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SHIFT: speedy 
histological‑to‑immunofluorescent 
translation of a tumor signature 
enabled by deep learning
Erik A. Burlingame1,2, Mary McDonnell2, Geoffrey F. Schau1,2, Guillaume Thibault2, 
Christian Lanciault3, Terry Morgan3, Brett E. Johnson2, Christopher Corless4,5, 
Joe W. Gray2,5,6 & Young Hwan Chang1,2,6*

Spatially-resolved molecular profiling by immunostaining tissue sections is a key feature in cancer 
diagnosis, subtyping, and treatment, where it complements routine histopathological evaluation 
by clarifying tumor phenotypes. In this work, we present a deep learning-based method called 
speedy histological-to-immunofluorescent translation (SHIFT) which takes histologic images of 
hematoxylin and eosin (H&E)-stained tissue as input, then in near-real time returns inferred virtual 
immunofluorescence (IF) images that estimate the underlying distribution of the tumor cell marker 
pan-cytokeratin (panCK). To build a dataset suitable for learning this task, we developed a serial 
staining protocol which allows IF and H&E images from the same tissue to be spatially registered. 
We show that deep learning-extracted morphological feature representations of histological images 
can guide representative sample selection, which improved SHIFT generalizability in a small but 
heterogenous set of human pancreatic cancer samples. With validation in larger cohorts, SHIFT could 
serve as an efficient preliminary, auxiliary, or substitute for panCK IF by delivering virtual panCK IF 
images for a fraction of the cost and in a fraction of the time required by traditional IF.

Physicians depend on histopathology—the visualization and pathological interpretation of tissue biopsies—to 
diagnose cancer. Hematoxylin and eosin (H&E)-stained histologic sections (~ 3–5 μm-thick formalin-fixed 
paraffin-embedded tissue biopsies) are the standard of care routinely employed by pathologists to make diagno-
ses. On the basis of the visual attributes that make H&E-stained sections useful to pathologists, a broad field of 
histopathological image analysis has flourished1. Image features derived from H&E-stained sections have been 
used for tasks ranging from the segmentation of glands in the prostate2, grading of breast cancer pathology3, 
to automated classification of early pancreatic cancer4. In spite of the rich information highlighted by the non-
specific H&E stain, in challenging cases with indeterminate histology or tumor differentiation, antibody labeling 
of tumor cells by a molecular imaging technique like immunofluorescence (IF) provides further characteriza-
tion. It is becoming increasingly apparent that determining the spatially-resolved molecular profile of a cancer 
is important for disease subtyping and choosing a patient’s course of treatment5. Despite its clinical value, IF is 
time- and resource-intensive and requires expensive reagents and hardware, so assessment is typically limited 
to a small representative section of a tumor, which may not be fully representative of the neoplasm, which can 
be the case in areas of squamous differentiation in an adenocarcinoma6. Also, the cost associated with IF may in 
some cases limit its use to within highly-developed clinical laboratories, further widening the quality-of-care gap 
between high- and low-income communities. The gaps between H&E and IF technologies highlight the broader 
need for automated tools that leverage information attained by a low-cost technology to infer information typi-
cally attained by a high-cost technology.

Recent advances in digital pathology and deep learning (DL) have made it possible to automatically extract 
valuable, human-imperceptible information from H&E-stained histology images7–11. In12, H&E images and 
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spatially-registered SOX10 immunohistochemistry (IHC) images from the same tissue section were used to train 
a DL model to infer SOX10 nuclear staining from H&E images alone. Apart from histology and IHC images, 
other studies have described supervised DL-based methods for inferring fluorescence images from transmitted 
light images of unlabeled human or rat cell lines or cell cultures13,14, but not in complex, associated human tis-
sues. Their methods were also based on supervised pixel-wise learning frameworks, which are known to produce 
incoherent or discontinuous patterns in the virtual stains for some markers, though some of the authors suggest 
that an adversarial learning framework could address the problem13. We previously introduced an adversarial 
DL-based method called speedy histological-to-IF translation (SHIFT) and demonstrated its ability to infer 
fluorescence images from images of adjacent H&E-stained tissue from a single patient with pancreatic ductal 
adenocarcinoma (PDAC)15. To better define the virtual staining problem in the current study, we have devel-
oped a serial staining protocol which enables co-registration of H&E and IF data in the same tissue section. In 
this setting, we test the generalizability of virtual IF staining by SHIFT through model evaluation on PDAC 
samples from four patients which were selected by an expert pathologist on the basis of their high inter-sample 
morphological heterogeneity.

DL models require a large amount of heterogeneous training data to generalize well across the popula-
tion from which the training data was drawn. Since data limitations are common to many biomedical data 
domains11,16–18, we begin by exploring the possibility that the choice of training samples can be optimized by 
selecting the few samples that are most representative of the population of samples at our disposal. Some DL-
based applications have been proposed for histological image comparison and retrieval19,20, but to the best of our 
knowledge none have been proposed for the express purpose of training set selection in a data-limited biomedical 
imaging domain. We describe the use of a data-driven DL-based method to select samples that optimizes the 
morphological heterogeneity of the dataset and promotes SHIFT model generalizability.

As a proof of concept, we objectively measure the ability of SHIFT models to infer the spatial distribution of 
a pan-cytokeratin (panCK) antibody which labels cancer cells. We also show preliminary results for inference 
on the stromal marker α-smooth muscle actin (α-SMA). By leveraging a morphological signature of a molecular 
tumor phenotype and proposing feature-guided sample selection for model generalizability, our approach is a 
small step toward the development of a generalized platform for multiplexed virtual IF imaging of markers in 
human tissues for which there exists an association between tissue morphology and an underlying molecular 
phenotype.

