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1. Introduction

This article is the second of two papers for practicing
oncologists outlining fundamental considerations in the
design, analysis, and reporting of clinical trials. This
paper will follow the terminology and concepts in our
earlier publication.” As before, we discuss only studies in
which the treatment or exposure, patient follow-up and
data collection, and analysis are all controlled by the
investigator, Le., clinical trials. Among clinical trial
methodologists, there is a wide variety of methods for
analysis and reporting, and there is considerable varia-
tion in the content and level of detail in published reports
of trial results. We believe that, because of the need to
develop new cancer treatments in a logical fashion, there
are a few basic guidelines for analysis and reporting that
clinicians will find helpful.

As was the case with our first paper, this article is not
intended to cover all that the oncologist should know
about either biostatistics or clinical trials analysis. Our
focus here is on broad concepts rather than methodolog-
ical details. Most clinical trials will require analysis and
reporting with the help of an expert trialist. However, the
clinician can improve the inferences from such reports
by understanding the basic statistical concepts and
approaches to the analysis. For the more mathematically
oriented reader, there are a number of technical sources
that can provide more details. These include the analysis
of prognostic factors,>® survival models,” general
surveys,” review articles,” and binary data.” The reader
interested in a more comprehensive or technical analytic
background is referred to these sources. For details on
reporting recommendations and related topics, there are
a few recent reviews.*'" Discussions regarding the limi-
tations of P-values are useful reading for clinicians.'>??

To begin, we contrast “estimation” and “hypothesis
testing.” Then we review some basic concepts concerning
the two commonest types of data that arise from clinical
trials: proportions (e.g., response rates), and failure rates
from time-to-event (survival) studies., We then discuss
analysis and reporting concerns generally applicable to
all clinical trials. Finally, we discuss some limitations of
analysis and interpretation. There are many concerns
about clinical trials, especially management, computer
software, data management, interim reporting, and

monitoring committees which have not been covered in
these two articles. The reader is referred to general
discussions in the references for these topics.

2. Estimation versus Hypothesis Testing

“Estimation” is the measuring of clinical effects {and
confidence intervals) whereas “hypothesis testing” is the
comparison of estimates with hypothetical values using
probability statements (e.g., P-values). The approach we
recommend to analysis and reporting follows estimation
rather than hypothesis testing.'*'** Some editorial boards
of medical journals have adopted general guidelines for
reporting.® 'Y Similar guidelines have been proposed for
statistical reporting® '® of clinical trials. The recommen-
dations which follow are similar to those.

Measuring and reporting clinical effects and associated
confidence intervals is more informative and useful than
focusing attention on formal tests of statistical hypoth-
eses and P-values. A simple example should make the
difference clear. Suppose a clinical trial is performed
comparing two treatments, A and B, and the major out-
come is survival. When hypothesis testing is emphasized,
investigators might report the results of a statistical test
comparing treatments A and B and report “survival on
treatment A is significantly longer than on B (P<0.03,
logrank test).” Alternatively when emphasizing estima-
tion, investigators might report “the estimated hazard
ratio (A vs. B) for death was 2.0 (95% confidence
limits 1.5-2.3).” In the first case, the reader is left only
with a P-value to summarize the data whereas in the
second case, the treatment difference is satnmarized more
completely.

Although we have suggested some specific statistical
methods and summaries for certain kinds of data, there
are additional or alternative analytic procedures that
need to be adopted in special cases and we do not seek to
limit analyses or reports. However, the basic concepts
and approaches outlined here should prove to be helpful
both clinically and statistically for correciness, lack of
bias, completeness, and consistency.

3. Data Yielding Proportions

For many research questions in phase II and III trials,
the outcome for each patient is dichotomous, i.e., can
only have two possible values. For example, 2 common
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Table I. Number of Responding Patients on a Clinical Trial
Comparing Treatment A versus B
Treatment
A B
Response Yes a b
P No c d

dichotomous outcome variable often equals 1 for a “yes”
{or response) and O for a “no” (or non-response). We
often summarize such data by calculating the proportion
of responders, P, or the odds of response P/(1—P).
Often, the association between a dichotomous response
and a predictor variable is most conveniently summa-
rized as an odds ratio, OR, which is used extensively
in epidemiologic studies. For example, in Tabie I we see
the results of a study comparing the response on two
treatments. The odds ratio for response on treatment A
vs. B is calculated as OR = (a-d)/(b-c). We do not intend
to fully explain the OR, its estimation, limitations, or use.
Details of these are available in standard textbooks.™ "

