
ARTICLE

Variants in EXOSC9 Disrupt the RNA Exosome and Result
in Cerebellar Atrophy with Spinal Motor Neuronopathy

David T. Burns,1,15 Sandra Donkervoort,2,15 Juliane S. Müller,1,15 Ellen Knierim,3,15

Diana Bharucha-Goebel,2,4 Eissa Ali Faqeih,5 Stephanie K. Bell,6 Abdullah Y. AlFaifi,5 Dorota Monies,7

Francisca Millan,8 Kyle Retterer,8 Sarah Dyack,9 Sara MacKay,10 Susanne Morales-Gonzalez,3

Michele Giunta,1 Benjamin Munro,1 Gavin Hudson,1 Mena Scavina,11 Laura Baker,12 Tara C. Massini,13

Monkol Lek,14 Ying Hu,2 Daniel Ezzo,2 Fowzan S. AlKuraya,7 Peter B. Kang,6 Helen Griffin,1

A. Reghan Foley,2 Markus Schuelke,3,16 Rita Horvath,1,16,* and Carsten G. Bönnemann2,16

The exosome is a conserved multi-protein complex that is essential for correct RNA processing. Recessive variants in exosome compo-

nents EXOSC3, EXOSC8, and RBM7 cause various constellations of pontocerebellar hypoplasia (PCH), spinal muscular atrophy (SMA),

and central nervous system demyelination. Here, we report on four unrelated affected individuals with recessive variants in EXOSC9 and

the effect of the variants on the function of the RNA exosome in vitro in affected individuals’ fibroblasts and skeletal muscle and in vivo in

zebrafish. The clinical presentation was severe, early-onset, progressive SMA-like motor neuronopathy, cerebellar atrophy, and in one

affected individual, congenital fractures of the long bones. Three affected individuals of different ethnicity carried the homozygous

c.41T>C (p.Leu14Pro) variant, whereas one affected individual was compound heterozygous for c.41T>C (p.Leu14Pro) and

c.481C>T (p.Arg161*).We detected reduced EXOSC9 in fibroblasts and skeletal muscle and observed a reduction of the wholemulti-sub-

unit exosome complex on blue-native polyacrylamide gel electrophoresis. RNA sequencing of fibroblasts and skeletal muscle detected

significant >2-fold changes in genes involved in neuronal development and cerebellar and motor neuron degeneration, demonstrating

the widespread effect of the variants. Morpholino oligonucleotide knockdown and CRISPR/Cas9-mediated mutagenesis of exosc9 in ze-

brafish recapitulated aspects of the human phenotype, as they have in other zebrafish models of exosomal disease. Specifically, portions

of the cerebellum and hindbrain were absent, and motor neurons failed to develop and migrate properly. In summary, we show that

variants in EXOSC9 result in a neurological syndrome combining cerebellar atrophy and spinal motoneuronopathy, thus expanding

the list of human exosomopathies.
Introduction

The RNA exosome is a multi-protein complex that plays a

vital role in gene expression via processing and degrada-

tion of mRNA.1,2 The exosome is composed of nine sub-

units (EXOSC1–EXOSC9) forming a two-layered ring and

is conserved in all eukaryotes.3 EXOSC4–EXOSC9 form

the core, a hexamer channel through which the RNA

passes, and EXOSC1–EXOSC3 make up the cap of the

exosomal ring for RNA recognition and binding.4,5 The

exosome in the nucleus processes precursor RNA and

degrades precursor species, cryptic transcripts, and un-

spliced RNAs,6–11 whereas in the cytoplasm, the exosome

degrades defective transcripts that have evaded nuclear

degradation and AU-rich element-containing mRNAs

(AREs).12 Exosomal RNA degradation proceeds in the 30-
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to-50 direction and is associated with other proteins, such

as EXOSC10, for catalytic activity and the nuclear exosome

targeting (NEXT) complex, which binds and delivers some

specific non-coding RNAs to the exosome for degrada-

tion.13–15

Recessive variants in EXOSC3 (MIM: 606489) and

EXOSC8 (MIM: 606019), encoding EXOSC3 and EXOSC8,

respectively, of the human exosome, cause pontocerebellar

hypoplasia type 1 (PCH1) of variable severity with spinal

muscular atrophy (SMA) and hypomyelination of the

central nervous system (CNS).16,17 EXOSC3 variants ac-

count for about 40% of PCH1 cases worldwide,18 suggest-

ing further genetic heterogeneity. On the other hand,

EXOSC8 variants seem to be much less frequent, given

that despite screening of EXOSC8 variants in large PCH1

cohorts, only one report on two EXOSC8 variants has
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been published to date,17 leaving over 50% of PCH1 cases

