of such paths for a pair of interacting

metabolic networks (e.g. two bacterial species), relative to the

metabolic capabilities of isolated networks, as a function of the

similarity between the two networks. The intuition is that when

two networks are very similar to each other, there is little added

benefit in combining them with each other. At the opposite

extreme, if two networks are too different from each other they will

‘‘speak different metabolic languages’’ and barely be able to build

significant synergistic pathways. In between these two extremes,

there may be an inter-species metabolic distance that provides a

maximal synergistic benefit.

Indeed, upon computing a metabolic synergy score for

randomly generated pairs of metabolic networks with a given

Jaccard’s distance between each other (see Methods), we found

that the mean score displays a distinct profile as a function of inter-

network metabolic distance (Fig. 5). In particular, there is a peak at

a Jaccard’s coefficient of 0.2. This means that having 33.3%

reaction overlap between the component networks is optimal, in

the sense that it generates the maximum number of useable

balanced pathways (elementary flux modes). The range of

Jaccard’s coefficients (i.e. metabolic similarity) within which

synergistic interaction is expected extends up to approximately

Jc = 0.55 (i.e. J = 0.45). This means that metabolic networks with a

distance below J = 0.45 will have little potential for increased

biochemical capabilities through metabolic cross-talk. Interesting-

ly, this Jaccard’s distance is very close to the average of the

Figure 4. Metabolic pathway enrichment across layers. Based on the enzyme content of the different species found in different layers of the
biofilm (with layers labeled from 1 to 4, see Fig. 1), one can estimate whether any given layer is enriched for specific metabolic functions. Enzyme and
pathway enrichments for each layer are computed based on a standard GSEA algorithm. Black boxes in the pathways-by-layers matrix denote
enrichment of a particular KEGG pathway in a given layer. The pathway abbreviations are as follows: APM-Arginine and proline metabolism, BAOLN-
Biosynthesis of alkaloids derived from ornithine lysine and nicotinic acid, CFP-Carbon fixation pathways in prokaryotes, GDM-Glyoxylate and
dicarboxylate metabolism, GST-Glycine, serine and threonine metabolism, NM-Nitrogen metabolism, PCM-Porphyrin and chlorophyll metabolism,
PGI-Pentose and glucuronate interconversions, PPM-Propanoate metabolism, PYM-Pyruvate metabolism, TBB-Terpenoid backbone biosynthesis, and
TCA-Tricarboxylic acid cycle.
doi:10.1371/journal.pone.0077617.g004
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distance among adjacent species in oral biofilm (Fig. 2). A possible

interpretation of this result is that the players in the community

encounter a tradeoff between maximizing their metabolic overlap,

and still not losing the benefit of possible synergistic interactions

(i.e. going beyond J = 0.45, i.e. JC = 0.55).

Discussion

We have addressed the question of whether the spatio-temporal

organization of a biofilm can be understood in terms of the

differential metabolic properties of individual organisms relative to

their neighboring organisms. We implemented a simplified model

of the spatial organization of the biofilm, based on experimental

evidence of individual pairwise interactions between species. This

abstraction of the colonization process enabled us to discretize the

order of succession, and systematically investigate all potential

permutations of organisms in a linear fashion. A more complex

model could more realistically capture inter-species dynamics in

physical space [15], without the limitations imposed by taking into

account only pairwise interactions and a step-by-step ‘‘walk’’

through the different layers of the biofilm. However, our simplified

approach overcomes in an effective way the combinatorial

complexity of multi-species networks, and takes advantage of the

available pairwise interaction data. We found that metabolic

similarity is a highly informative indicator of vicinity in the biofilm.

The metabolic structure of the biofilm is reflected in the existence

of multiple layers enriched for specific biochemical pathways. This

structure lends credence to the idea that each layer contributes to a

gradient of metabolic properties, causing environmental modifi-

cations that pave the way for subsequent layers of bacteria. We

cannot exclude the possibility that the observed effect might be just

a result of metabolically similar organisms adapting to environ-

mentally present gradients (e.g. abundance of oxygen). However,

the fact that next-to-minimal metabolic distance is significantly

associated with binding between organisms in the biofilm suggests

this metabolic similarity is truly reflective of particular inter-species

interactions. The current work is limited to the eleven organisms of

the Kolenbrander map whose annotated sequence was publically

available (in KEGG) at the time of the analysis. Future extensions

could include additional organisms, benefit from improved

genome annotation approaches [39] and gradually move to more

mechanistic models of microbe-microbe interactions, such as

ecosystem-level flux balance models [40]. In addition, while the

current evidence we use for a putative order of colonization is

based on a collection of multiple in vitro individual pairwise

interactions, more comprehensive in vivo measurements [19] could

in the future be used as a more accurate baseline for testing

hypotheses.