Results
Building a dataset of spatially‑registered H&E and IF images.  SHIFT requires spatially-registered 
pairs of H&E and IF whole slide images (WSIs) for model training and testing (Fig. 1A). Such data would usu-
ally be acquired by processing two adjacent tissue sections, one stained by H&E and another stained by IF, then 
spatially registering the images into the same coordinate system based on their shared features21. Unfortunately, 
this can lead to inconsistencies between H&E and IF image contents when high-frequency cellular features differ 
between adjacent sections, even when the sections are as few as 5 μm apart. To alleviate this issue, we developed 
a protocol that allows for H&E and IF staining in the same section of tissue (see “Methods”). Clinical samples of 
PDAC from four patients (Samples A, B, C and D) were chosen via pathological review of archival H&E images 
as exemplifying a spectrum of both histological differentiation and heterogeneity (Fig. 1B). Chosen samples 
were sectioned, processed, and stained with DAPI nuclear stain and panCK monoclonal antibody; the staining 
was confirmed and the slides were scanned. After scanning, the coverslips were removed and the slides were 
stained with the designed modified H&E protocol, permanently cover slipped and then scanned again. Nuclear 
information from the hematoxylin and DAPI stains in pairs of H&E and IF images were used to register images 
in a common coordinate system. Images were then pre-processed to minimize noise and account for technical 
variability in staining and image acquisition. To exclude regions of autofluorescence that greatly diminished the 
signal-to-noise ratio of the real IF images, images from samples B and D were subdivided into image subsets {B1, 
B2, B3} and {D1, D2, D3, D4, D5}.

Feature‑guided identification of representative histological samples.  For a SHIFT model to 
generalize well across the population of PDAC samples, it must be trained on a representative subset of the 
population, which motivated the development of a means to quantitatively compare images (see “Methods”). 

Figure 1.   Overview of virtual IF staining with SHIFT and feature-guided H&E sample selection. (a) Schematic 
of SHIFT modeling for training and testing phases. The generator network G generates virtual IF tiles 
conditioned on H&E tiles. The discriminator network D learns to discriminate between real and generated 
image pairs. See also Supplementary Fig. S2. (b) Four heterogeneous samples of H&E-stained PDAC biopsy 
tissue used in the current study. Pathologist annotations indicate regions that are benign (green), grade 1 PDAC 
(black), grade 2/3 PDAC (blue), and grade 2/3 adenosquamous (red). (c) Making direct comparisons between 
H&E whole slide images (WSIs) is intractable because each WSI can contain billions of pixels. By decomposing 
WSIs into sets of non-overlapping 256 × 256 pixel tiles, we can make tractable comparisons between the feature-
wise distribution of tile sets. (d) Schematic of feature-guided H&E sample selection. First, H&E samples are 
decomposed into 256 × 256 pixel tiles. Second, all H&E tiles are used to train a variational autoencoder (VAE) 
to learn feature representations for all tiles; for each 196,608-pixel H&E tile in the dataset, the encoder E learns 
a compact but expressive feature representation that maximizes the ability of the decoder D to reconstruct the 
original tile from its feature representation (see “Methods”). Third, the tile feature representations are used to 
determine which samples are most representative of the whole dataset.
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In particular, we wished to learn which sample—or sequence of samples—should be selected to build a training 
set that is most representative of the population of samples. As a consequence of their large dimensions, direct 
comparison between gigapixel H&E images is intractable, so we decomposed each image into sets of non-over-
lapping 256 × 256 pixel tiles (Fig. 1C). Even the small 256 × 256 pixel H&E tiles contain 196,608 (256 × 256 × 3 
channels = 196,608) pixel values each and are difficult to compare directly. To establish a more compact but still 
expressive representation of the H&E tiles, we trained a variational autoencoder (VAE)22—an unsupervised DL-
based method for representation learning and feature extraction—to learn 16-dimensional feature representa-
tions of each tile (see “Methods” for VAE optimization and parameter selection details), which makes comparing 
tiles more tractable (Fig. 1D).

Using the VAE which we pre-trained on all samples, we extracted features from each H&E tile and assessed 
how each feature was distributed across samples, finding that several of the features discriminated between 
samples (Fig. 2A). In particular, the bimodal distribution of some features suggested two sample clusters, one 
formed by samples A and B, and another formed by samples C and D. These clusters were corroborated by visu-
alization of the sample tiles embedded in the reduced-dimension feature space generated by t-SNE23 (Figs. 1D 
and 2B). The t-SNE embedding is strictly used as a visual aid and validation of the quantitative selection of the 
most representative set of samples by the algorithm based on the full 16-dimensional VAE features. Since the 
feature distributions of the H&E tiles highlighted the redundancy between clustered samples, we reasoned that 
a balanced selection of samples from each cluster would yield a more representative training set and ultimately 
improve SHIFT model generalizability. Using the full 16-dimensional feature representations of the H&E tiles 
and an information-theoretic framework for representative sample selection24 (see “Methods”), we were able 
to quantitatively identify sample B and the duo of samples B and D as the single and two most representative 
samples, respectively, which were then considered for training sets in subsequent experiments. Supplementary 
Fig. S1 illustrates the feature distributions of several sample combinations in comparison to that of the full dataset.

Virtual IF staining in histological samples.  SHIFT models are built on an adversarial image-to-image 
translation framework25, with a regularization strategy designed to improve inference on sparse IF images 
(Fig. 1A and Supplementary Fig. S2; see “Methods”). Adversarial learning frameworks compute their losses over 
images, in contrast to strictly supervised learning frameworks where losses are computed over pixels, which has 
been suggested as a means to improve model inference on virtual staining tasks13. Having identified the most 
representative samples in our dataset, we next tested whether or not a SHIFT model could learn a correspond-
ence between H&E and IF images that generalizes across samples.

We hypothesized that if tissue and cell morphologies observed in H&E-stained tissue are a function of a given 
marker, then it should be possible to infer the spatial distribution of that marker based on the H&E-stained tissue 
alone; that is, H&E-to-IF translation should be learnable and generalizable such that a model can be extended to 
samples from patients that were not included in the training set. To test this hypothesis, we trained SHIFT models 
to generate virtual IF images of the cancer marker panCK conditioned on input H&E images alone (Fig. 1A). To 
simultaneously assess the utility of our sample selection method, we trained models using different combinations 
of sample subsets in the training set. Training sets consisted of paired H&E and IF image tiles from either sample 
subset B1 (from the most representative single sample), sample subsets B1 and D5 (from the most representative 
duo of samples), or sample subsets A1 and B1 (from a less representative duo of samples as counterexample). 
Sample subsets B1 and D5 were selected because they contained a similar number of tiles, providing a balance 
between the sample clusters. Once trained, SHIFT models are capable of translating H&E WSIs into virtual IF 
WSIs in tens of seconds (see “Methods”). Model performance was quantified by measuring the structural simi-
larity (SSIM)10,26, a widely used measure of image similarity as perceived by the human visual system, between 
corresponding virtual and real IF images from samples left out of the model’s training set. The SSIM between 
two images is calculated over pixel neighborhoods in the images and provides a more coherent measure of image 
similarity than pixel-wise measures like Pearson’s r. Considering the SSIM performance of the model trained on 
B1 as the baseline, we see a significant improvement in model generalizability on held-out sample C (Friedman 