The OR is the measure of effect that clinicians will
encounter most frequently in summarizing the effect of a
prognostic factor on a dichotemous response. An OR
close to 1.0 implies no effect, while values different from
1.0 indicate some effect of the prognostic factor on the
probability of response. Confidence limits are usually
placed on the estimated OR and a formal test comparing
it to the nulil value, 1.0, is often performed yielding a
Pvalue,

Although the outcome variable may be dichotomous,
the predictor or prognostic variables may not be. For
example, we might be interested in the association be-
tween age {measured on a continuum) and response (yes
or no). In this circumstance, using estimation methods
more sophisticated than those described above, the OR
can be expressed as the change in odds of response per
unit change in the prognostic variable. Thus, we might
observe an OR of 1.10 per year of age, implying that the
odds of response increases 109% with each additional year
of age. The risk ratio is assumed to be the same for
low ages as it is for high ages. To determine the effect
of 5 years age difference, we would calculate effect=
1.10°=1.61.

Many clinicians and some statisticians do not empha-
size the estimated odds ratio(s), but proceed directly to
statistical tests (P-values) in contingency tables. Omit-
ting the OR estimate and confidence interval is an unfor-
tunate and unnecessary error because P-values do not
adequately summarize the relevant clinical effects. For
example, suppose we are told that “increased age is
associated with significantly increased risk, P<<0.01.”
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The effect of age on risk could be large or small. Exami-
nation of odds ratios and confidence intervals is much
more informative,

Estimated odds ratios generalize easily, through the
use of statistical models, to situations where two or more
prognostic variables must be considered simultaneously.
This method allows estimation of “adjusted” odds ratios,
i.e,, those for which the effects of other prognostic factors
are controlled. Multiple logistic regression is the com-
monest method for accomplishing this and yields esti-
mates of adjusted odds ratios, confidence limits, and
P-values with the same interpretations as above.

4, Failure Time Data

Failure time or “survival” data are the most common
type of longitudinal outcomes that arise in comparative
cancer clinical trials. The analysis of failure time data
requires methods and reasoning analogous to those for
dichotomous response data. Because failures are not ob-
served in all subjects under study (censoring), survival
ocutcomes must be summarized by at least two observa-
tions on each subject. The first variable is the at-risk or
event time and the second is a dichotomous variable
which indicates whether the event time is a failure or a
censored observation. Also because of censoring, survival
data are often summarized as a cumulative distribution,
i.e., the probability of surviving at least as long as a
specified time. The lifetable and survival curve are prod-
ucts of this type of analysis.

Survival distributions can be described by one of three
summaries: 1) the survival distribution (described
above), which is most often used for graphical displays
of data, 2) the frequency distribution of deaths (death
density), which is not usually used by clinicians, or 3)
the hazard” which is the most compact, natural, and
clinically useful summary of risk. The hazard is defined
as the probability of failure in the next instant of time,
given that no failure has yet occurred. The hazard is also
related to the slope of the survival curve and to the
median survival. In many cases, the risk of failure is
nearly constant over time (simple exponential survival).
Even if the hazard changes with time, the “average”
hazard is a useful summary.

Many clinicians are accustomed to thinking about
differences between survival distributions in terms of
differences in median survival. However, the hazard ratio
is often a more informative summary of survival differ-
ences. Even when hazards change with time, the hazard
ratio is often nearly constant. Another advantage is that
the hazard ratio and confidence limits can always be
estimated from survival data whereas estimating the
median survival requires special methods and may not
even be possible for some data. Other difficulties arise
when trying to place confidence limits on the median.



Finally, the hazard ratio is “natural” because the prog-
nostic effects from commonly used survival models are
usually expressed in terms of relative hazards, analogous
to odds ratios described above for dichotomous outcomes.
In other words, models such as the proportional hazards
model provide the clinician with estimates of hazard
ratios between subsets of patients defined by levels of the
prognostic variables. Generalization to more than one
prognostic factor is straightforward, as with odds ratios.