Our analysis focused on a specific microbial community in

which the order of colonization is manifested both in the

chronological sequence of events leading to the full biofilm, as

well as in the final spatial architecture of the biofilm itself. We

envisage that this analysis could be extended to other microbial

ecosystem with a similar spatio-temporal organization, such as

biofilms on catheters and medical instruments [41–44] or

microbial mats in hot springs and desert environments [45,46].

However, the approach we proposed is not limited to communities

with a well-defined or known spatial structure, and could be

extended to analyze purely temporal orders of colonization in

microbial ecosystems whose biomass is found largely in a

planktonic phase, or whose detailed spatial structure is not easily

observable (e.g., in the gut microbiome [10,47]). Metagenomic

sequencing projects frequently produce 16S rRNA population

composition data, which in a longitudinal study provides us with

changes in population composition over time. Combining

population data with enzymatic profiles from KEGG would make

it possible to test whether metabolic proximity is significantly

predictive of temporal species-to-species shifts in an ecosystem.

Figure 5. Expected synergy between metabolic networks as a function of metabolic distance. The synergy is computed as the count of
elementary flux modes (pathways) that are feasible for a metabolic network that is the union of two networks with a given Jaccard’s distance from
each other, normalized to the count of elementary flux modes of the constituent networks. The count of elementary flux modes can be thought of as
an estimate of the number of distinct metabolic tasks that the network can perform, i.e. its versatility. Hence, the graph shows how the versatility of
two conjoined networks relative to the constituent networks is maximal for an intermediate Jaccard’s distance between such networks. 100 random
paired networks were generated for each of several possible Jaccard’s distances. Bar heights reflect the average normalized increase in the number of
elementary flux modes, whereas error bars represent the standard error of the mean.
doi:10.1371/journal.pone.0077617.g005
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An interesting outcome of our analysis is the hypothesis that

multiple counteracting forces may ultimately determine, at the

evolutionary scale, an optimal steady state genomic and spatial

configuration of different species in a biofilm. Close metabolic

proximity seems to be one desirable criterion for spatial vicinity,

motivated by uniformity of environmental conditions, and by

multiple chances for metabolic cross-feeding. At the same time,

organisms which are metabolically too close to each other would

likely compete for common metabolic resources. In addition, as we

found in Fig. 5, they would have minimal chance for true

synergism, i.e. for the capacity to contribute novel metabolic

capabilities to the group as a whole. The specific Jaccard’s

distances at which the optimum occurs are likely dependent on the

specific topology of the underlying reaction networks utilized, and

may not be universal (see Methods). However, in our synergy

calculations based on elementary flux modes, we retain a similar

degree distribution and reaction topology as would be seen in the

bacterial species of the oral biofilm. It will be interesting to explore

the possibility that the general shape of the curve observed in Fig. 5

could be derived analytically.

Finally, our finding poses an interesting evolutionary chicken

and egg dilemma: did the observed metabolic proximity pattern

precede or follow the emergence of specific binding affinities

between receptors and ligands across species? On one hand,

energy and food-related requirements may be hypothesized to

dictate the emergence of a biofilm structure. Subsequent

adaptations could have optimized inter-species binding interac-

tions to facilitate the formation of an efficient nutrient and energy

flow. Conversely, we cannot rule out the alternative possibility that

metabolic proximity may have arisen between organisms with a

tendency to bind to each other, e.g. through horizontal gene

transfer, or by forcing each other to face specific selective

pressures. This may be an interesting challenge for future research,

in which the experimental investigation of evolving symbiotic

system [48] could be complemented by computational studies of

evolutionary rates in genomic sequences [49–51].