still unsolved. We have recently reported an individual

who is affected by SMA without complex CNS involve-

ment and who carries a homozygous variant in RBM7

(MIM: 612413), which is a component of the NEXT com-

plex and has been shown to interact with the exosome

directly.19 The RBM7 variant led to a reduction in the

steady-state levels of the exosome complex proteins and

subsequently caused abnormal mRNA metabolism, result-

ing in aberrant gene expression and splicing or degrada-

tion of several coding and non-coding RNA species, which

might explain the complex neuronal abnormalities similar

to the primary exosomal conditions. Morpholino knock-

down of either exosc3, exosc8, or rbm7 in zebrafish results

in developmental delay with defects in the motor neurons

and cerebellum,19 affecting neuronal systems similar to

those in affected individuals. Thus, the zebrafish is a useful

model for the elucidation of rare exosomal protein

diseases.

Here, we present four unrelated individuals who are

affected by a disorder closely related to PCH1 and

who carry autosomal-recessive causative variants in

EXOSC9. We report further insights into the pathome-

chanism of exosomal disease in human cells as well

as in CRISPR/Cas9 and morpholino oligonucleotide ze-

brafish models.
Material and Methods

Recruitment and Sample Collection
Four unrelated affected individuals were included in this study.

Written informed consent for study procedures and photographs

was obtained by a qualified investigator (protocol 12-N-0095

approved by the National Institute of Neurological Disorders and

Stroke, National Institutes of Health; Charité institutional-review-

board approval EA2/107/14; King Faisal Specialist Hospital &

Research Center research advisory council no. 2121053; protocol

201400469 approved by the University of Florida).Medical history

was obtained and clinical evaluation and muscle biopsy were per-

formed as part of the standard neurologic evaluation. DNA, mus-

cle, and skin biopsy samples were obtained according to standard

procedures. Affected individuals 3:II-1 and 4:II-1 were identified

through GeneMatcher.20
Homozygosity Mapping, Exome Sequencing, and

Haplotype Analysis
Chromosomal microarray analysis was performed in affected

individual 1:II-1 with both copy-number and single-nucleotide

polymorphism (SNP) probes on a whole-genome array (Affymetrix

CytoScan HD platform). Exome sequencing was performed on

genomic DNA extracted from blood (affected individual 1:II-1)

and saliva (affected individual 1:II-1 parents). Trio exome

sequencing was performed through the NIH Intramural

Sequencing Center with the Nimblegen SeqCap EZ ExomeþUTR

Library and Illumina HiSeq 2500 sequencing instruments. Vari-

ants were analyzed with Varsifter and searched for in dbSNP, the

National Heart, Lung, and Blood Institute Exome Variant Server,

and the Exome Aggregation Consortium (ExAC) Browser.21,22
The Ame
The EXOSC9 variant was confirmed by Sanger sequencing in

affected individual 1:II-1 and her parents.

Exonic sequences from affected individual 2:II-1 were enriched

with the SureSelect V5 Human All Exon Kit (Agilent) and

sequenced on a HiSeq 2000 machine (Illumina) as 101 bp

paired-end fragments. FASTQ files were aligned to the human

GRCh37.p11(UCSC Genome Browser hg19) reference sequence

with the Burrows-Wheeler Aligner (BWA-MEM) v0.7.1.23 Subse-

quently, variant VCF files were generated for all exons 5 20 bp

flanking regions with the Genome Analysis Toolkit (GATK) v3.8

software package24 and sent to the MutationTaster2 software for

assessment of potential pathogenicity.25 Variants were filtered

for a recessive model and removed if they occurred in the homo-

zygous state either in the ExAC Browser in >20 cases or in the

1000 Genomes Project in >10 cases. All relevant variants were in-

spected visually with the Integrative Genomics Viewer (IGV), and

their segregation was verified by Sanger sequencing with gene-spe-

cific oligonucleotide primers and the BigDye (Applied Biosystems)

protocol on an ABI3500 Genetic Analyzer (ThermoFisher Scienti-

fic). For verification of the EXOSC9 c.41T>C (p.Leu14Pro) and

the c.481C>T (p.Arg161*) variants (GenBank: NG_029848.1) we

analyzed the PCR-products generated with the oligonucleotide

primer pairs 50-gcccaagccatttcccattt-30 (forward) and 50-tcagt
ccacaccttgagacc-30 (reverse) and 50-cctgataaatagccactggttgt-30 (for-
ward) and 50-tcctggttcacataggagct-30 (reverse).
Whole-exome sequencing (WES) was performed in affected in-

dividual 3:II-1 with an Agilent SureSelect All Exons V5 (50 Mb)

capture kit (Agilent Technologies) for library preparation. An Illu-

mina HiSeq 2500 (Illumina) was used for paired-end 100 bp

sequencing. Sequence alignment, indexing of the reference

genome (hg19), variant calling, and annotation used a pipeline

based on BWA, SAMtools, GATK (see Web Resources), and

ANNOVAR. Variants were annotated with a combination of public

knowledge databases available from the ANNOVAR package and

in-house databases, which included collections of previously pub-

lished Saudi disease-causing variants. Variants were interpreted

with a previously described in-house variant interpretation pipe-

line.26 The EXOSC9 variant was confirmed by Sanger sequencing

in affected individual 3:II-1 and her parents.

