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Abstract
“Bad channels” are common phenomena during scalp electroencephalography (EEG) recording that arise due to various 
technique-related reasons, and reconstructing signals from bad channels is an inevitable choice in EEG processing. However, 
current interpolation methods are all based on purely mathematical interpolation theory, ignoring the neurophysiological 
basis of the EEG signals, and their performance needs to be further improved, especially when there are many scattered or 
adjacent bad channels. Therefore, a new interpolation method, named the reference electrode standardization interpolation 
technique (RESIT), was developed for interpolating scalp EEG channels. Resting-state and event-related EEG datasets were 
used to investigate the performance of the RESIT. The main results showed that (1) assuming 10% bad channels, RESIT 
can reconstruct the bad channels well; (2) as the percentage of bad channels increased (from 2% to 85%), the absolute and 
relative errors between the true and RESIT-reconstructed signals generally increased, and the correlations between the true 
and RESIT signals decreased; (3) for a range of bad channel percentages (2% ~ 85%), the RESIT had lower absolute error 
(approximately 2.39% ~ 33.5% reduction), lower relative errors (approximately 1.3% ~ 35.7% reduction) and higher corre-
lations (approximately 2% ~ 690% increase) than traditional interpolation methods, including neighbor interpolation (NI) 
and spherical spline interpolation (SSI). In addition, the RESIT was integrated into the EEG preprocessing pipeline on the 
WeBrain cloud platform (https://​webra​in.​uestc.​edu.​cn/). These results suggest that the RESIT is a promising interpolation 
method for both separate and simultaneous EEG preprocessing that benefits further EEG analysis, including event-related 
potential (ERP) analysis, EEG network analysis, and strict group-level statistics.
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Introduction

Scalp electroencephalography (EEG) is a commonly used 
and excellent technique that directly quantifies the electric 
fields of brain activity with millisecond temporal resolu-
tion through a variable number of electrodes placed on 
the scalp (Cohen 2017). Since it was first reported in 1929 
(Berger 1929), EEG has become one of most important 
cost-effective and noninvasive techniques in a wide range 
of fields in cognitive neuroscience (Enriquez-Geppert 
et al. 2017; Li et al. 2019; Tian et al. 2018), in brain-com-
puter interfaces (He et al. 2013; Zhang et al. 2019; Zhao 
et al. 2020) and in the clinic (Yamada and Meng 2012). 
Furthermore, considering its high temporal resolution, 
scalp EEG provides more valuable information when fused 
with other popular imaging modalities, such as structure 
magnetic resonance imaging (sMRI) and functional MRI 
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(Dong et al. 2014, 2015; Friston et al. 2017; Laufs 2012). 
In EEG practice, a common phenomenon during record-
ings involves some of the EEG channels being unable to 
accurately or correctly record the electrophysiological sig-
nals of brain activity for various technique-related reasons, 
including power line interference (50/60 Hz), abnormal 
impedance (too high or too low), broken wire contacts or 
other malfunctions, electrodes that are improperly placed 
or poorly contacted with the scalp, too much electrode 
jelly/paste, bridged electrodes, etc. (Hu and Zhang 2019). 
In these situations, these channels are usually called “bad 
channels”, and a simple and rough strategy is to flag these 
“bad channels” by hand and then remove them from fur-
ther analysis. However, there are many limitations to 
removing “bad channels” directly. First, simply removing 
bad channels may be problematic. Because removing bad 
channels will result in loss of information, the signals from 
the remaining good channels may be insufficient for per-
forming further analysis (e.g., unable to construct the full 
EEG network or insufficient for source imaging). Second, 
if the bad channels are directly removed from different 
subjects, the dimensions of the EEG data (channels × time 
points) or the good channels would change; that is, the 
valid channels across subjects could be different (e.g., 
one subject has 32 channels, while another subject has 31 
channels; or subjects could have the same number of valid 
channels but different channel labels). Thus, this bad chan-
nel removal leads to unreasonable or non-strict group-level 
statistics (varied samples and degrees for each EEG chan-
nel). Third, the removal of bad channels may increase the 
potential risk of errors for large-scale EEG batch process-
ing while using EEG tools (e.g., EEGLAB (Delorme and 
Makeig 2004) and FieldTrip (Oostenveld et al. 2011)) or 
cloud platforms (e.g., the WeBrain: https://​webra​in.​uestc.​
edu.​cn/). For these reasons, reconstructing the EEG sig-
nals of these bad channels is an alternative and inevitable 
approach to directly removing them.