Methods

Parsing an Experimental Map of the Oral Biofilm
Structure

The present analysis uses the biofilm organization map that is

presented in [12], which is based on the collection of several

individual experimental papers. This model (to which we will refer

as the Kolenbrander model) contains 22 organisms, 11 of which

were sequenced and annotated [27–30] at the time of our analysis.

The 11 organisms for which data is available are listed in Fig. 1A.

The map also includes known connections between some

organisms and the salivary pellicle, from which we assume that

the biofilm starts developing. In the Kolenbrander model,

reproduced in simplified form in Fig. 1A, nodes correspond to

species (with the exception of Veionella and Eubacterium, which were

reported only at the genus level). Organisms for which there was

no KEGG data were omitted from our analysis. An edge between

two nodes in the network of Fig. 1A denotes a documented

capacity of the two corresponding biofilm constituents to bind to

each other.

Calculation of Enzyme Based Distances
The KEGG database contains information that describes the

number and type of enzymes present in an organism’s genome

[27–30]. Each enzymatic function is associated with an Enzyme

Commission (EC) number [52]. In this case, we are not interested

in the abundance of any particular enzyme or in its substrate/

product stoichiometry, but simply in the presence or absence of

such enzyme in a given organism’s genome. Given this informa-

tion, a binary vector S(A) can be defined to describe the enzyme

composition for an organism A, with component S(A)
i = 1 if enzyme

i is present in organism A, and S(A)
j = 0 otherwise. We then

evaluate the difference between the metabolic profiles of two

organisms by computing the Jaccard’s distance J(A,B) between

S(A) and S(B), defined as follows:

J A,Bð Þ~1{
DS Að Þ \ S Bð ÞD

DS Að Þ| S Bð ÞD

If A and B have the same metabolic enzymes, then J = 0. If they

have no enzyme in common, it is J = 1. This metric will also be

used to quantify metabolic similarity between species, in the form

of the Jaccard’s coefficient (Jc = 12J) [53].

Calculation of Non-metabolic Distances
In addition to enzyme content, the KEGG database includes

data on the presence of different categories of non-metabolic

genes. Using this data we can generate binary vectors S(A) and

S(B), that represent the non-metabolic gene content for organisms

A and B, just as was done for metabolic distance. We then evaluate

the difference between the non-metabolic profiles of two

organisms by computing their Jaccard’s distance J(A,B).

Calculation of Added Information
All organisms in the community contribute to an overall super-

set of enzymes that represents the metabolic potential of the

community. In examining the gradual build-up of the oral biofilm,

we can ask how much novelty is introduced by each new organism

joining an increasingly complex ecosystem. This can be achieved

by calculating the amount of metabolic information added to the

current super-set upon introducing a new organism to the biofilm.

If we call Ni the number of organisms in which enzyme i is present

(NiM{1, 2, …, Norganisms}, with Norganisms = 11), then the probability to

find a given enzymatic function i in the whole biofilm is Pi = Ni/

Norganisms. For an ordered pair of organisms (A,B), we can identify

the set K(A,B) of all EC numbers k such that S(A)
k = 0 and S(B)

k = 1.

The information added when organism B is added to organism A

is then computed as the Shannon information content of all

enzymes that are currently added and were not present in the prior

organisms, i.e.:

DI A,Bð Þ~ {
X

k[K A,Bð Þ
PklnPk

DI(A,B) represents the amount of Shannon information

(relative to the overall abundance of EC numbers in the entire

biofilm), added by an organism B upon colonization on top of an

organism A. Note that DI is not symmetric, i.e., in general,

DI(A,B)?DI(B,A). Hence, this added information metric allows us

to distinguish between orders of colonization that would be

indistinguishable using the Jaccard’s metric J defined above.