Lastly, with genomic DNA from affected individual 4:II-1, the

exonic regions and flanking splice junctions of the genome

were captured with the IDT xGen Exome Research Panel v1.0.

Massively parallel (NextGen) sequencing was done on an Illumina

systemwith 100 bp or greater paired-end reads. Reads were aligned

to human genome build hg19 (UCSC Genome Browser) and

analyzed for sequence variants with a custom-developed analysis

tool. Additional sequencing technology and a variant interpreta-

tion protocol have been previously described.27 The general asser-

tion criteria for variant classification are publicly available on the

GeneDx ClinVar submission page.

Haplotype analysis was determined by the identification of

shared regions of homozygous variants from each of the affected

individuals with the homozygous EXOSC9 variant at chr4:

122,722,620. Only variants that were called as high confidence

by their respective pipelines were included for analysis, and

regardless of pipeline, only non-indel SNVs with at least 103

coverage were considered. Specifically, the largest extent of the

shared runs of homozygosity (ROH) haplotype was determined

by extending the ROHs from the variant in each direction until

the first high-confidence heterozygote. The region was then

trimmed back from those outer boundaries to the first high-confi-

dence shared homozygote.We then intersected the three resulting
rican Journal of Human Genetics 102, 858–873, May 3, 2018 859



regions to determine the shared haplotype. To further assess

possible shared ancestry, we performed principal-component

analysis (PCA) and k-nearest neighbor (knn) classification on

exome SNPs from the four individuals against random representa-

tive samples from the 1000 Genomes Project phase 3 super-popu-

lations plus a GeneDx-sequenced Middle Eastern population as

previously described by Lake et al.28

Cell Culture
Fibroblasts of affected individuals carrying the homozygous

c.41T>C in EXOSC9 (individual 1:II-1), the homozygous c.5C>T

in EXOSC8,17 the homozygous c.92G>C in EXOSC3,29 homozy-

gous c.236C > G in RBM7,19 and controls were grown in

high-glucose Dulbecco’s modified Eagle’s medium (Sigma) supple-

mented with 10% fetal bovine serum and 1% penicillin and

streptomycin.

Immunoblotting
Aliquots of total protein (30 mg) were loaded on 4%–12% SDS-

polyacrylamide gels (NuPAGE 4%–12% Bis-Tris Protein Gels,

ThermoFisher Scientific), transferred to a PVDF membrane with

an iBlot2 PVDF Mini transfer stack (ThermoFisher Scientific),

and subsequently probed with a polyclonal antibody recognizing

EXOSC8 (Proteintech, 1:500), EXOSC3 (Proteintech, 1:1,000),

EXOSC9 (Abcam ab156686, 1:1,000), RBM7 (Abcam ab84116,

1:500), b-actin (Sigma A1978, 1:2,000), and a-tubulin (Invitrogen

A11126, 1:2,000).

Blue Native Polyacrylamide Gel Electrophoresis

(BN-PAGE)
The BN-PAGE procedure for detecting the exosome complex has

been adapted from Fasken et al.30 Fibroblast pellets were re-sus-

pended in cold BN-PAGE lysis buffer (10 mM Tris-HCl [pH 8];

150 mM NaCl; 0.1% NP40, supplemented with protease inhibi-

tors) and lysed on ice for 30 min. Lysates were centrifuged at

17,0003 g for 10 min, and 50–100 mg total protein of the superna-

tant was loaded on pre-cast BN-PAGE gels. NativePAGE Novex

3–12% Bis-Tris Protein Gels, NativePAGE Running Buffer, Cathode

Buffer Additive, 43 Sample Buffer, and 5% G-250 Sample Additive

(all ThermoFisher Scientific) were utilized for electrophoresis.

Transfer and antibody detection were performed as described

above.

RNA Isolation, RT-PCR, and RNA Sequencing in Affected

Individuals’ Fibroblasts and Muscle Samples
A BGI SEQ-500 SE50 sequencing library was prepared from total

muscle RNA and sequenced at a depth of 60 Mio paired-end frag-

ments on a SEQ-500 machine.31 Total RNA was isolated in tripli-

cate from primary fibroblast cell lines using the mirVana miRNA

Isolation Kit (Ambion) and DNAse treated with the DNA-free

DNA Removal Kit (Ambion). RNA sequencing (RNA-seq) libraries

were prepared with Illumina TruSeq Stranded polyA enriched

RNA with Ribo-Zero Human kit and were sequenced on an

Illumina HiSeq 2500 platform according to paired-end protocol.