Currently, there are several interpolation methods used 
to reconstruct the signals from bad channels. Because of 
spatial volume conduction (Yao 2000, 2017; Yao et al. 
2019), the EEG signals of adjacent channels are similar. 
One of the first approaches developed was neighbor inter-
polation (NI), which can quickly reconstruct bad channels 
by averaging adjacent good channels (usually approxi-
mately 4 ~ 6 channels) on the scalp. Considering there are 
k (k < N) bad channels in N channels, the NI method can 
be simply formulated as

where Vk1
NI

 represents the potentials (a vector with 1 × T 
time points) of the k1th interpolated channels using the 

(1)V
k1
NI

=
1

m

[
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]
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NI method; m is the number of adjacent good channels 
to be averaged; and Vgood represents the potentials of the 
good channels (a matrix with dimension (N-k) channels × T 
time points). However, the NI method is not very accurate, 
especially when there are too many scattered or adjacent 
bad channels. The most common interpolation method 
used in the EEG field is spherical spline interpolation 
(SSI) (Freeden 1984; Perrin et al. 1989). SSI mainly con-
sists of the following steps: (1) projecting all channels onto 
a unit sphere; (2) calculating matrices to map the good 
channels to the bad channels; and (3) using the mapping 
matrices to estimate the interpolated EEG data of the bad 
channels. The SSI method can be formulated as:

where Vgood represents the potentials of the good channels 
(matrix with dimension (N-k) channels × T time points); 
Ggood (a matrix with dimension (N-k) × (N-k)) represents the 
Legendre polynomials of the cosine of the angle between the 
projected good channels; C (a matrix with dimension (N-
k) × T) is an unknown term that needs to be solved; C0 (a 
matrix with dimension (N-k) × T) is the constant of Vgood 
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c0 , c0 is a vector with dimension 1 × T, i.e. mean 

of Vgood across channels); Vk1
SSI

 (a vector with 1 × T time 
points) represents the potentials of the k1th interpolated 
channels using the SSI method; Gk1

sph
 (a matrix with dimen-

sion (N-k) channels × T time points) represents the Legendre 
polynomials of the cosine of the angle between the projected 
k1th bad channel and good channels for each time point; and 
“·” is the operation of multiplying corresponding elements. 
Due to its stability, superfast interpolation and good perfor-
mance, SSI has been integrated into popular EEG tools such 
as EEGLAB (Delorme and Makeig 2004) and FieldTrip 
(Oostenveld et al. 2011) and is mainly used in preprocessing 
EEG signals in practice. In addition, there are some sporadic 
and unpopular methods, including directly inserting NaN 
values into bad channels (rendering them meaningless) and 
triangulation-based nearest neighbor interpolation both in 
time and space (however, the time cost of 3-D interpolation 
is extremely high and cannot be interrupted), which are 
rarely used in practical EEG preprocessing. Nevertheless, 
the abovementioned interpolation methods are all based on 
pure mathematics interpolation theory, ignoring the neuro-
physiological basis of the generation of EEG signals. Such 
interpolation methods may lead to increased errors when 
there are many scattered or adjacent bad channels. 
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Furthermore, because they ignore EEG reference issues (Yao 
2017; Yao et al. 2019), the performance of these interpola-
tion methods may vary with different references, that is, it 
may be influenced by the choice of rereferencing methods. 
Therefore, a new interpolation method based on the scalp 
neurophysiological EEG recording model with an ideal neu-
tral reference is required.

In this work, a new interpolation method, named the 
reference electrode standardization interpolation technique 
(RESIT), is therefore developed for the interpolation of scalp 
EEG channels. The paper is organized as follows. The theory 
and implementation of RESIT are first introduced in the next 
section in detail. Then, two real EEG datasets (resting-state 
and event-related potential data) are used to evaluate the 
performance of RESIT, which is then compared with the two 
most common interpolation methods, NI and SSI. Finally, 
discussions are provided regarding the performance of the 
proposed method.