Figure 2.   Feature-guided H&E sample selection and virtual IF staining with SHIFT. (a) Distribution of the 
16 latent features (L1-L16) extracted by VAE from sample H&E tiles. (b) t-SNE embedding of latent feature 
representations of sample H&E tiles, faceted by sample identity. Each point in each plot represents a single 
H&E tile. Contour lines indicate point density. (c) SHIFT model test performance for optimal (B and D) and 
non-optimal (A and B) training set sample compositions. The paired H&E and IF images from samples B and 
D were subdivided into smaller images B = {B1,B2} and D = {D1,D2,D3,D4,D5} to avoid regions of IF that 
exhibited substantial autofluorescence. The x-axis labels indicate sample identity, where each letter corresponds 
to a unique sample and each number corresponds to a subset of that sample. Each n denotes the number of 
image tiles that were extracted from that sample. Plots for sample subsets are not show if that sample subset was 
a component of a model’s training set. *p < .05; for three group comparisons we used the Friedman test with 
Nemenyi post-hoc test; for two group comparisons we used the Wilcoxon signed-rank test. White dots in violin 
plots represent distributional medians. (d) Visual comparison of virtual staining methods. The ensemble results 
are attained by averaging the output images of SHIFT and Label-Free Determination (LFD) models. See also 
Supplementary Fig. S2. (e) Test performance comparison of virtual staining methods. The x-axis labels indicate 
sample identity, where each letter corresponds to a unique sample and each number corresponds to a subset of 
that sample. Each n denotes the number of image tiles that were extracted from that sample. Plots for sample 
subsets B1 and D5 are not show because those sample subsets were components of the models’ training sets. 
*p < .05; Friedman test with Nemenyi post-hoc test. White dots in violin plots represent distributional medians.
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statistic = 428.4, p = 9.6E−94) and held-out subsets D1 (Friedman statistic = 587.4, p = 2.7E−128), D2 (Friedman 
statistic = 298.0, p = 2.0E−65), and D4 (Friedman statistic = 3099.1, p < 2.2E−308) when the more representative 
sample subsets B1 and D5 are used for training than when the less representative sample subsets A1 and B1 are 
used (Fig. 2C). By stitching together the virtual IF tiles from a given sample in the test set, we were able to make 
large-scale comparisons between real and virtual panCK IF images (Supplementary Fig. S3). We also experi-
mented with SHIFT inference of the stromal marker α-SMA (Supplementary Fig. S4).

SHIFT is not the only virtual staining method to have been recently proposed. Label-free determination 
(LFD)14 is a supervised DL-based virtual staining method which produces models that were shown to have 
learned the relationship between images of cell cultures visualized by transmitted light or fluorescence, where 
sub-cellular structures have been labeled with genetically-encoded fluorescent tags. Because the SHIFT genera-
tor G and the LFD are both based on the popular U-net architecture27, we compared these models that generate 
images using a similar architecture, but have differing training formulae and loss functions (see “Methods”). To 
make a fair comparison between the adversarial SHIFT and supervised LFD models, we trained a LFD using 
the representative sample subsets B1 and D5, matching the number of optimization steps taken by the SHIFT 
model that was trained using the same training set (Supplementary Fig. S5). In addition to the performance of 
independent SHIFT and LFD models, we also considered the ensemble result, taken as the average image of the 
SHIFT and LFD output images (Fig. 2D). Across all samples in the test set, either SHIFT alone or the ensemble 
of SHIFT and LFD tended to perform better than LFD alone (Fig. 2E). In addition to comparing SHIFT and 
LFD models, we also tried removing the discriminator and adversarial loss term from the panCK SHIFT model, 
leaving just the U-net generator. We find that these models trained using the pixel-wise L1 loss alone produced 
virtual panCK staining with good localization, but poor resolution of finer cellular structure, highlighting the 
importance of the adversarial loss for producing realistic virtual stains (Supplementary Fig. S6).

Discussion
Spatially-resolved molecular profiling of cancer tissues by technologies like IF provides more information than 
routine H&E histology alone. However, the rich information obtained from IF comes at significant expense in 
time and resources, restricting IF access and use. Here, we present and extend the validation of SHIFT, a DL-
based method which takes standard H&E-stained histology images as input and returns virtual panCK IF images 
of inferred marker distributions. Using a limited but heterogeneous dataset, we demonstrated that SHIFT models 
are able to generalize across samples drawn from different PDAC patients, even for training sets that are over an 
order of magnitude smaller than the test set (train n = 665 and test n = 11, 593 for models trained on sample 
subset B1 only). Results from our sampling experiments are consistent with the expectation that an automated 
and quantitative method for representative sample selection will be critical to the effective development and 
deployment of DL models on large-scale digital pathology datasets. Finally, we compared the adversarial SHIFT 
method with an alternative, supervised virtual staining method and found that the virtual staining task tends 
to be best accomplished by the ensemble of both methods. With the incorporation of an adversarial loss term, a 
SHIFT model computes loss over images, rather than strictly over pixels as do other virtual staining methods13,14, 
which may explain its positive contribution to the model ensemble. Based on the success of DL-based ensemble 
methods in other biomedical domains18,28, we expect ensemble methods to become increasingly relevant to the 
development of virtual staining applications.