Control muscle RNA sequences were obtained as described

previously.32 The quality of sequencing reads was checked with

FastQC. Reads were aligned with the STAR (v2.5.2b) aligner and

the two-pass protocol that is outlined in GATK documentation.

Number of reads mapped to Ensembl GRCh38 v86 genes was

counted with HTSeq-count.33 Differentially expressed genes be-

tween affected and control individuals were identified with Bio-
860 The American Journal of Human Genetics 102, 858–873, May 3,
nconductor package DESeq2.34 Genes with a false-discovery

rate % 0.1 and a log2 fold change R 1 were considered differen-

tially expressed. Gene-set enrichment analysis for gene ontology

terms was performed with the ConsensusPathDB (CPDB) web

tool.

Zebrafish Strains and Husbandry
All zebrafish used in this study were the golden strain, except where

transgenic Islet1:GFP zebrafish were used for imaging motor neu-

rons as described by Westerfield et al.35 All procedures carried out

on zebrafish were regulated by the UK Home Office.

sgRNA Synthesis
Crisprscan36 was used to identify a target site in exon 3 of exosc9 in

zebrafish. Single guide RNA (sgRNA) was produced as described

elsewhere.37 An oligonucleotide with a T7 promoter, exosc9 target

sequence, and a complementary sequence (30-taatacgactcacta
taGGGGGGCGTGAATCTTTTGGgttttagagctagaa-50) was annealed

to a bottom strand ‘‘ultramer’’ oligo (30-AAAAGCACCGACTCG

GTGCCACTTTTTCAAGTTGATAACGG ACTAGCCTTATTTTAACT

TGCTATTTCTAGCTCTAAAAC-50) in a thermocycler, and exten-

sion of the oligonucleotides was catalyzed by DNA polymerase

(MyTaq) to form the template oligonucleotide for sgRNA synthe-

sis.38 The sgRNA template oligonucleotide was purified with a Qia-

gen PCR Purification Kit. sgRNA was synthesized from the sgRNA

oligonucleotide template with the MEGAshortscript T7 Kit (Am-

bion), purified with the mirVana RNA Isolation Kit (ThermoFisher

Scientific), and stored at �80�C until required for injection.

Injection of Morpholino and sgRNA and Cas9
A splice-blocking morpholino for the boundary between intron 1

and exon 2 of zebrafish exosc9 was used (Genetools, 30-actttatctgtg
taccgttttgtagCGCTTAGATGGGAGACAGACATACG-50). Before in-

jection, the morpholino and sgRNA was prepared. The sgRNA

was diluted to 300 ng/mL with 2 mM Cas9 protein (NEB), 2M

KCl, and 0.05% phenol red and heated to 37�C for 5 min. The

morpholino was diluted in Danieau solution (0.4 mM MgSO4,

58 mM NaCl, 0.7 mM KCl, 5 mM HEPES, 0.6 mM Ca[NO3]2
[pH 7.6]) with phenol red and was heated to 65�C for 5 min.39

Freshly laid embryos were injected up until the two-cell stage

with 1 nL of morpholino (20 ng) or 1 nL of guide RNA (gRNA).

At least three clutches of embryos from different parents were

used for each experiment.

RNA Isolation and RT-PCR in Zebrafish Embryos
Trizol (ThermoFisher Scientific) was used to isolate RNA from ze-

brafish embryos according to the manufacturer’s instructions.

Approximately 30 embryos for each experimental group were

pooled for RNA isolation. The SuperScript III First-Strand Syn-

thesis System (ThermoFisher Scientific) was used to produce

cDNA from the isolated RNA according to the manufacturer’s

instructions. RT-PCR was performed with the primers listed in

Table S1.

Genomic DNA Extraction and PCR in Zebrafish Embryos
Genomic DNA was extracted from single embryos with the

‘‘hotSHOT’’ technique.40 Embryos were lysed in 20 mL of 50 mM

NaOH (Sigma-Aldrich) for 30 min at 95�C during periodic vortex-

ing. The lysate was then neutralized with 20 mL 100 mM Tris-HCl

(Sigma-Aldrich). PCR was then performed on the lysates with the

primers listed in Table S1.
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Figure 1. Clinical Presentation and Pedigrees
(A) Clinical photos of affected individual 1:II-1. She had multiple joint contractures. Hands were fisted with thumbs adducted, and feet
were maintained in an extended cavo-varus position.
(B) Segregation of the EXOSC9 sequence variants in the four pedigrees.
(C) Electropherograms of the EXOSC9 sequence variants identified in this study.
Cloning and Sequencing of Crispant Zebrafish Embryos
Crispant embryos would be expected to be mosaic. To confirm