5. Basic Steps in Analysis

Having described the two most common outcome
measures in clinical trials, we now consider some details
of analysis and reporting. The exact procedure for
analyzing a clinical trial depends on the design and
purposes of the study. For example, phase I trials might
require pharmacologic modeling and estimation of phys-
iological parameters in each patient to meet their objec-
tives, whereas phase III trials usually require summaries
of relative treatment effects and confidence intervals.
Analyses for phase I and III studies seem to have very
little in common. However, when we consider that both
types of trials should inform us about the population
being studied, the need for unbiased statistical estima-
tion, and information that is of clinical utility to the
medical community, much common ground is evident.

In this spirit, we offer the basic steps in analysis of
clinical trials in Table II. We emphasize that these steps
are conceptual and do not necessarily occur in chrone-
logical order. Alsc, some steps are only relevant to
randomized or comparative trials.

Table II. Basic Steps of Analysis

Clinical Trial Analysis and Reporting

5.1 “Intention to Treat”

A clinical trial is a test of treatment policy, not a test of
treatment received. This is the “intention to treat” princi-
ple. It is unfortunate that investigators conducting ¢lini-
cal trials cannot guarantee that the patients who par-
ticipate will finish or even receive the treatment assigned.
Many factors contribute to patients failing to complete
the intended therapy including unexpectedly severe toxic-
ity, disease progression, unstated preference for another
treatment, and a change of mind. However, once patients
are selected for participation in a clinical trial, they
represent the population defined by the eligibility criteria.
If some participants are excluded from analysis on any
basis other than eligibility, the trial results will no longer
represent the population intended. In fact, the resulis will
represent an unknown population, perhaps with charac-
teristics and prognosis substantially different from that
intended.

From the clinical perspective, when selecting a treat-
ment for a new patient, the physician has no knowledge
of whether or not the patient will complete the treatment
intended. The physician is primarily interested in the
probability that the treatment will benefit the patient. It
is not helpful to know that the treatment might work
depending on some events in the patient’s future. Con-
sequently, the physician should be most interested in
clinical trial results that include all patients who were
assigned to the therapy.

On the practical side, to be certain that the trial results
closely reflect the effect of the treatment, the eligibility

1. Approach the analysis as a test of treatment policy, not a test of treatment received. This is the “intent to treat”

principle.

Examine the data.
Describe the cohort.
Verify the effectiveness of randomization.

U

treatment effect of the trial.

Plan to include all patients registered/randomized regardless of post eniry events.

Estimate the effect of each prognostic factor on the major outcome (univariate analyses). One of these will be the

7. Using standard multivariate statistical methods or models (e.g., linear, logistic, or proportional hazards regression),

re-estimate the treatment effect while adjusting for:

a) statistically significantly imbalanced prognostic factors,
b) strong or influential prognostic factors, whether imbalanced or not,
c) any prognostic factor for which it is Important to demonstrate convineing control.

o,

10.

Repeat steps 1-6 after excluding ineligible patients, i.e., those patients who are ineligible based on pre-entry criteria.
Consult the biostatistician concerning special methods to address specific clinical questions. Any analyses not
protected by the randomization should correspond to clinical hypotheses stated as study objectives and use
multivariate control of prognostic factors.
Cautiously conduct exploratory or hypothesis generating analyses:

a) any analysis suggested by the data and not by hypothesis (P-values will be wrong),

b) any analysis which excludes patients based on post-entry criteria (results will be biased),

c) subset analyses (prognostic factors will not be controlled}.
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criteria should exclude patients with characteristics that
might prevent them from completing the therapy. For
example, if the therapy is lengthy, perhaps only good
performance status patients should be eligible. If the
treatment is highly toxic, only patients with normal func-
tion in major organ systems will be likely to complete the
therapy.

Based on these considerations, the first and most re-
liable analysis will include all patients registered or
randomized on the trial regardless of post entry events.
This analysis is the intention to treat analysis. It is
possible to exclude patients who were retrospectively
found not to meet the eligibility criteria, i.e., those who
were mistakenly placed on study, without creating bias.
Ideally, such patients would not have been entered into
the study because they were ineligible. Only eligibility or
pre-entry criteria should be used to make such exclusions.
If patients are excluded based on “evaluability” or other
post-entry criteria, the possibility of bias becormnes larger.
This occurs because “evaluability” criteria are outcomes,
no matter how reasonably defined clinically, and if we
exclude subjects based on outcomes, the potential for bias
is great.