Material and Methods

Reference Electrode Standardization Interpolation 
Technique

Here, we introduce unified mathematical representations of 
the reference electrode standardization interpolation tech-
nique. Considering an ideal scalp EEG recording model with 
a reference point at infinity, the scalp potentials VInf can be 
recorded with N channels, M sources, and T time points.

where L is the lead-field matrix of size N × M determined 
by the head model, source model and electrode distribution; 
S is the neural source potentials with size M × T in the brain; 
vi
j
, 1 ≤ i ≤ N, 1 ≤ j ≤ T  is a sample at the jth time point and 

ith electrode; N is the number of electrodes/channels; T is 
the number of time points; and M is the number of sources. 
Considering a scalp recording with reference at infinity con-
taining k (k < N) bad channels, the scalp recording after 
exclusion of bad channels, ṼInf  , can be modeled as:

where L̃ is a lead-field matrix with the reference at infinity 
and excluding the bad channels. For a scalp point referenced 
recordings ( ̃Ve with dimension (N-k) good channels × T time 
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points) or average referenced recordings ( ̃VAVG with dimen-
sion (N-k) good channels × T time points), the scalp record-
ing models with k bad channels can be expressed as:

where w is a column vector ((N-k) × 1) with each of its 

elements being unity, i.e. 
⎡⎢⎢⎣

1

⋮

1

⎤⎥⎥⎦
 ; S is the neural source poten-

tials with size M × T; ve is a row vector (1 × T) in VInf corre-
sponding to a scalp point reference; le is the row vector 
(1 × M) in L̃ ((N-k) × M) corresponding to the reference elec-
trode; L̃e is a lead-field matrix ((N-k) × M) with a scalp point 
reference excluding the bad channels; vAVG is a row vector 
(1 × T) in VInf corresponding to the average reference; L̃AVG 
is a lead-field matrix ((N-k) × M) with the average reference; 
N is the number of all channels; and k is the number of bad 
channels.

Based on the equivalent source technique (Yao 2000), 
the neural source potentials S in the brain are the same, 
and the use of the reference does not influence the source 
localization (Geselowitz 1998; Pascualmarqui and Lehmann 
1993). Then, S can be estimated by the scalp EEG potentials 
excluding the bad channels:

where L̃+ , L̃+
e
 and L̃+

AVG
 (with size M × (N-k)) are the 

Moore–Penrose generalized inverses of matrices L̃ , L̃e and 
L̃AVG , respectively; and Ŝ is the estimation of the recon-
structed equivalent sources using the scalp potentials exclud-
ing the bad channels. Then, combining Eqs. (3) and (7), 
we can forward the estimated source potentials to all scalp 
electrodes (along with the bad channels) and reconstruct all 
potentials with the infinity reference:

where V̂Inf  represents the reconstructed potentials with 
reference at infinity; Ŝ is the estimation of reconstructed 
equivalent sources; ṼInf  , Ṽe and ṼAVG (of size (N-k) × T) are 
the scalp EEG recordings excluding the bad channels with 
references, respectively, at infinity, at a scalp point and at 
the average reference recording; L̃+ , L̃+

e
 and L̃+

AVG
 (with size 

M × (N-k)) are the Moore–Penrose generalized inverses of 

(5)Ṽe = ṼInf − wve = L̃S − wleS = (L̃ − wle)S = L̃eS
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(7)S ≈ Ŝ = L̃+
M×(N−k)

ṼInf = L̃+
e
Ṽe = L̃+

AVG
ṼAVG

(8)

VInf = LS ≈ V̂Inf = LŜ = LL̃+ṼInf

VInf = LS ≈ V̂Inf = LŜ = LL̃+
e
Ṽe

VInf = LS ≈ V̂Inf = LŜ = LL̃+
AVG

ṼAVG
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matrices L̃ , L̃e and L̃AVG , respectively, excluding the bad 
channels; and L is the lead-field matrix of size N × M. Note 
that if k = 0 (i.e., there are no bad channels), the estimated 
potentials V̂Inf  are equivalent to the scalp EEG signals with 
an infinity reference realized by REST (Dong et al. 2017; 
Yao 2001; Yao et al. 2005).

Algorithm and Implementation of RESIT

RESIT consists of the following steps.