While we have demonstrated the application of SHIFT for the estimation of an IF tumor signature, there are 
emerging opportunities to test the extensibility of our approach and relate it to the approaches of others. In par-
ticular, a comparison between SHIFT and methods which estimate single-stain IHC status conditioned on H&E 
images12,29 would be insightful, since it remains unclear whether there is value added in learning from either IF 
or chromogenic signals. Following recent advances in multiplexed immunofluorescence and immunohistochem-
istry (mIF/IHC) technology30–33, it is now possible to visualize tens or hundreds of distinct markers in a single 
tissue section. On their own, these technologies promise a more personalized medicine through a more granular 
definition of disease subtypes, and will undoubtedly broaden our understanding of cellular heterogeneity and 
interaction within the tumor microenvironment, both of which play increasingly important roles in the develop-
ment and selection of effective treatments34,35. With a paired H&E and mIF/IHC dataset that encompasses the 
expression of hundreds of markers within the same (or serially-sectioned) tissue, we could begin to quantify the 
mutual information between histology and expression of any marker of interest. Notwithstanding the prospect of 
virtual multiplexing, virtual panCK IF alone could be of useful to spatial profiling platforms which use panCK IF 
to label tumor regions for localized spatial profiling of protein and RNA abundances in formalin-fixed tissues36.

There are obvious limitations and challenges to both the feature-guided sampling and virtual staining methods 
we present here. Both methods assume an association between H&E and IF representations of tissue. Since this 
is unlikely to be the case in general, determining which markers have a histological signature will be essential to 
the evaluation of clinical utility for virtual staining methods. For markers without a H&E-to-IF association, our 
methods may fail to maximize representativeness or make incorrect estimates of IF signals. This should be seen 
as a feature rather than failure of our methods, since they provide a means of quantitatively delineating markers 
that have a H&E-to-IF association from those that do not. Notwithstanding, even when there is an association, 
finding a meaningful way to compare real and virtual images remains a challenge, as we have experienced in 
experiments modeling markers with fine, high-frequency distributions like α-SMA (Supplementary Fig. S4). Like 
other virtual staining methods that have been deployed on whole human tissues9,10, we used SSIM as a measure 
of image similarity between real and virtual IF images. This classical perceptual measure is used in many imag-
ing domains, but we found that it is sensitive to perturbations commonly associated with image registration and 
technical or instrumentation noise (Supplementary Fig. S7). In light of this, we advocate for the development 
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and use of perceptual measures that are more aware of such perturbations and better correlate with human 
perception of image similarity or quality37,38.

It must be restated that our results are supported by a dataset comprised of samples from just four patients, so 
some fluctuation in performance between samples should be expected, and indeed was observed (Supplementary 
Fig. S3). Our goal in choosing a relatively small dataset was to demonstrate that, even when limited, SHIFT could 
learn a general relationship between H&E and IF tissue representations, and we believe that the fluctuation in 
performance between samples could be addressed by increasing the sample size. With the emergence of digital 
pathology datasets containing tens of thousands of whole slide images11, the opportunities to improve virtual 
staining technologies are only becoming more numerous.

In spite of representing four patients, the samples in our study were selected by a board-certified pathologist 
to be as heterogenous as possible, encompassing the spectrum of PDAC morphology, albeit in as few samples as 
possible. While we used these heterogeneous and associated human tissues for our study, other virtual staining 
methods have only been demonstrated on relatively homogeneous human or rat cell lines13,14 and with far less 
total image area (Supplementary Table S1). Given the precedent set by these prior works, we feel that the work 
we present here is within scope as a proof-of-concept study of sample selection and histology-based IF prediction 
in a digital pathology application. Moreover, the protocol that we developed to allow H&E and IF staining in 
the same tissue sections will be of significant value to the community, since spatially-paired H&E and IF data is 
difficult to generate from adjacent sections due to tissue deformation and cellular discontinuity between sections.

Since SHIFT can infer virtual panCK IF images as H&E-stained tissue section are imaged, SHIFT could 
provide pathologists with near-real-time interpretations based on standard H&E-stained tissue in augmented set-
tings. Therefore, SHIFT could serve as an efficient preliminary, auxiliary, or substitute technology for traditional 
panCK IF in both research and clinical settings by delivering comparable virtual panCK IF images for a fraction 
of the cost and in a fraction of the time required by traditional IF or mIF/IHC imaging. With clinical validation 
in larger cohorts, the advantages of a SHIFT model over traditional IF would include (1) eliminating the need for 
expensive imaging hardware, bulk reagents, and technical undertaking of IF protocols; (2) virtual IF images can 
be generated in near-real time; and (3) the portability of SHIFT allows it to be integrated into existing imaging 
workflows with minimal effort. As such, we see further validation of SHIFT as an opportunity to simultaneously 
economize and democratize advanced imaging technologies in histopathology workflows, with implications for 
multiplexed virtual imaging. Further, we see our methods for the optimal selection of representative histological 
images, which promote morphological heterogeneity in the training dataset as well as reduce unnecessary effort 
on IF staining, as a complement to data augmentation, transfer learning, and other means of addressing the 
problem of limited training data. This will contribute to saving resources and minimizing unnecessary efforts to 
acquire additional staining or manual annotation for DL applications in biomedical imaging.

Methods
Resources table.

Reagent or resource Source Identifier

Antibodies

Alpha-smooth muscle actin monoclonal antibody 
(1A4 (ASM-1)) ThermoFisher Scientific

https​://www.therm​ofish​er.com/antib​ody/produ​
ct/Alpha​-Smoot​h-Muscl​e-Actin​-Antib​ody-clone​
-1A4-asm-1-Monoc​lonal​/MA5-11547​

Goat anti-mouse IgG2a cross-adsorbed secondary 
antibody, AlexaFluor 555 ThermoFisher Scientific

https​://www.therm​ofish​er.com/antib​ody/produ​ct/
Goat-anti-Mouse​-IgG2a​-Cross​-Adsor​bed-Secon​
dary-Antib​ody-Polyc​lonal​/A-21137​

Pan-cytokeratin monoclonal antibody (AE1/AE3), 
AlexaFluor 488, EBioscience ThermoFisher Scientific

https​://www.therm​ofish​er.com/antib​ody/produ​ct/
Pan-Cytok​erati​n-Antib​ody-clone​-AE1-AE3-Monoc​
lonal​/53-9003-82

Ki-67 (D3B5) monoclonal antibody, AlexaFluor 
647, Conjugate #12075 Cell Signaling Technology

https​://www.cells​ignal​.com/produ​cts/antib​
ody-conju​gates​/ki-67-d3b5-rabbi​t-mab-alexa​
-fluor​-647-conju​gate/12075​?N=42949​60176​
&Nrpp=100&fromP​age=plp