3.2 Examine the Data

The first practical step in any analysis is to examine the
data. This includes looking at formatted printouts and
other simple tabulations that might highlight incorrect
data values. Many problems in analyzing clinical trials
can be prevented by correcting errors that become appar-
ent when simply looking at the data. This is also a step
that physicians, who are often very knowledgeable about
the data, can perform. With the widespread use of com-
puters to manage clinical information and automated
analysis procedures, it is possible to produce results from
clinical studies without carefully examining the data.
Even a cursory examination of raw data by a technically
knowledgeable person can detect many errors of impor-
tance to the analysis. For example, suppose we record
serum calcium which is expected to be normal. Some of
the kinds of errors that are amenable to detection by
inspection include 1} incorrectly missing data (patient
had level measured but not recorded in the database),
2) incorrect decimal points (80 recorded instead of 8.0),
3) failure to convert numerical codes for special values,
(calcium becomes 99 instead of “missing™), 4) out of
range or impermissible values (0.0 recorded instead of
8.0), 5) mis-labeled variables (age is mistaken for cal-
cium and vice-versa}, and 6) coding and recoding errors
(0 should mean normal and 1 should mean abnormal, but
values are reversed).

Inspection of the data is particularly important for
small or single investigator studies in which the data
management techniques are not subject to regular quality
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control procedures as might be the case in multi-
institutional cooperative group studies. Errors in small
studies can be particularly influential. Many times, small
studies are recorded entirely on paper with transcription
to a computer at a later time, creating an opportunity
for errors. Other times, data are stored on computers
using convenient but unsophisticated software such as
spreadsheets rather than database management programs
which permit validation and checking. Fortunately, the
quantity of data from such small studies is often very
amenable to checking by inspection.

Although the statistician can produce helpful charts,
tables, and graphs of aggregate data, the additional in-
sight of the clinical investigator is essential to correct
some errors. Furthermore, the clinician will be reassured
that all data are correct by personally inspecting all
items. It is embarrassing, frustrating, and poor for
morale to have to ask that a series of analyses be repeated
because data errors were discovered late. After the statis-
tician puts the data in analysis-ready form, it is often
useful to pause for several days or weeks while the
clinical investigators assure themselves that all the infor-
mation is correct. As a consequence of this care, any
subsequent unusual findings in the data can not be
attributed to data error.

5.3 Describe the Cohort (Study Population)

All clinical trials are studies of particularly well
defined and relatively small cohorts. Although the eligi-
bility criteria define a population of particular interest,
the patients actually accrued on a trial may differ as a
result of chance or institutional characteristics. Investi-
gators will want to describe the observed cohort, par-
ticularly with regard to important prognostic factors.
Simple population measures and summary statistics usu-
ally suffice for this purpose. This process is also valuable
in error checking.

5.4 Verify the Effectiveness of Randomization

In reports of many randomized studies, the first table
presented is often intended to show the comparability of
treatment groups. The lack of statistically significant
differences between treatment groups dose not guarantee
the absence of influential imbalances. It only demon-
strates the effectiveness of randomization. Even so, this
is important because investigators will have more con-
fidence in the findings if imbalances are either absent or
controlied in the analyses. Statistically non-significant im-
balances in strong prognostic factors can influence treat-
ment comparisons. This is discussed more completely
in deciding when to adjust (below). Conversely, statisti-
cally significant imbalances are not necessarily influen-
tial — the imbalance may occur in an inconsequentjal
factor. From a clinical perspective, the magnitude of the



difference between groups and the strength of the im-
balanced factor are more important that the P-value.

5.5 Estimate Prognostic Effects

The portion of the analysis plan draws directly from
the earlier discussion of odds and hazard ratios. The most
useful clinical information is how the outcome (e.g., odds
of response, ot risk of death) changes with each unit
change in the value of a prognostic factor. Statistical
models such as logistic regression for dichotomous out-
comes and survival regression for event times are likely
to be of greatest use. Provided the assumptions of these
models are met, they provide estimates of the appropriate
relative risk parameter(s), confidence limits, and P
values.

Each prognostic factor can be studied independently
using these models (univariate analyses). For a compar-
ative clinical trial, the prognostic factor of most interest
is likely to be ireatment assignment. However, other
factors may also be prognostic and perhaps also un-
equally distributed in the two treatment groups. For
this reason, adjusted or multivariate analyses are often
helpful.