1.	 As an example, the coordinates of all EEG electrodes 
and the scalp recordings (with average reference) 
excluding the bad channels, ṼAVG , are given first.

2.	 A three-concentric sphere head model is used for the 
RESIT according to previous papers (Dong et al. 2017; 
Yao 2001; Yao et al. 2005). The radii (normalized by 
the radius of the head) of the three concentric spheres 
are 0.87 (inner radius of the skull), 0.92 (outer radius 
of the skull), and 1.0 (radius of the head), and the rela-
tive conductivities are 1.0 (brain and scalp) and 0.0125 
(skull) (Rush and Driscoll 1969). Then, a closed surface 
(such that all sources are inside the brain) is formed by 
a spherical cap surface (normalized by the radius of the 
head) with radius r = 0.869 and a transverse plane at 
z = -0.076, and implemented in the equivalent source 
model. There are a total of 3000 equivalent sources 
(2600 radial dipoles on the spherical cap surface and 
400 dipoles (along the + z axis) on the plane).

3.	 The electrode coordinates are normalized and distributed 
on the upper spherical cap of the head model. Based 
on the three-concentric sphere head model, normalized 
electrode coordinates and equivalent source model, the 
lead-field matrices L in Eq. (3) and L̃AVG in Eq. (6) are 
calculated by using the forward theory of the spherical 
harmonic spectra (Yao 2000); then, the general inverse 
L̃+
AVG

 of matrix L̃AVG is calculated.
4.	 For the known L, L̃+

AVG
 and ṼAVG , the final reconstructed 

EEG recordings V̂Inf  can be calculated according to Eq. 
(8).

Real Datasets

Participants and Experiment

A total of 41 right-handed healthy adults (mean 
age = 23.9 years ± 1.6 years, age range = 21 ~ 28 years, 
32 males/9 females) were recruited. All participants pro-
vided written informed consent in line with the Declara-
tion of Helsinki before the experiment. The experiment 
was approved by the local Ethics Committee of the Uni-
versity of Electronic Science and Technology of China. 

For dataset 1, EEG data were recorded during the rest-
ing state (eyes-closed) for 4 min. For dataset 2, event-
related potential (ERP) data were collected during a clas-
sical visual oddball P300 task, which consisted of a 1-min 
break and a 337.5-s task ((120 standard trials + 30 target 
trials) × 2.25 s). During the experiment, a bold cross was 
first presented for 250 ms to note the participant’s fixation 
point on the monitor, and then a thin cross was presented 
for 500 ms to inform the participant to concentrate their 
attention on the upcoming target or standard stimulus. The 
stimulus lasted 500 ms and ended with a 1000 ms break. 
A total of 30 target trials were collected during the experi-
ment. All participants were instructed to omit the standard 
stimuli (upward-oriented triangle) and to count the num-
ber of target stimuli (downward-oriented triangle). More 
details of the experiment can be found in related article 
(Li et al. 2015).

EEG Recording

The resting-state and P300-task EEG data were recorded 
using a 64-channel EEG system (Brain Products GmbH, 
Gilching, Germany). A total of sixty-two EEG electrodes 
were distributed on the scalp based on the international 
extended 10–20 cap system (Fig. 1), and 2 additional EOG 
channels were used to record the vertical and horizon-
tal EOG data. The original recording reference was FCz, 
and the sampling rate was 500 Hz. EEG data were online 

Fig. 1   Channel locations of the EEG system. Sixty-two EEG elec-
trodes were distributed using the international extended 10–20 cap 
system
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bandpass filtered (0.01–100 Hz), and the impedance was 
maintained below 5 kΩ.

EEG Data Preprocessing

For dataset 1, quality assessment (QA) was first conducted 
on the raw resting-state EEG data to detect and reject bad 
channels and blocks using the QA tool from the WeBrain 
platform (https://​webra​in.​uestc.​edu.​cn/). Next, the raw data 
were bandpass filtered (1–30 Hz) and rereferenced to the 
average (AVG), and then continuous clean EEG data (>10 s) 
were extracted from the preprocessed data.