Biological samples

Human PDAC tumor samples Oregon Pancreas Tissue Registry IRB: 3609

Chemicals, peptides, and recombinant proteins

SlowFade Gold Antifade Mountant with DAPI ThermoFisher Scientific https​://www.therm​ofish​er.com/order​/catal​og/produ​
ct/S3693​8

Normal goat serum blocking solution Vector laboratories https​://vecto​rlabs​.com/norma​l-goat-serum​-block​
ing-solut​ion.html

Deposited data

Imaging data This manuscript https​://gitla​b.com/eburl​ing/shift​/

Software and algorithms

Python Python Software Foundation RRID:SCR_008394

PyTorch Paszke et al.39 https​://pytor​ch.org/

imgaug Jung40 https​://githu​b.com/aleju​/imgau​g

Netron https​://www.lutzr​oeder​.com/ai/ https​://githu​b.com/lutzr​oeder​/netro​n

HoloViews Stevens et al.41 https​://holov​iews.org/

https://www.thermofisher.com/antibody/product/Alpha-Smooth-Muscle-Actin-Antibody-clone-1A4-asm-1-Monoclonal/MA5-11547
https://www.thermofisher.com/antibody/product/Alpha-Smooth-Muscle-Actin-Antibody-clone-1A4-asm-1-Monoclonal/MA5-11547
https://www.thermofisher.com/antibody/product/Alpha-Smooth-Muscle-Actin-Antibody-clone-1A4-asm-1-Monoclonal/MA5-11547
https://www.thermofisher.com/antibody/product/Goat-anti-Mouse-IgG2a-Cross-Adsorbed-Secondary-Antibody-Polyclonal/A-21137
https://www.thermofisher.com/antibody/product/Goat-anti-Mouse-IgG2a-Cross-Adsorbed-Secondary-Antibody-Polyclonal/A-21137
https://www.thermofisher.com/antibody/product/Goat-anti-Mouse-IgG2a-Cross-Adsorbed-Secondary-Antibody-Polyclonal/A-21137
https://www.thermofisher.com/antibody/product/Pan-Cytokeratin-Antibody-clone-AE1-AE3-Monoclonal/53-9003-82
https://www.thermofisher.com/antibody/product/Pan-Cytokeratin-Antibody-clone-AE1-AE3-Monoclonal/53-9003-82
https://www.thermofisher.com/antibody/product/Pan-Cytokeratin-Antibody-clone-AE1-AE3-Monoclonal/53-9003-82
https://www.cellsignal.com/products/antibody-conjugates/ki-67-d3b5-rabbit-mab-alexa-fluor-647-conjugate/12075?N=4294960176&Nrpp=100&fromPage=plp
https://www.cellsignal.com/products/antibody-conjugates/ki-67-d3b5-rabbit-mab-alexa-fluor-647-conjugate/12075?N=4294960176&Nrpp=100&fromPage=plp
https://www.cellsignal.com/products/antibody-conjugates/ki-67-d3b5-rabbit-mab-alexa-fluor-647-conjugate/12075?N=4294960176&Nrpp=100&fromPage=plp
https://www.cellsignal.com/products/antibody-conjugates/ki-67-d3b5-rabbit-mab-alexa-fluor-647-conjugate/12075?N=4294960176&Nrpp=100&fromPage=plp
https://www.thermofisher.com/order/catalog/product/S36938
https://www.thermofisher.com/order/catalog/product/S36938
https://vectorlabs.com/normal-goat-serum-blocking-solution.html
https://vectorlabs.com/normal-goat-serum-blocking-solution.html
https://gitlab.com/eburling/shift/
https://pytorch.org/
https://github.com/aleju/imgaug
https://www.lutzroeder.com/ai/
https://github.com/lutzroeder/netron
https://holoviews.org/
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Reagent or resource Source Identifier

Bokeh Bokeh Development Team42 https​://bokeh​.pydat​a.org/

scikit-image van der Walt et al.43 https​://sciki​t-image​.org/

scikit-learn Pedregosa et al.44 https​://sciki​t-learn​.org

scikit-posthocs Terpilowski et al.45 https​://doi.org/10.21105​/joss.01169​

SciPy Virtanen et al.46 https​://www.scipy​.org/

Jupyter Kluyver et al.47 https​://jupyt​er.org/

Materials availability.  Further information and requests for resources should be directed to and will be 
fulfilled by the corresponding author, Dr. Young Hwan Chang (chanyo@ohsu.edu).

Experimental model and subject details.  Human tissue samples.  Four cases of moderately differenti-
ated pancreatic ductal adenocarcinoma (PDAC) were retrieved from the Oregon Health & Science University 
(OHSU) Surgical Pathology Department under the Oregon Pancreas Tissue Registry (IRB00003609). Informed 
written consent was obtained from all subjects. All experimental protocols were approved by the OHSU Institu-
tional Review Board. All methods were carried out in accordance with relevant guidelines and regulations. Sam-
ple A was from a male aged 83 at diagnosis; sample B was from a female aged 74 at diagnosis; sample C was from 
a female aged 57 at diagnosis; and sample D was from a female aged 73 at diagnosis. H&E-stained sections were 
secondarily reviewed by two board-certified surgical pathologists tasked to identify and classify areas of tumor 
heterogeneity in representative sections from each case. Discrepancies between pathologists were ameliorated by 
consensus review. Samples were chosen via pathological review as exemplifying a spectrum of both histological 
differentiation and heterogeneity.

Clinical method details.  Pathological evaluation of human tissue samples.  Gold standard review of his-
tologic sections by pathologists tasked with identifying heterogeneous differences in PDAC tumor morphology 
and grade revealed interobserver agreement in the identification of areas of squamous differentiation in one case 
and various tumor grades within neoplasms in the other three cases. All four cases were predominantly grade 
2 adenocarcinoma and there was no disagreement evaluating marked regions of interest. The case with areas of 
squamous differentiation did not clearly meet the 30% threshold for adenosquamous classification. The other 
three cases were predominantly grade 2 with foci of grade 1 and others with grade 3.

Immunofluorescence staining and image processing.  Preparation of tissue for immunofluorescence 
staining.  Formalin-fixed paraffin-embedded tissue blocks were serially sectioned by the OHSU Histopathology 
Shared Resource. From each block, three sections were cut in order to generate a standard H&E for pathological 
review and downstream analysis, a second serial section of tissue for immunofluorescence staining/post-immu-
nofluorescence H&E staining, and a third section for secondary only control. After sectioning, the second serial 
tissue section was immediately baked at 55 °C for 12 h and subjected to standard deparaffinization; the slides 
underwent standard antigen retrieval processing, washing, and blocking. Upon completion, primary antibodies 
were diluted and applied.