5.6 Adjustments

Not all clinical trial statisticians agree on the need for
adjusted analyses in properly designed clinical frials.
However, we believe, as many investigators do, that it is
often useful to learn about differences in estimated treat-
ment effects before and after adjustment. Furthermore,
observational studies in which randomization is not
employed invariably are analyzed with adjustment proce-
dures. The kinds of systematic errors that can arise in
observational studies can arise by chance in clinical trials.
This seems to provide a firm rationale for examining the
results of adjusted analyses.

One of the principal advantages of the model based
approach outlined above is its simple generalization to
analyses using adjustment. Using the method in the anal-
ysis of a comparative clinical trial, investigators re-
estimate the treatment effect while accounting for prog-
nostic factors that meet one of three criteria:

a) statistically significantly imbalanced prognostic
factors,

b) strong or influential prognostic factors, whether
imbalanced or not,

¢) to prove that a particular prognostic factor does not

artificially create the treatment effect.
The underlying philosophy in adjusting in these circum-
stances is to be certain that the observed treatment effect
is not due to imbalances in influential prognostic factors.
Changes in relative risk parameters (more than changes
in P-values) with adjustment are the effects of clinical
interest.

Clinical Trial Analysis and Reporting

3.7 Repeat Analyses

Repeat steps 1-6 after excluding inecligible patients,
i.e., those patients who are ineligible based on pre-entry
criteria.

5.8 Special Methods

A skilled trial methodologist should be consulted when
special analyses are needed to address specific clinical
questions. For example, in phase I studies, pharmaco-
logic models and specialized parameter estimation may
be needed to study pharmacokinetic end points. In
prognastic factor studies, special relative risk regression
models may be needed to investigate the effects of prog-
nostic factors that change over time (time-dependent
covariates). For comparative studies, analyses not pro-
tected by the randomization (e.g., subset analyses)
should correspond to clinical hypotheses stated as study
objectives and should use adjustment methods to control
prognostic factors.

5.9 Data Exploration

Clinicians generally need very little encouragement to
conduct exploratory analyses of their data. By explora-
tory analyses, we mean those which do not follow directly
from the design of the experiment. Such analyses are
neither automatically inappropriate not wrong. However,
the conclusions derived from these analyses are often
unreliable. Therefore, they should serve only to generate
hypotheses to be tested more rigorously in the future.
Reasons why exploratory analyses may be unreliable
include the following.

a) A comparison suggested by the data and not by
prior hypothesis is likely to have a type I error larger than
the nominal P-value. _

b) An analysis which excludes patients based on post-
entry criteria (responses) will likely produce biased
results.

¢) Subset analyses are likely to be influenced by un-
controlled prognostic factors. Investigating large num-
bers of subsets can lead to “significant” differences purely
by chance (i.e., inflated type I error).

By relying on estimation of clinical effects rather than
unplanned tests of statistical hypotheses, errors resulting
from these exploratory analyses might be decreased. In-
vestigators might be less likely to misinterpret the results
or to exaggerate their clinical utility. In any case, these
types of exploratory analyses should never be the primary
analysis of a clinical trial.

6. Basic Steps in Reporting

As with analysis, the most informative summaries and
amount of detail to report from a clinical trial will
depend largely on the nature of the clinical hypotheses
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Table ITI.  Basic Steps of Reporting

1. Report all clinically relevant descriptions of the cohort including patients who met the eligibility criteria but chose

not to participate.

2. Report those patients who were retrospectively found to have failed the eligibility criteria and those patients who

failed to complete the assigned treatment.

3. Report all statistical methods and assumptions made.

4. For univariate analyses, report estimated treatment effects (log-odds ratios or hazard ratios), confidence intervals,
and significance levels of tests of no treatment effect (P values).

Ol

confidence limits.

& =

significant.”

For adjusted analyses, report adjusted estimates of treatment effects, confidence intervals, and P-values.
When no treatment effect is found, do not report the power of the study. Instead use point estimates and

Report any differences between “intention to treat” analyses and “eligible patient” analyses.
Results with strong biological or clinical justification and P-values near 0.05 should be called “statistically

9. Results with no biological or clinical justification or those which seem paradoxical should be reported and

interpreted with caution.

10. Only informally report exploratory or hypothesis generating analyses.

being studied. This section will outline basic reporting
guidelines that follow the estimation analytic approach
discussed above and that should be helpful for reporting
many types of clinical trials. A summary is given in Table
IIL. These guidelines should also be useful for reviewing
and interpreting published reports of trials and prognos-
tic factor analyses.