that the mutation had occurred and to get a rate of mutagenesis,

we cloned the heterogeneous PCR products from individual em-

bryos into a vector so that individual mutations could be

sequenced. The PCR products were ligated into the pGEM-T

easy vector (Promega) according to the manufacturer’s instruc-

tions. JM109 High Efficiency Competent Cells (Promega) were

transformed with the ligated plasmid and plated on ampicillin

resistant agar plates. Plates were incubated at 37�C overnight. Col-

ony PCR was then performed on plasmids with standard pUC/

M13 primers (Eurofins, Table S1). PCR products were sequenced

subsequently.

Whole-Mount Immunofluorescence in Zebrafish

Embryos
Zebrafish embryos were fixed overnight at 4�C in 4% parafor-

maldehyde in phosphate-buffered saline (PBS). If embryos

were still in their chorion, they were dechorionated with

pronase (Sigma-Aldrich) before fixation. Embryos were washed

in PBS plus 0.1% Tween 20 (PBT, Sigma-Aldrich) and then per-

meabilized with acetone for 7 min at �20�C. If embryos were

older than 48 hr post-fertilization (hpf), they were also permea-

bilized with collagenase (Roche) for 90 min. Embryos were then

blocked in blocking solution (5% horse serum in PBT) for 1 hr.

Embryos were incubated in the primary antibodies diluted in

the blocking solution (SV-2, 1:200, Developmental Studies

Hybridoma Bank; HuC, 5 mg/mL, ThermoFisher) overnight at

4�C. After being washed with PBT, embryos were incubated

with secondary antibodies (anti-mouse Alexa Fluor 488 or
The Ame
anti-rabbit Alexa Fluor 594, Invitrogen) and diluted in blocking

solution for 1 hr. Phalloidin and a-bungarotoxin (ThermoFisher

Scientific) were conjugated to Alexa Fluor 594 and did not

require any secondary antibodies. Immunofluorescent images

were captured with a Nikon A1R confocal microscope with

NIS-Elements software.
Results

Clinical Presentation

Individual 1:II-1 is a 28-month-old female of El Salvador-

ian descent (Figure 1; Video S1). Pregnancy was notable

for reduced fetal movements. She was born at term by

spontaneous vaginal delivery. Birth weight was 2.98 kg

(10th–25th percentile), and length was 48 cm (25th percen-

tile). There were no concerns regarding feeding or breathing

in the neonatal period, and movements of the extremities

were reported as normal. As an infant, she was noted to

have poor head control and a soft cry. She was found to

have congenital esotropia, which was managed with botu-

linum toxin A injection. By 8 months of age, she had

increasing difficulty with lifting her arms and legs against

gravity. Her strength declined further, which was exacer-

bated by periods of illness. By 9 months of age, she had

lost the ability to vocalize. She rolled from back to side

briefly but subsequently lost this skill. She had normal

neonatal growth; however, by 21 months of age, her
rican Journal of Human Genetics 102, 858–873, May 3, 2018 861
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Figure 2. Radiographic Studies
(A) Axial and sagittal T1-weighted images of the brain from affected individual 1:II-1 at 7 months (top) and 21 months (bottom) of age
show moderate cerebellar predominant volume loss, which appears mildly progressive between the two exams, as well as mild cerebral
atrophy with resultant enlargement of the ventricles. There is no brainstem atrophy.
(B) Sagittal T1- and coronal T2-weighted images of the brain from affected individual 2:II-1 at 6 days of age show severe cerebellar and
moderate cerebral and brainstem atrophy. A radiograph of the right leg also shows a mid-femoral fracture.
(C) Two axial CT images of the brain from affected individual 3:II-1 at 9 months of age showmild prominence of the sulci and ventricles
reflecting mild atrophy both above and below the tentorium.
(D) Sagittal T1-weighted images of the brain from affected individual 4:II-1 at 6 months and 12 months of age show slightly progressive
moderate cerebellar and cerebral atrophy. The brainstem is relatively spared.
weight, height, and head circumference were all below the

third percentile. She had a history of recurrent pulmonary

infections requiring hospitalizations, and nighttime non-

invasive ventilation in the form of bilevel positive airway

pressure (BiPAP) was initiated at 20 months of age. Exami-

nation at the age of 28 months revealed a high-arched pal-

ate and tongue fasciculations. Extraocular movements were

full but were notable for broken pursuits and gaze-evoked

nystagmus in horizontal and vertical directions. Although

there was a tendency for downward deviation of the eyes,

upward gaze was also observed. Occasional oromotor dyski-

nesia was noted on examination. She had severe axial and

appendicular hypotonia and profound weakness, causing

her to require full head support. She had no antigravity

movements proximally in the upper and lower extremities.