Application of antibodies.  Alpha-Smooth Muscle Actin (Mouse monoclonal antibody, IgG2a, Clone: 1A4; 
Pierce/Invitrogen, cat#MA5-11547) was diluted to 1:200 with Ki-67 (D3B5), (Rabbit monoclonal antibody, IgG, 
Alexa Fluor 647 Conjugate; Cell Signaling Technology, cat#12075S) diluted to 1:400, along with Pan Cytokeratin 
(AE1/AE3) (Mouse monoclonal antibody, IgG1, Alexa Fluor 488 Conjugate; ThermoFisher, cat#53-9003-82), 
which was diluted to 1:200 in 10% Normal Goat Serum in 1% Bovine Serum Albumin in Phosphate Buffered 
Saline. Primary antibodies were diluted and incubated overnight at 4 °C. After incubation, secondary antibody 
(Goat anti-mouse monoclonal antibody, IgG2A, Alexa Fluor 555 Conjugate; Life Technologies, cat# A21137), at 
1:200 dilution was applied to the slides and incubated at room temperature for one hour. After incubation slides 
were washed and mounted with Slowfade Gold Antifade Mountant with DAPI (Fisher Scientific, cat#S36936) in 
preparation for image acquisition.

Post‑IF H&E staining of tissue samples.  After the IF stained slides were scanned and the immunofluorescence 
staining verified, the glass coverslips were removed and the slides were immediately processed for post-IF H&E 
staining. Post-IF H&E staining was performed with the Leica Autostainer XL staining system at the OHSU His-
topathology Shared Resource with the modified staining protocol described in the table below:

Hematoxylin 10 min

Wash in water 1 min

Acid alcohol (0.5% HCl in 70% Ethanol) 8 s

Wash in water 25 s

Bluing solution 2 min

Wash in water 20 s

80% Ethanol/water 25 s

Eosin 10 s

https://bokeh.pydata.org/
https://scikit-image.org/
https://scikit-learn.org
https://doi.org/10.21105/joss.01169
https://www.scipy.org/
https://jupyter.org/
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80% Ethanol/water 25 s

95% Ethanol/water 20 s

100% Ethanol (two times) 25 s

Xylene (five times) 25 s

Image acquisition and presentation.  Slides were scanned with the Zeiss Axio Scan.Z1 slide scanner of the OHSU 
Advanced Multiscale Microscopy Shared Resource with the 20X objective in both brightfield and immunofluo-
rescence scanning. Carl Zeiss Images (CZI) were acquired using Zeiss Zen software. CZI images from the Zeiss 
Axioscan Slide Scanner were processed with the Zeiss Blue Zen Lite microscope software package. All brightfield 
and immunofluorescence images were manually annotated and exported as TIFF files for downstream image 
processing.

Image pre‑processing.  Raw H&E and IF whole slide images (WSIs) must be pre-processed to remove technical 
noise, account for between-sample intensity variation, and align paired H&E and IF WSIs in a shared coordinate 
system. To do so, we use the following pipeline:

1.	 Quality control: formalin-fixed pancreatic tissue is prone to high levels of autofluorescence, which can mask 
specific IF signal. Regions of WSIs which exhibited low IF signal-to-noise due to autofluorescence as deter-
mined by pathologist review were excluded from our analysis. Divisions of samples B and D were based on 
the geometries of the image regions determined unaffected by autofluorescence. Some acceptable regions 
like D3, which contained 90 tiles, were relatively small due to surrounding regions of autofluorescence.

2.	 Downscaling: 20X WSIs are downscaled by a factor of 2 in x and y dimensions to generate 10X WSIs. We 
experimented with using either 20X or 10X images and found that models performed best when using 10X 
images.

3.	 Registration: H&E and IF WSIs are spatially registered using an affine transformation that is estimated using 
matched SURF features21,48 extracted from hematoxylin and DAPI binary masks of nuclei generated by Otsu’s 
thresholding method, respectively. Concretely, registration of an H&E WSI and a corresponding IF WSI of 
the same tissue was achieved using MATLAB49 through the following steps:

	 i.	 Conversion of H&E images from RGB colorspace to grayscale using the MATLAB function rgb-
2gray.

	 ii.	 Binarization and complementation of the grayscale H&E and DAPI WSIs using the MATLAB 
functions imbinarize and imcomplement, creating nuclei masks from each of the H&E and DAPI 
WSIs.

	 iii.	 Detection and extraction of SURF features from each of the H&E and DAPI nuclei masks using 
the MATLAB functions detectSURFFeatures, selectStrongest, and extractFeatures. We constrained 
the number of features selected to min(10,000, number of features detected) to reduce the compu-
tational cost of feature matching in the next step.

	 iv.	 Feature matching between the features extracted from the H&E and DAPI nuclei masks using the 
MATLAB function matchFeatures.

	 v.	 Estimation and application of the affine transformation matrix which correctly registers H&E and 
DAPI nuclei masks using the MATLAB functions estimateGeometricTransform and imwarp. The 
same transformation which correctly registers DAPI to the H&E WSI is used to register IF WSIs.

4.	 Technical noise reduction: IF WSIs are median filtered with a 5-pixel-radius disk structuring element.
5.	 Intensity normalization: H&E WSI pixel intensities are normalized as previously described50. Following 

Christiansen et al.13, IF WSI pixel intensities are normalized to have a fixed mean = 0.25 and standard devia-
tion = 0.125, then clipped to fall within (0,1).

6.	 Image tiling: WSIs are tiled into non-overlapping 256 × 256 pixel tiles, such that each H&E tile has a cor-
responding spatially-registered IF tile. H&E tiles that contained more than 50% background pixels were 
removed along with the corresponding IF tiles. Background pixels were defined as those with 8-bit RGB 
intensities all greater than 180. Each 10X WSI is comprised of hundreds or thousands of non-overlapping 
256 × 256 pixel tiles.