For dataset 2, quality assessment (QA) was also con-
ducted on the task-related EEG data (trial level) to detect 
and reject bad channels. Next, the ERP analysis tool from 
the WeBrain platform (https://​webra​in.​uestc.​edu.​cn/) was 
used to process the raw data, including bandpass filter-
ing (1–30 Hz), rereferencing (AVG), data segmentation 
(−200 ms ~ 800 ms), baseline correction (-200 ms ~ 0 ms) 
and exclusion of artifact-containing trials (absolute volt-
age ≥ 100 μV, voltage step/sampling point ≥ 50 μV, respec-
tively, or maximum absolute difference ≥ 150 μV). Finally, 
epoched and clean ERP data were obtained.

Method Assessment

To assess the interpolation methods, two cases with bad 
channels were assumed. In case 1, a number of scattered bad 
channels (ranging from 2% to 85%) were randomly (uniform 
distribution) selected from clean scalp EEG data. In case 2, 
a set of adjacent bad channels (ranging from 2% to 85%) 
were randomly (uniform distribution) selected from clean 
scalp EEG data. Then, the performances of the interpolation 
methods were quantified using the mean absolute error (as 
well as the relative absolute error) between the interpolated 
EEG signals and the true signals. The mean Pearson’s cor-
relations between the interpolated and true signals were also 
calculated to quantify the performances of the methods. The 
absolute error, relative absolute error and correlation (R) 
were averaged over 20 repeats of the abovementioned proce-
dures. To assess the performances of the RESIT, the results 
were compared with those of SSI and NI (using the mean of 
4 neighborhood channels) using one-way repeated ANOVA 
(p < 0.01) and post hoc paired t-test (p < 0.005). Note that the 
results of the RESIT were re-referenced to AVG to compare 
them with the results of NI and SSI, and for dataset 2 (P300 
data), the indices of the errors and correlations were calcu-
lated on the averaged ERPs for each subject.

Results

Resting‑State Data

Figure 2 depicts the signal waves and topographic maps 
of the resting-state EEG data for true signals and those 
interpolated from the RESIT, SSI and NI methods from a 
same example subject. A visual inspection of the results 
showed that, assuming 10% bad channels, all methods can 
reconstruct the bad channels for cases 1 and 2 to some 
degree. To quantify the performances of the interpola-
tion methods, the absolute error, relative absolute error 
and correlation (R) were further calculated for different 
percentages of bad channels, and the mean results across 
subjects are shown in Figs. 3–4. In case 1 (Fig. 3), as the 
percentage of bad channels increased, the mean absolute 
error and relative absolute error of all methods gener-
ally increased, and the mean correlations of all methods 
decreased. Using one-way repeated ANOVA (p < 0.01) and 
post hoc paired t-test (p < 0.005), for the entire range of 
bad channel percentages (2% to 85%), almost all differ-
ences in the pairwise comparisons of the errors and R 
among these interpolation methods were significant. The 
RESIT introduced the smallest absolute errors, smallest 
relative errors and largest correlations, while SSI intro-
duced intermediate errors and correlations, and NI had the 
largest errors and smallest correlations. Compared with 
SSI (Table S1), the RESIT resulted in an approximately 
2.87% ~ 11.61% reduction in the absolute error, an approx-
imately 0.78% ~ 10.95% reduction in the relative error, and 
an approximately 0.67% ~ 13.48% increase in the correla-
tion. Compared with NI (Table S1), the RESIT resulted in 
an approximately 5.69% ~ 25.61% reduction in the abso-
lute error, an approximately 3.24% ~ 25.49% reduction in 
the relative error, and an approximately 0.61% ~ 51.25% 
increase in the correlation.

In case 2 (Fig. 4), as the percentage of bad channels 
increased, the mean absolute error and relative absolute 
error of all methods linearly increased, and the mean cor-
relations of all methods linearly decreased. Using one-
way repeated ANOVA (p < 0.01) and post hoc paired t-test 
(p < 0.005), for the range of bad channel percentages (2% 
to 85%), almost all differences for the pairwise compari-
sons of the errors and R among these interpolation meth-
ods were significant. The RESIT introduced the smallest 
errors and largest correlation, while SSI and NI introduced 
similar errors and correlations to some degree. Compared 
with SSI (Table S2), the RESIT resulted in an approxi-
mately 2.39% ~ 29.98% reduction in the absolute error, an 
approximately 0.30% ~ 30.67% reduction in the relative 
error, and an approximately 0.73% ~ 320.74% increase in 
the correlation. Compared with NI (Table S2), the RESIT 

https://webrain.uestc.edu.cn/
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resulted in an approximately 3.36% ~ 31.99% reduction 
in the absolute error, an approximately 1.27% ~ 33.07% 
reduction in the relative error, and an approximately 
0.36% ~ 691.02% increase in the correlation.