Wrist extension was antigravity at 3/5 (Medical Research

Council-grade), whereas elbow flexion, knee extension,
862 The American Journal of Human Genetics 102, 858–873, May 3,
and finger extension were 2/5. Facial strength was relatively

spared. Sensation appeared to be normal. Reflexes were ab-

sent throughout. Plantar response was flexor bilaterally.

There were multiple joint contractures (Figure 1A). Hands

were fisted with thumbs adducted, and feet were main-

tained in a cavo-varus position (Video S1).

Electromyography (EMG) and nerve conduction

responses were consistent with an axonal motor neuron-

opathy. Muscle ultrasound revealed a pronounced streak-

like and mixed increase in echogenicity with widespread

evidence of active fasciculations, consistent with advanced

neurogenic changes in the muscle in a non-length-

dependent manner. Brain MRI performed at the age of

7 months revealed mild cerebellar atrophy with a

normal-appearing pons and no significant abnormalities

of the cerebral white matter or the basal ganglia

(Figure 2A). A repeat brain MRI at 21 months of age
2018



revealed a mild progression of the cerebellar atrophy

(Figure 2A). Muscle biopsy performed at 15 months of

age demonstrated abundant, very small fibers, often in

groups and intermixed with hypertrophic fibers, consis-

tent with denervation and thus suggestive of a neurogenic

process. Lysosomal enzymes, plasma amino acids, carbo-

hydrate transferrin, coenzyme Q10, and plasma lactate

levels were normal. No seizures have been observed, and

a routine electroencephalogram (EEG) performed at

5 months of age did not reveal any epileptiform activity.

Family history was non-contributory, and the family

denied known consanguinity. Extensive genetic testing

for congenital muscle diseases, neuronal ceroid-

lipofuscinoses, and SMN1 were negative.

Individual 2:II-1 was the first child of non-consanguin-

eous, healthy parents of African-Canadian and Jamaican

descent (Figure 1B). During pregnancy, reduced fetal

movements, growth retardation, and oligohydramnios

were noted. He was born at term with several congenital

fractures, including fractures of the bilateral femurs and

one fracture of the humerus (Figure 2B). Examination

findings were consistent with arthrogryposis multiplex

congenita with hip and hand involvement, severe

hypotonia, and respiratory insufficiency. Dysmorphic fea-

tures, including hypertelorism, prominent epicanthic

folds, low-set ears, prominent lips, and a short neck,

were noted. Sclerae were described as blueish, and skin ap-

peared redundant. As a result of swallowing difficulties,

he required gastric-tube feeding. Brain MRI performed

at 1 week of age showed cerebellar atrophy, generalized

cerebral atrophy, and possibly delayed myelination

(Figure 2B). Muscle biopsy findings, including fiber-type

grouping, grouped fiber atrophy, and type 1 fiber hyper-

trophy, were suggestive of a motor neuronopathy. EMG

was not performed. Genetic testing for deletions in

SMN1 and an SMA-related gene panel were negative.

Chromosomal microarray analysis, methylation analysis

for Prader-Willi syndrome, myotonic dystrophy testing,

and metabolic screening were also negative. Individual 2

died of respiratory failure at the age of 15 months.

Individual 3:II-1 is a 4.5-year-old female born to

consanguineous parents of Saudi-Arabian descent. She

was noted at birth to have hypotonia, a poor cry, and

difficulties with feeding. Subsequently, she was diag-

nosed with microcephaly and failure to thrive, and she

was noted to have severe developmental delay. At the

age of 5 months she was noted to have seizures, which

were partially controlled by anti-epileptic drugs. Clinical

examination at the age of 18 months showed minor

dysmorphic facial features. She was unable to visually

track objects. She was not vocalizing and appeared to

have receptive language difficulties. There was axial

hypotonia, generalized weakness of the upper and lower

limbs, and an apparent increased tone of the extremities

with evidence of exaggerated deep tendon reflexes.

She underwent brain imaging (computed tomography

[CT]), which revealed minimal cortical atrophy
The Ame
(Figure 2C). Family history is significant for an older sis-

ter who died at the age of 8 years and who reportedly

manifested severe spasticity and epilepsy. DNA from

the sister was unavailable for diagnostic testing. Routine

biochemistry, renal profile, total creatine phosphoki-

nase, ammonia, plasma amino acids, very-long-chain

fatty acids, and urine for organic acids were normal.

Chromosomal microarray was normal. EMG and muscle

biopsy were not performed.