Layer Specific Pathway Enrichment
To determine possible layer-specific metabolic pathway enrich-

ment in the oral biofilm, we first calculate the proportion of

organisms in a given layer that contain a given enzyme. This

calculation uses the same organism-specific binary vector S(A)

defined above. If the set of organisms in biofilm layer x is defined
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as Lx, then a biofilm layer profile (B(x)), describing the occurrence

of each enzyme in any given organism in layer x can be calculated

as follows:

B xð Þ~

P
i[Lx

S ið Þ

DLxD

These profiles can be used to estimate the enrichment of the

different layers for specific metabolic processes. This is achieved by

using gene set enrichment analysis (GSEA). In addition to the B(x)

profiles for the four different layers (Fig. 1A), the GSEA algorithm

utilizes a binary mapping matrix K(i,j), where K(i,j) = 1 if enzyme i is

present in pathway j. This matrix maps enzymes to corresponding

KEGG metabolic pathways. We next look for specific enzyme and

pathway enrichment in a given layer relative to other layers within

the dental biofilm. The enrichment calculation is performed using

a standard GSEA application [54]. Pathways with a nominal p-

value of 0.05 or less and an FDR of less than 0.25 were chosen

(with FDR accounting for multiple testing biases).

Construction of Randomized Paired Networks
In order to estimate the metabolic benefit derived from the

cooperation of two species, we perform an analysis of elementary

flux modes in appropriately modified versions of the E. coli FBA

model [21]. In particular, we used the E. coli FBA model

(cytoplasm reactions only) as an initial main network (of size RTOT)

to generate random metabolic networks with a degree distribution

and topology similar to that of real metabolic networks. Random

networks are generated in pairs, with a specified metabolic

similarity (Jaccard’s coefficient, Jc) between them. The algorithmic

pipeline to generate such pairs of networks proceeds as follows:

(i) Out of the main source network of size RTOT, we choose a

subnetwork (the ‘‘source network’’) of size Rs~P|RTOT ,

where P is a given percent coverage, chosen in order to

guarantee tractability of the elementary flux modes calcula-

tions. The standard value used throughout this work is

P = 0.8.

(ii) Given the desired degree of metabolic overlap (Jc) between

the two networks, and the size of the source network (Rs), we

compute the size Rint of the set Nint of reactions that should be

in common between the two networks. This number is simply

Rint~Jc|Rs

(iii) We select two random sets (N1, N2) of non-overlapping

reactions from the source network. Each of these reaction sets

is chosen to have size

Rn~(Rs{Rint)=2

(iv) We use the sets of reactions Nint, N1 and N2 to build reaction

sets for the two desired randomized networks, and for their

union. These reaction sets for individual networks (C(1), C(2))

and for their joint combination (C(1,2)) are defined as follows:

C 1ð Þ~N1 | Nint

C 2ð Þ~N2 | Nint

C 1,2ð Þ~N1 | N2 | Nint

(v) The reaction sets C(1) C(2) and C(1,2) are mapped to

stoichiometric matrices M1 and M2 and M(1,2) respectively.

When generating the combined stoichiometric matrix M(1,2),

we need to make sure that no additional overlap (in addition

to the chosen Nint reactions) is introduced between the two

random networks. This is achieved by ascribing new names

(i.e. new stoichiometric matrix rows) to the metabolites

contributed by N1 and N2 which are not already present in

Nint.

Computation of Degree of Metabolic Synergy Using
Elementary Flux Modes

For the stoichiometric matrices described in the previous

paragraph, the number of elementary flux modes (EFM) is

calculated using the efmtool software [38]. For each stoichiometric

matrix passed to it, efmtool returns an EFM matrix describing the

various elementary modes through the network. The number of

columns of the matrix corresponds to the number of EFMs

possible for the given network. A normalized score estimating the

increase in the number of EFMs obtained upon conjoining two

networks can be computed as follows:

DEFM~
EFM 1,2ð Þ

EFM 1ð ÞzEFM 2ð Þ

Where EFM(1,2) is the number of elementary flux modes from

the joint network as defined by M(1,2), while EFM(1) and EFM(2)

represent the numbers of elementary flux modes generated by the

constituent randomized stoichiometric matrices M1 and M2

respectively. DEFM represents the increase in the number of flux

modes, relative to the constituent networks.

Supporting Information

Figure S1 Sensitivity analysis of our metabolic ap-
proach for recapitulating the order of colonization,
upon gradual removal of information. The distributions of

pairwise metabolic distances for correct (literature-informed) and

randomized orders of colonization are plotted for different

percentages of enzymes removed from the dataset. Between 20

and 80 percent of enzymes were removed.

(PDF)

Dataset S1 This file contains tables listing the presence
and absence of different KEGG metabolic pathways
within the 11 organisms used in this study.

(XLSX)
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