6.1 Describe the Study Population

Clinically relevant descriptions of the cohort and pop-
ulation targeted by the eligibility criteria should be
reported. In phase I studies, especially those that are drug
oriented, the target population and trial cohort may not
have as much clinical relevance as in a phase II or II1
study. It is also sometimes important to discuss patients
who met the eligibility criteria but chose not to partici-
pate, when this information is available. The need for this
might arise when patients from a large group are asked to
participate but many refuse. Adequate descriptions of the
cohort will aid generalizations of the results.

6.2 Treatment and Eligibility Failures

As mentioned above, it is acceptable to perform statis-
tical analyses on only the subset of eligible patients, even
when eligibility is corrected in retrospect. This does not
create bias in the estimate of comparative effects. Investi-
gators should report those patients who were retro-
spectively found to have failed the eligibility criteria as
well as those patients who failed to complete the assigned
treatment. This latter group is not excluded from the
analysis.

6.3 Statistical Methods and Assumptions

It may seem obvious that readers of trial reports
should be aware of any assumptions made in both the
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design and analysis of a clinical trial. For a discussion of
some practical issues, see DerSimonian et al'” Many
common statistical procedures, their assumptions and
limitations, are well understood by clinicians. However,
the readers of clinical trial reports should be convinced
that the data analyst has verified all assumptions and
reported the methods for less familiar statistical proce-
dures. Examples of assumptions that are often made in
analysis, often violated by the data, and also likely to be
consequential are distributional assumptions underlying
the ¢ test and proportionality of hazards in lifetable
regressions.

6.4 Univariate Analyses

Univariate analyses will likely be conducted to test the
effect of all potentially important prognostic variables
on the major outcomes. For univariate analyses, inves-
tigators should report estimated treatment effects (odds
ratios or hazard ratios), confidence intervals, and signifi-
cance levels of tests of no treatment effect (P-values).
This does not preclude presenting other displays of uni-
variate analyses (e.g., survival curves or 2 X2 tables) if
these analyses are especially relevant. However, the in-
vestigators should keep in mind that univariate analyses,
particularly in prognostic factor studies, are subject to
confounding. Consequently, these analyses should not be
emphasized or presented in excessive detail.

6.5 Adjusted Analyses

The best style of reporting adjusted analyses is the
same as or similar to that for univariate effects. However,
the results of adjusted analyses are usually interpreted
only after several analyses have been performed. That is,
the best adjusted analyses to report should be selected
from a larger set of preliminary results. As an example,



consider a lifetable regression model attempting to pre-
dict time to cancer recurrence. The “best” (most predic-
tive but parsimonious) model might be built using a
step-down procedure from a large set of potential prog-
nostic factors. Each step in the analysis need not be
reported, but the final model is a major objective of the
analysis,

For adjusted analyses, investigators should report ad-
justed estimates of treatment effects, confidence intervals,
and P-values. Not all prognostic factors retained in mul-
tiple regression models must be “statistically significant.”
As stated above, it is often useful to keep non-significant
effects in an adjusted model to demonstrate convincingly
that the treatment effect persists in the presence of par-
ticular covariates.

6.6 Negative Findings

In comparative trials, when no statistically significant
treatment difference is found, investigators will want to
convince readers that this also means the absence of
important clinical effects. Because clinical effects are
measured by risk ratios rather than P-values, guidelines
given above emphasizing estimated treatment differences
rather than hypothesis tests are important. Helpful
advice regarding negative clinical trials is provided by
Detsky and Sackett® Power calculations performed
after the study is completed are rarely, if ever, helpful.
This is true because 1) the power of a non-significant
study against the observed difference will be low, and 2)
the alternative hypothesis used when designing the trial is
probably no longer supported by the data.

6.7 Differences between Analyses

Although we have emphasized the value of the intent
to treat principle and related analyses, in practice, many
exploratory analyses will be done. Investigators should
report any differences between “intention to treat” anal-
yses and “eligible patient” analyses. If subset analyses
are performed, discrepancies between these and the major
analyses of the clinical trial should be reported.