Individual 4:II-1 is a 19-month-old female born to non-

consanguineous parents of African, European and Filipino

ancestry. Pregnancy was uncomplicated, and delivery was

induced at 40þ weeks. She was born via Caesarean section

with vacuum assistance because of fetal distress. Birth

weight was 2.81 kg. She was found to have mild jaundice

and congenital nystagmus. At 2 weeks of age she was noted

to have poor head control and a weak cry. She had exces-

sive oral secretions and difficulty with clearing her airway.

Over time, her head control slowly improved. She started

to visually track and follow at the age of 6–7 months.

Her weight gain had stagnated between 6 and 12 months,

but by 19 months her weight was above the 50th percen-

tile. Her length had been between the 25th and 75th per-

centiles and her head circumference between the 10th

and 25th percentiles. On examination at the age of

12 months she was found to have a moderately high-

arched palate and a weak cry. Extraocular movements

were full, but she had a recurrent intermittent horizontal

nystagmus. She had diffuse hypotonia and weakness

with poor truncal control, requiring head support. She

was unable to sit and reach for objects. Her muscles were

atrophic, and she had minimal antigravity movements in

all extremities. Sensation appeared to be normal. Reflexes

were 2þ in upper extremities, 1þ at the patellae, and ab-

sent at ankles. Plantar response was flexor.

EMG was suggestive of a motor neuropathy or motor

neuronopathy. Brain MRI at the age of 6 months showed

cerebellar atrophy but a normal-appearing pons. Repeat

brain MRI at 12 months revealed a slight progression of

the cerebellar atrophy (Figure 2D). Muscle biopsy was sug-

gestive of neurogenic atrophywith fiber-type grouping. Su-

ral nerve biopsy was normal. EEG studies performed on

multiple occasions were mostly read as normal, though

one earlier study was interpreted as showing myoclonic

discharges. Creatine kinase was borderline at 147 U/L

(reference range < 143 U/L). Cerebrospinal fluid studies

for neurotransmitters were normal. Extensive genetic

testing, including a chromosomal microarray, Prader-Willi

methylation testing, SMN1 deletion testing, IGHMBP2

sequencing, and a neuromuscular disorder gene panel,

was negative.

The clinical presentation seen in these four unrelated

affected individuals of early-onset, rapidly progressive

weakness and respiratory impairment combined with the

presence of cerebellar atrophy and a motor neuronopathy

suggests a condition along the PCH1-related disease

spectrum.
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Identification of EXOSC9 Variants

SNP array testing in individual 1:II-1 revealed one isolated

long contiguous stretch of homozygosity of approximately

14.0 Mb on chromosome 4 (117,649,360–131,644,865).

Exome sequencing identified a rare homozygous variant,

c.41T>C (p.Leu14Pro), in EXOSC9 (MIM: 606180;

GenBank: NG_029848.1) within the region of homo-

zygosity. This mutation is predicted to cause a disruption

in the first alpha helix of EXOSC9.41 The parents of

individual 1:II-1 were found to be heterozygous for

the variant, consistent with autosomal-recessive inheri-

tance (Figure 1B). The variant is a rare SNP (dbSNP:

rs139632595) and has been reported six times in heterozy-

gous state in the ExAC Browser in individuals from African

descent with an allele frequency of 4.947 3 10�5. This

variant was neither reported in individuals from Hispanic

descent nor found in a homozygous state.

WES of individual 2:II-1 revealed the same c.41T>C

variant as in individual 1:II-1 in compound heterozygosity

with a EXOSC9 c.481C>T variant that leads to a premature

stop of the protein (p.Arg161*). The c.481C>T variant was

listed three times in the ExAC Browser in the heterozygous

state. To exclude variants in genes that are known to be

associated with either SMA or withmuscle diseases, we spe-

cifically screened the variant VCF files for variants therein

but found none. Sanger sequencing confirmed compound

heterozygosity (Figure 1).

Individuals 3:II-1 and 4:II-1 were subsequently identified

to carry the same EXOSC9 c.41T>C in homozygosity.

Haplotype Analysis

The shared haplotype analysis revealed a common haplo-

type of 800 kb at approximately chr4: 122,400,000–

123,200,000, encompassing ANXA5, TMEM155, EXOSC9,

BBS7, TRPC3, and KIAA1109. The largest homozygous

block was identified in individual 1:II-1 and extended

approximately 11 Mb, whereas the other two homozy-

gotes, individuals 3:II-1 and 4:II-1, showed ROHs of

only approximately 1 Mb. Our common haplotype was

estimated at 800 kb. Using the approximation given

by Ying et al.,42 we can estimate a common ancestor

approximately 125 generations ago. The results of

ancestry PCA are consistent with self-reported ethnic-

ities. Although these self-reported ethnicities are superfi-

cially divergent, PCA shows that these individuals do

potentially share some common ancestry, most likely

northern or eastern African. Additionally, compared

with individuals in the primary super-population clus-

ters, all four individuals are relative outliers in the PCA

space (Figure S1).