P300 Data

Figure 5 depicts the ERP signal waves and topographic maps 
of the P300 data for the true signals and those interpolated 
with the RESIT, SSI and NI methods from a same exam-
ple subject. Visual inspection of the results shows that for 
10% bad channels, all methods can reconstruct the ERPs 
of the bad channels in cases 1 and 2 to some degree. In 
case 1 (Fig. 6), as the percentage of bad channels increased, 
the mean absolute error and relative absolute error of all 
methods generally increased, and the mean correlations of 
all methods decreased. Using one-way repeated ANOVA 
(p < 0.01) and post hoc paired t-test (p < 0.005), for the range 
of bad channel percentages from 2% to 85%, significant dif-
ferences for the pairwise comparisons of the errors and R of 
the ERPs were found among these interpolation methods. 
The RESIT introduced the smallest absolute error, small-
est relative error and largest correlations. SSI introduced 

intermediate absolute and relative errors for 25% ~ 85% bad 
channels and intermediate correlations for 50% ~ 85% bad 
channels. NI had the largest errors for 25% ~ 85% bad chan-
nels, intermediate correlations for 2% ~ 25% bad channels 
and the smallest correlations for 50% ~ 85% bad channels. 
Compared with SSI (Table S3), the RESIT resulted in an 
approximately 9.70% ~ 17.05% reduction in the absolute 
error, an approximately 11.60% ~ 18.82% reduction in the 
relative error, and an approximately 4.71% ~ 13.61% increase 
in the correlation. Compared with NI (Table S3), the RESIT 
resulted in an approximately 9.98% ~ 28.82% reduction in the 
absolute error, an approximately 8.68% ~ 30.01% reduction 
in the relative error, and an approximately 2.41% ~ 56.42% 
increase in the correlation.

In case 2 (Fig. 7), the mean absolute error and relative 
absolute error of all methods linearly increased as the per-
centage of bad channels increased, and the mean correlations 
of all methods linearly decreased with increases in the per-
centage of bad channels. Using one-way repeated ANOVA 
(p < 0.01) and post hoc paired t-test (p < 0.005), for the range 
of bad channel percentages from 2% to 85%, significant dif-
ferences for the pairwise comparisons of the errors and R of 
the ERPs were found among these interpolation methods. 

Fig. 2   Results of different interpolation methods for resting-state EEG data from one example subject. In case 1, a number of scattered bad chan-
nels (10%) were randomly established, and in case 2, a set of adjacent bad channels (10%) was randomly established
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The RESIT introduced the smallest absolute and relative 
errors and largest correlations. SSI introduced intermediate 
absolute errors for 65% ~ 85% bad channels, intermediate 
relative errors for 45% ~ 85% bad channels, and intermedi-
ate correlations for 55% ~ 85% bad channels. NI resulted in 
intermediate correlations for 2% ~ 35% bad channels. Com-
pared with SSI (Table S4), the RESIT resulted an approxi-
mately 10.42% ~ 33.49% reduction in the absolute error, an 
approximately 10.74% ~ 34.39% reduction in the relative 
error, and an approximately 4.18% ~ 117.84% increase in 
the correlation. Compared with NI (Table S4), the RESIT 
resulted in an approximately 8.61% ~ 33.48% reduction in the 
absolute error, an approximately 10.17% ~ 35.70% reduction 
in the relative error, and an approximately 1.98% ~ 270.14% 
increase in the correlation.

Discussion

In the present study, a new interpolation method, named 
RESIT, was proposed to reconstruct bad scalp EEG chan-
nels. Two cases involving bad channels were implemented to 
assess the performance of the RESIT as well as of common 
interpolation methods including NI and SSI.