6.8 What is Significant?

The P-value should not be the only criterion for signifi-
cance. Results with strong biological or clinical rationale
and P-values near 0.05 are “statistically significant.” Al-
though conventional methods use a cutoff of 0.05 as the
significance level, there is no reason to expect this to
suffice for all circumstances. Specifically, when biological
justification is strong, effect estimates are large, and
confidence intervals or P-values indicate significance near
conventional levels, it seems appropriate to label these
results as significant.

Conversely, results with no biological or clinical justi-
fication or those which seem paradoxical should be re-

Clinical Trial Analysis and Reporting

ported and interpreted with caution, even when P-values
are smaller than 0.05. There is no way to separate type
I errors from truly significant results, except to rely on
additional evidence and biological rationale. It is wise to
report cautiously results which seem not to be consistent
with other more reliable evidence.

6.9 Exploratory Analyses

Exploratory or hypothesis gencrating analyses should
be only informally reported.

7. Some Limitations of Analysis

In some circumstances, a special statistical analysis
appears to address an important clinical question, even
though the procedure violates recommendations made
above. Sometimes, such analyses will be appropriate
and clinically useful. In general, analyses are likely to
be useful if they are relevant to the treatment of new
patients. Analyses which require information not yet
available when seeing a new patient are not likely to
be helpful. A good example of this is “evaluability™ or
completion of therapy. When deciding whether or not to
administer a treatment to a new patient, “evaluability”
1s unknown. Consequently, results of trials that depend on
“evaluability” are not very helpful.

Clinicians often would like to estimate the risk of a
specific outcome while excluding other outcomes. For
example, we might wish to know the risk of death from
cancer excluding non-cancer causes of death. Although
this seems like a reasonable question, it can be difficult
or impossible to answer. In a population of patients with
cancer, causes of death are probably not independent of
one another. However, this is precisely the assumption
made by censoring other causes of failure. For example,
if patients who died from cardiovascular disease are
censored, the resulting estimate of the cancer specific
death rate is valid only if cancer death and cardiovas-
cular death are independent of one another. Because this
is not likely to be the case, the most reliable analyses will
probably be those looking at composite events (e.g., time
to death from any cause).

If patients with some characteristic are lost to follow-
up (or censored) just before they fail, we will not observe
all of the failures that are taking place. Consequently, we
might observe a falsely low failure rate. This is “inform-
ative censoring” and can create bias. There is very little
that can be done about this problem after it occurs.
Therefore, clinical trials and prognostic factor studies
must rely upon active follow-up to ascertain events and
be sure that informative censoring has not occurred.

Statistical analysis cannot conclusively prove cause-
effect relationships. At best, well designed experiments
can demonstrate that associations in the data are unlikely
to have arisen by chance. When all sources of bias have
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been controlled and chance is not a likely explanation,
investigators may reasonably attiribute differences in the
outcomes 1o treatment effects.

Even so, concerns about interpretation can arise, espe-
cially when several factors are investigated simultane-
ously as in multiple regression models. For example, risk
ratios may change substantially or even become non-
significant when adjusted for prognostic factors. Further-
more, when data on numerous prognostic factors are
available, several sets of predictors may explain the out-
come equally well. Sometimes, clinicians are confused or
troubled by such occurrences because they seem to indi-
cate that there is not one “best” answer.

Most of this type of behavior is due to correlations
between predictor variables. Predictors are frequently
“positively” correlated with one another so that inclusion
of several effects in a multivariate model will reduce risk
ratios (towards 1.0) and increase P-values. However, this
is not required to happen, and it is possible that adjusting
for one prognostic factor will increase the significance of
another.

Sometimes, two prognostic factors are so highly cor-
related with one another that they cannot both be in-
cluded in the same model. In this circumstance, investi-
gators should not feel uncomfortable choosing the factor
with the most meaningful clinical interpretation. The
same can be said for entire multiple regression models,
assuming that either model fits the data equally well, The
peint is that clinical interpretation has a vital role to play
in the statistical modeling effort.

8. Summary and Conclusions

When analyzing and reporting the results of clinical
trials, investigators should follow a simple approach. The
purpose of a trial is to estimate an effect or treatment
difference, which if present would have clinical utility
when treating new patients. Procedures or methods that
do not facilitate precisely and impartially estimating and
reporting the treatment effect are likely to mislead inves-
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tigators. Most often in clinical trials, investigators are
interested in estimates of risk ratios (specifically odds or
hazard ratios) between the treatment groups or levels of
a prognostic factor.