Feature‑guided training set selection.  Although DL approaches like SHIFT and Label-Free Determi-
nation require substantial training data to be robust and generalizable, due to resource constraints we hope that 
a small number of paired H&E and IF image samples is required for model training. Typically, archival WSIs 
of H&E-stained tissue sections exist on-hand for each sample, which allows for the screening of samples to 
identify the minimal number of samples that maximally represent the morphological spectrum of the disease 
being considered. Recent studies demonstrate that DL systems are well-suited for image retrieval tasks in digital 
pathology19,20, wherein a pathologist submits a query image or region of interest and the DL system returns 
similar images based on their DL-defined feature representations. We seek to solve the inverse task of hetero-
geneous training set selection in digital pathology, though our approach could be extended to any data-limited 
biomedical imaging domain.

Since PDAC is a morphologically heterogeneous disease, building a representative training set is crucial to 
the design of a model that will generalize across heterogeneous biopsy samples after deployment. In order to 
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minimize the required resources for acquiring paired H&E and IF images but still cover a broad spectrum of 
heterogeneous morphological features in the selected H&E samples, we propose a clustering method to learn a 
heterogeneous representation of H&E sample images. To assess the morphological features of each sample, we 
use a variational autoencoder (VAE)22 to extract 16-dimensional feature vectors from each H&E tile to establish 
comparisons between samples. Since texture and morphological features on H&E tiles in each cluster of samples 
will be comparatively more similar than those of the other cluster, we only select representative H&E samples 
from each cluster for our training dataset. We also tried using other feature vector sizes for representation learn-
ing, e.g. 2, 4, 8, 32, but found that a feature vector size of 16 yielded the lowest reconstruction losses.

For example, if there are four samples being considered for IF staining, but resources limit the number of 
samples that can be stained to two, a decision must be made about which samples should be selected. For the four 
samples, we aggregate their archival H&E WSIs, extract features from H&E tiles for each sample using a VAE, 
and quantitatively determine the samples needed to maximally cover the feature space over which the H&E tile 
set is distributed. By screening and selecting samples in this data-driven fashion, we exclude homogeneous or 
redundant samples that would not contribute to model generalizability. This maximizes model performance by 
ensuring that our training dataset is representative of the disease being modeled, thus minimizing cost through 
the selection of the fewest samples required to do so. Perhaps more importantly, when we fail to generate reliable 
virtual IF images for certain tissue samples or IF markers, this framework will be useful to examine whether 
or not their morphological features are well presented in the training dataset, which can guide how we select 
additional samples when updating our dataset.

To identify the sequence of samples that should be selected, we adapt an information-theoretic sample selec-
tion algorithm24 which is more capable of generating representative subsets of data with imbalanced features 
than other classical algorithms used for sample selection, like maximum coverage51 or k-medoid clustering52. 
The algorithm is parameterized using the following notation:

Parameter Description

X Complete tile set of all samples,X = {x1, x2, . . . , xn}

xi Single tile,xi ∈ X

Xi Subset of X corresponding to the i  th sample,Xi ⊂ X

F
Complete VAE-learned feature 
set,F =

{

f1, f2, . . . , fm
}

fi Single feature, fi ∈ F

A Random variable defined over F

T Random variable defined over X

We begin with a tiles ✕ features table, where we set m = 16 for our experiments:

f1 f2 … fm

x1 − 1.64266 1.36952 … 1.23509

x2 − 0.792104 − 0.481497 … 1.07938

… … … … …

xn 0.00163981 − 0.0162441 … -0.95883

We normalize across rows of the table, such that each tile is now represented as a probability distribution 
over the feature domain:

f1 f2 … fm Sum

x1 0.00418311 0.0850498 … 0.0743519 1

x2 0.0148384 0.0202433 … 0.0964193 1

… … … … … 1

xn 0.0208721 0.0205021 … 0.00798802 1

We define the random variables T and A over tile domain X and the feature domain F , respectively, such that 

P(A = f1|T = x1) = 0.418311 , P(A = f2|T = x2) = 0.0202433 . , and so on. With this conditional probability 

table, we can define probability distributions each subset Xi : P(A|Xi) =
1

|Xi |

∑

x∈Xi

P(A|x). To measure the repre-

sentativeness of sample Xi to the full dataset X , we compute the Kullback–Leibler (KL) divergence between 

P(A|Xi) and P(A|X) : KL(P(A|Xi)||P(A|X)) =
∑

f ∈F

P
(

f |Xi

)

log
P(f |Xi)
P(f |X) . We then weight this divergence by the pro-

portion of X that Xi comprises,|Xi |
|X|  , to prioritize subsets that contribute many tiles to X . We define the single most 

representative sample as X̂1 = minXi⊂X

(

|X|
|Xi |

KL(P(A|Xi)||P(A|X))
)

, the most representative duo of samples as 

X̂2 = X̂1 +minXi⊂X−X̂1,

(

|X|
|Xi |

KL
(

P(A|Xi + X̂1)||P(A|X)
))

, the most representative trio of samples as 
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X̂3 = X̂2 +minXi⊂X−X̂2,

(

|X|
|Xi |

KL
(

P(A|Xi + X̂2)||P(A|X)
))

, and so on. In this way, we define the sequence of 

samples that should be chosen to optimally increase the representativeness of the training set.

Model architectures.  Conditional generative adversarial networks.  Image-to-image translation—the 
mapping of pixels from one scene representation to pixels of another representation of the same scene—is a 
fundamental image processing problem. Conditional generative adversarial networks (cGANs)53,54 are a com-
pelling deep learning-based solution to the image-to-image translation problem which have been deployed for 
many tasks, including detection of skin lesions16, retinal image synthesis17, super-resolution fluorescence image 
reconstruction55, and virtual H&E staining10. To approach the problem of translating H&E images to their IF 
counterparts, SHIFT adopts the cGAN-driven architecture pix2pix25, which benefits from its bipartite formula-
tion of generator and discriminator. Like other methods proposed for image-to-image translation, cGANs learn 
a functional mapping from input images x to ground truth target images y , but, unique to a cGAN architecture, 
it is the task of a generator network G to generate images ŷ conditioned on x , i.e. G(x) = ŷ, that fool an adversarial 
discriminator network D , which is in turn trained to tell the difference between real and generated images. What 
ensues from this two-network duel is a G that generates realistic images that are difficult to distinguish from real 
images, some GAN-generated images being sufficiently realistic to be considered as a proxy for the ground truth 
when labeled data are scarce or prohibitively expensive. Concretely, the cGAN objective is posed as a binary 
cross-entropy loss:

where G seeks to minimize the objective and thus minimize the distinguishability of generated and real images, 
while D seeks the opposite. In addition to the task of fooling D , G is also encouraged to generate images that 
resemble real images through incorporation of an L1 reconstruction loss term:

The full cGAN objective is:

where the L1 tuning parameter λ = 100 is adapted according to the IF stain prevalence in the current batch of IF 
tiles15 i.e. if 50% of the pixels in the current batch of IF tiles are positively stained above the mean intensity of 
the WSI, then λ  = 100 × 0.5 = 50. Training data consist of spatially registered pairs of H&E image tiles (x) and IF 
image tiles (y), while the test data consist of H&E and IF image pairs withheld from the training data. Models 
were trained using the Adam optimizer with a learning rate of 0.002 for 500 epochs. Training batch sizes were set 
to 64. The first layers of both the generator and discriminator networks were 128 filters deep (see Supplementary 
Fig. S2 for additional architectural details). Models were trained and tested using a single NVIDIA V100 graph-
ics processing unit (GPU). Once trained, models were capable of processing a 10X (0.44 microns/pixel) H&E 
image tile containing 256 × 256 pixels into its corresponding virtual IF tile in 10 microseconds, corresponding 
to a virtual staining rate of 22 mm2 tissue per second, or approximately one virtual IF WSI generated per 20 s. 
Full model details are available at https​://gitla​b.com/eburl​ing/shift​/.

Variational autoencoders.
The VAE architecture22 is designed to elucidate salient features of data in a data-driven and unsupervised 

manner. A VAE model seeks to train a pair of complementary networks: an encoder network θ that seeks to 
model an input xi as a hidden latent representation zi, and a decoder network ϕ that seeks to reconstitute xi from 
its latent representation zi. The VAE cost function shown below penalizes model training with an additional 
Kullback–Leibler (KL) divergence term that works to conform the distribution of z with respect to a given prior, 
which in our case is the standard normal distribution:

where

By specifying a latent dimension z less than the input dimension of x, a VAE model learns a pair of optimal 
encoding and decoding functions that enable reconstruction of an input sample subject to capacity constraints 
of the latent feature space within the model. In general, this formulation learns encoding functions that compress 
the information content in the high-dimensional input into a low-dimensional embedding space that learns 
dataset features sufficient to reconstitute the original input sample while preserving an expected distribution 
over the learned features. This interpretation enables a specified selection criteria function designed to sample 
whole slide images whose constituent tiles maximally cover the entire learned feature space with a minimal 
number of samples.

Model ensembles.  In addition to testing the ability of independent SHIFT and LFD models to generate virtual 
IF images, we also tested model ensembles. Ensemble images were generated by simply averaging the virtual IF 
image outputs of SHIFT and LFD models trained to generate the same stain using the same training set.

LcGAN(G,D) = Ex,y∼pdata(x,y)

[

logD
(

x, y
)]

+ Ex∼pdata(x)

[

log (1− D(x,G(x)))
]

LL1(G) = Ex,y∼pdata(x,y)

[

y − G(x)1
]

G∗ = argmin
G

max
D

LcGAN(G,D)+ �LL1(G)

Li(xi , θ ,φ) = −Ez∼qθ (z|xi)

[

log pφ(xi|z)
]

+ KL
(

qθ (z|xi)p(z)
)

p(z) = N (0, 1)

https://gitlab.com/eburling/shift/
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Imaging data augmentation.  To boost the effective number of images in our training sets and improve model 
robustness against expected types of technical noise, we apply image augmentations to each image in each train-
ing batch using the Python library imgaug40. We apply Gaussian blur, flipping, affine geometric transformation, 
Gaussian noise, Poisson noise, rotation, and add to hue and saturation in each channel. The implementation of 
our imaging data augmentation can be viewed at https​://gitla​b.com/eburl​ing/shift​.

Image processing in figures.  The IF images in Fig. 1 are contrast enhanced by saturating the top 1% and bottom 
1% of pixel intensities. All other images are processed as described in the image pre-processing section above.

Quantification and statistical analysis.  Image comparisons.  To compare real and virtual IF images, 
we measure their structural similarity26 using the compare_ssim function implemented in the Python library 
scikit-learn44. We calculate the SSIM between 11-pixel windows of the real and virtual IF image tiles. The SSIM 
between two windows x and y is defined as:

where µx and µy are the mean intensities of x and y , σxy is the covariance of x and y , σ 2
x  and σ 2

y  are the variances of 
x and y , and c1 and c2 are stabilizing constants. The SSIM between real and virtual IF images is the SSIM averaged 
over their windows. Based on our observation that SSIM is sensitive to simulations of technical noise which are 
impossible for SHIFT models to infer (Supplementary Fig. S7), we apply Gaussian filtering to real and virtual IF 
images tiles before calculating SSIM using the gaussian function implemented in the Python library scikit-image43 
with sigma set to 3. We also measured the Pearson’s correlation coefficient between images in Supplementary 
Fig. S7 using the pearson_r function implemented in the Python library SciPy46.

Model SSIM comparisons.  The distributions of model SSIM scores were not normally distributed, as measured 
by the shapiro function, an implementation of the Shapiro–Wilk test in SciPy, so non-parametric test were 
used for comparisons of model performance. We tested for differences between SSIM scores from three models 
evaluated on the same sample subset using the friedmanchisquare function implemented in SciPy which com-
putes the non-parametric paired measures Friedman test that is commonly used to measure consistency among 
measurements on a dataset obtained from different models. If the Friedman test rejected the null hypothesis that 
there was no difference in performance between three models, we then identified the models with different per-
formance using the posthoc_nemenyi_friedman function implemented in the Python library scikit-posthocs45. 
We tested for differences between SSIM scores from two models evaluated on the same sample subset using the 
wilcoxon function implemented in SciPy. The significance level was set to α = 0.05.

Data availability
Code and data for training and inference can be found at https​://gitla​b.com/eburl​ing/shift​. Models are imple-
mented in Pytorch39. Figure generation code is implemented in Holoviews41 using the Bokeh backend42 and 
Jupyter notebooks47.
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