Methodological Considerations of the RESIT

To illustrate the performance of the RESIT, a resting-state 
EEG dataset was first used to obtain the results. In both case 
1 with 10% scattered bad channels and case 2 with 10% adja-
cent bad channels, the RESIT performed well in reconstruct-
ing the scalp EEG signals (Fig. 2). Using a P300 dataset, the 
RESIT still performed well in reconstructing ERPs in both 
cases 1 and 2 (Fig. 5). It is not uncommon that there may 
be a number of bad channels during recordings for various 
reasons, such as power line interference (50/60 Hz), abnor-
mal impedance, broken wire contacts, improperly placed or 
bridged channels, etc. (Hu and Zhang 2019). Therefore, it 
is necessary to reconstruct these bad channels when pre-
processing EEG data. For traditional methods such as NI 
and SSI (Freeden 1984; Perrin et al. 1989), the transform 
matrices (Eqs. 1–2) that describe the relationship from the 
good channels to the interpolated channels are just math-
ematical operations that represent nonphysical principle-
based hypotheses (NI: averaging; SSI: interpolation using 
spherical splines). According to Eqs. (7–8), the RESIT is 
based on the equivalent sources model (Geselowitz 1998; 
Pascualmarqui and Lehmann 1993), head model and elec-
trode montage, and the transform matrix LL̃+ that describes 

Fig. 3   Performance of the RESIT, SSI and NI interpolation methods 
for resting-state EEG data in case 1. Mean values (absolute error, 
relative error and correlation) with standard error across subjects are 
shown. Black * indicates significant differences among the RESIT, 

SSI and NI methods; blue * indicates significant differences between 
the RESIT and SSI/NI methods; gray * indicates significant differ-
ences between the NI and RESIT/SSI methods; significance was set 
at P < 0.005; R: correlation (Color figure online)
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the relationship from the good channels to the interpolated 
channels is physically based and reasonable. The estimated 
potentials V̂Inf  in Eq. (8), which contain all the good and 
interpolated channels, are technically converted to use a ref-
erence at infinity at the same time. That is, the RESIT has 
the ability to approximately convert an average or unipolar 
reference to an ideal zero reference. To some degree, the 
RESIT may address the fact that in the scalp EEG domain, 
there is no point on the body or head that could be used 
as an ideal reference with zero or constant potential (Luck 
2014; Yao et al. 2019). It is worth noting that if there are no 
bad channels, V̂Inf  is absolutely equivalent to scalp EEG sig-
nals with an infinity reference realized by the REST (Dong 
et al. 2017; Yao 2001; Yao et al. 2005). If there are k bad 
channels, the realizations of RESIT and REST are different. 
However, considering the extrapolation itself in the realiza-
tion, the current RESIT approach may be presented as a 
generalization of REST, conceptually. In both cases, as the 
percentage of bad channels increased, the absolute error and 
relative absolute error of the RESIT generally increased, and 
the correlations decreased, both for the resting-state EEG 
data (Figs. 3–4) and for the ERPs (Figs. 6–7). These results 
demonstrate that the performance of RESIT could benefit 
from a large number of good channels for both resting-state 

and P300 EEG datasets. Meanwhile, the performance of the 
RESIT could suffer when there is a large number of adja-
cent bad channels. Overall, the more good channels and the 
fewer adjacent bad channels there are, the more accurate 
the interpolation of EEG data for the bad channels will be 
using the RESIT.

Comparison with NI and SSI

To further investigate the superiority of the RESIT, the 
indices of errors and correlations of NI and SSI were cal-
culated and compared with those of the RESIT. Using one-
way repeated ANOVA (p < 0.01) and post hoc paired t-test 
(p < 0.005), for the range of bad channel percentages (2% 
to 85%), there were significant differences in the indices 
among these interpolation methods (Figs. 3, 4, 6 and 7). For 
both the resting-state and P300 datasets, as a simple inter-
polation method, NI produced nearly all the largest errors 
and smallest correlation for both cases 1 and 2 (NI only 
slightly outperformed SSI only for some percentages of bad 
channels). NI produced satisfactory performance for a few 
scattered bad channels only, and as the percentage of bad 
channels increased, especially for the adjacent bad chan-
nels case (case 2), the method became more unsuitable. SSI, 