These simple ideas suggest that the most useful results
from clinical trials will be estimated risk ratios and their
confidence limits. Especially in cancer, where disease
progression, recurrence, and death are common events
following treatment, estimates of risk difference are very
relevant. Hypothesis tests and associated P-values, al-
though often (or exclusively) reported, are of lesser
utility because they do not fully summarize the data.
These recommendations may be seen by some investiga-
tors to be contrary to accepted practice. It is true that
they are somewhat contrary to common practice but
their general acceptance is evident in many journals and
presentations by clinical trial methodologists.

Despite some disagreement among statisticians regard-
ing the need for adjustment of analyses for imbalanced
prognostic factors, it is helpful to see if treatment effects
change after accounting for imbalances. When this
occurs, it may be of clinical interest. Although we dis-
courage analyses that exclude any patients who meet the
eligibility criteria, some circumstances will require that
this be done (e.g., when a patient refuses to participate
after randomization). Investigators should report, and
emphasize as primary, those analyses that include all
eligible patients. It is our hope and belief that analysis and
reporting of trial results along the guidelines suggested
here will result in impartial and useful information for
journal readers.

ACKNOWLEDGMENTS

Supported in part by a Foundation for the Promotion of
Cancer Research Fellowship. Thanks to Helen Cromwell for
secretarial assistance.

{Received March, 24, 1993 /Accepted June 1, 1993)

3) Armitage, P. and Berry, G. The design of experiments. In
“Statistical Methods in Medical Research,” pp. 172-175
(1987}. Blackwell Scientific Publications, Oxford.

6) Simon, R. M. “Design and Conduct of Clinical Trials,”
pp. 329-350 (1985). J. B. Lippincott Co., Philadelphia.

7} Cox, D. R. and Snell, E. J. “Analysis of Binary Data,”
2nd Ed. (1989). Chapman and Hall, London.

8) International Committee of Medical Journal Editors. Uni-
form requirements for manuscripts submitted to biomed-
ical journals. dnn, Intern. Med., 108, 258-265 (1988).

9) Bailar, J. and Mosteller, F. Guidelines for statistical
reporting for medical journals: amplifications and explana-



10)

1)

12)

13)

14)

15)

tions. Ann. Intern. Med., 108, 266-273 (1988).

Altman, D., Gore, S., Gardner, M. and Pocock, S. Statis-
tical guidelines for contributors to medical journals. Br.
Med. J., 286, 1485-1493 (1983).

Mosteller, F., Gilbert, J. and McPeek, B. Reporting
standards and research strategies for controlled clinical
trials; agenda for the editor. Cont. Clin. Trials, 1, 37-58
(1980).

Berry, G. Statistical significance and confidence intervals.
Med. J. Aust., 144, 618-619 (1986).

Simon, R. Confidence intervals for reporting results of
clinical trials. Anr. Intern. Med., 105, 429-435 (1986).
Gardner, M. J. and Altman, D. G. Confidence intervals
rather than P values: estimation rather than hypothesis
testing. Br. Med. J., 292, 746-750 {1986).

Braitman, L. Confidence intervals extract clinically useful
information from data. Ann. Intern. Med., 108, 296-298
(1988).

Clinical Trial Analysis and Reporting

16) Berger, J. Are P-values reasonable measures of accuracy?
In “Pacific Statistic Congress,” ed. B. I. F. Manly and
F. C. Lam, pp. 21-27 (1986). Elsevier, North Holland.

17) Berger, J. and Sellke, T. Testing a point null hypothesis:
the irreconcilability of p-values and evidence. J. Am. Stat.
Assoc., 82, 112-139 (1987).

18) Berry, G. Statistical guide-lines and statistical guidance.
Med. J. Aust., 146, 408-409 (1987).

19) DerSimenian, R. Charette, L. J, McPeek, B. and
Mosteller, F. Reporting on methods in clinical trials. A,
Engl. J. Med., 306, 1332-1337 (1982).

20) Detsky, A. S. and Sackett, D. L. When was a ‘negative’
clinical trial big enough? Arch. Intern. Med., 145, 709-
712 (1985).

21} Goodman, 8. and Royall, R. Evidence and scientific
research. Am. J. Public Health, 78, 1568-1574 (1988).

22} Rothman, K. Significance questing. Aan. Intern. Med.,
105, 445447 (1986).

937