Fig. 4   Performance of the RESIT, SSI and NI interpolation methods 
for resting-state EEG data in case 2. Mean values (absolute error, 
relative error and correlation) with standard error across subjects are 
shown. Black * indicates significant differences among the RESIT, 

SSI and NI methods; blue * indicates significant differences between 
the RESIT and SSI/NI methods; significance was set at P < 0.005, R: 
correlation (Color figure online)
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another common interpolation method in the EEG domain 
(Freeden 1984; Perrin et al. 1989), uses the spherical spline 
to interpolate bad channels based on the fact that the EEG 
electrode distribution of the cap system could be projected 
to a sphere. Overall, its performance was better than that of 
NI; however, it was worse than the RESIT. Because the non-
physical natures of SSI (Freeden 1984; Perrin et al. 1989) 
and NI require a sufficient number of valid adjacent chan-
nels, their potential to efficiently use the information from 
the good channels to reconstruct the EEG signals of the bad 
channels is limited, especially when there are many adjacent 
bad channels. To some degree, the RESIT could tolerate 
increases in the number of scattered and adjacent bad chan-
nels due to its physical equivalent source estimating and 
forwarding ability (Yao 2000, 2001). Furthermore, in case 
2, the correlations between the RESIT-interpolated and true 

signals were higher than those of NI and SSI (except for 
approximately 30%-40% adjacent bad channels, for which 
the correlations were approximately 0.8). This implies that 
for a number of adjacent bad channels, compared with those 
of traditional interpolation methods NI and SSI, the EEG 
signals interpolated by the RESIT may be more suitable for 
constructing EEG networks for assessing functional con-
nectivity of the brain via signal synchronization (Jalili et al. 
2014; Li et al. 2019, 2015; Xu et al. 2014).

Benefits and perspectives on the RESIT

Current interpolation methods always directly utilize inter-
polation theory to reconstruct the scalp EEG signals of bad 
channels, ignoring the neurophysiological basis of the gen-
eration of EEG signals. Based on physical principle-based 

Fig. 5   Results of the RESIT, SSI and NI interpolation methods for resting-state EEG data from one example subject. In case 1, a number of scat-
tered bad channels (10%) were randomly assigned, and in case 2, a set of adjacent bad channels (10%) was randomly assigned
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hypotheses, the RESIT can quickly and effectively recon-
struct the signals of bad channels accompanied by rerefer-
encing to an ideal infinity reference. Therefore, the RESIT 
may have better performance than current methods, such 
as NI and SSI. As a novel interpolation method, the RESIT 
has been integrated in the EEG preprocessing pipeline on 
the WeBrain cloud platform (https://​webra​in.​uestc.​edu.​cn/), 
and it is further expected to be integrated into common EEG 
tools such as EEGLAB (Delorme and Makeig 2004) and 
FieldTrip (Oostenveld et al. 2011), as well as other EEG pre-
processing pipelines and tools for simultaneous EEG-fMRI 
multimodal fusion (Dong et al. 2014, 2018) and large-scale 
EEG preprocessing. In addition, because no interpolation 
method provides completely unique data for the missing 

channels, the interpolated channels using the RESIT are not 
independent, which may reduce the spatial resolution of the 
EEG when there are too many bad channels.

Conclusions

In conclusion, the novelty of this work is the interpolation 
process termed the RESIT, in which we utilize the classical 
equivalent source technique and forward approach to model 
the generation of scalp EEG signals with an ideal infinity 
reference, which was demonstrated with resting-state and 
event-related EEG datasets. The proposed RESIT method 
performs better (lower errors and higher correlations) than 

Fig. 6   Performance of the RESIT, SSI and NI interpolation methods 
for the P300 EEG data in case 1. Mean values (absolute error, relative 
error and correlation) with standard error across subjects are shown. 
Black * indicates significant differences among the RESIT, SSI and 

NI methods; blue * indicates significant differences between the 
RESIT and SSI/NI methods; significance was set at P < 0.005; R: cor-
relation (Color figure online)

https://webrain.uestc.edu.cn/
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traditional methods such as NI and SSI and has the potential 
for applications in separate and simultaneous EEG preproc-
essing, which would benefit further EEG analysis, including 
ERP analysis, EEG network analysis, and strict group-level 
statistics.
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