The Exosome Complex Is Reduced in Skeletal Muscle

and Fibroblasts

Immunoblotting for components of the exosome complex

was performed on cultured fibroblasts of individual 1:II-1

and skeletal muscle of individual 2:II-1. EXOSC9 was less

abundant in both affected fibroblasts and skeletal muscle
864 The American Journal of Human Genetics 102, 858–873, May 3,
than in controls. Additionally, in fibroblasts from individ-

uals harboring mutations in EXOSC3, EXOSC8, and RBM7,

EXOSC9 was reduced; the reduction was most pro-

nounced in cells from the EXOSC3 and EXOSC8 cell lines

(Figure 3A). These data suggest that a primary reduction

in one component of the exosome complex, or in a related

protein such as RBM7, leads to destabilization of the whole

complex. BN-PAGE with protein lysates from affected indi-

vidual’s fibroblasts probed with an antibody for EXOSC3

supported this hypothesis. Variants in EXOSC3, EXOSC8,

EXOSC9, and RBM7 resulted in reduction of the exosome

complex irrespective of which subunit carried the primary

variant (Figure 3B).

Variants in EXOSC9 Result in Abnormal RNA Metabolism

To study the effect of EXOSC9 variants on gene expression,

we performed RNA-seq on RNA collected from cultured

affected individuals’ fibroblasts (individual 1:II-1) and skel-

etal muscle (individuals 1:II-1 and 2:II-1). In the fibroblasts

of individual 1:II-1, 69 genes (22 containing AREs) showed

a significant increase and 138 genes (35 containing

AREs) showed significantly less RNA expression than con-

trol individuals (Figure 4A; Table S4). Many of the enriched

Gene Ontology (GO) terms from both the significantly

increased and decreased genes described cellular and em-

bryonic developmental processes of the neuronal system

(Figure 4B). EXOSC9 mRNA and mRNAs encoding other

subunits of the exosome complex did not show a signifi-

cant difference in expression. Previously, we showed that

expression of HOTAIR, HOXC6, HOXC8, and HOXC9 was

significantly elevated in fibroblasts from individuals with

variants in EXOSC8 and RBM7. However, in fibroblasts

from individuals with variants in EXOSC9 and EXOSC3,

only HOXC8 expression was higher than in control

fibroblasts; interestingly, increased HOTAIR mRNA seems

to be specific to the EXOSC8 and RBM7 mutant cells

(Figure 4D).

RNA-seq revealed that a high number of genes were

significantly differentially expressed between muscle bi-

opsies of individual 2:II-1 and control fibroblasts and fi-

broblasts of individual 1:II-1: 2,778 genes (497 containing

AREs) were significantly upregulated and 2,864 (448 con-

taining AREs) were downregulated in both individuals

(Figure 4C; Table S4). Expression of several genes linked

to motor neuronopathy and familiar amyotrophic lateral

sclerosis (EPHA4, IGHMBP2, VAPB, BICD2, and DYNC1H1)

or distal arthrogryposis (MYH8, ZC4H2, MUSK, RAPSN)

were significantly upregulated or downregulated. In indi-

vidual 2:II-1, who presented with congenital fractures,

we detected a higher number of significant changes in

gene expression than in individual 1:II-1. This included

seven genes (LIFR, TMEM38B, PLS3, NANS, SLC26A2,

ALX4, and PLS3) associated with skeletal dysplasia or

bone disease, and four of them were ARE-containing

genes with increased expression. A comparison of

RNA expression between the fibroblasts and muscle of

individual 2:II-1 showed that only 17 genes were
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Figure 3. The Exosome Complex Is Reduced in Affected Individuals’ Fibroblasts
(A) Immunoblotting of fibroblasts from affected individuals with variants in different components of the exosome complex (the homo-
zygous c.92G>C in EXOSC3, the homozygous c.5C>T in EXOSC8, the homozygous c.41T>C in EXOSC9 [individual 1:II-1], and the ho-
mozygous c.236C>G in RBM7) shows reduced EXOSC9, but other components of the exosome complex were also reduced. Actin was
used as a loading control.
(B) Blue native polyacrylamide gel electrophoresis (BN-PAGE) shows that there is a reduction of the assembly of the whole exosome com-
plex in affected individuals’ fibroblasts. GAPDH was used as a loading control.
(C) Immunoblot on muscle extracts from affected individual 2:II-1 and four controls confirms that EXOSC9 was severely reduced in
affected individual 2:II-1.
significantly upregulated and that 16 genes were signifi-

cantly downregulated in both samples, suggesting tissue-

specific differences.

Knockdown or Variants in exosc9 Cause Developmental

Defects in Zebrafish

Zebrafish have previously been used as model systems for

investigating variants in exosome complex subunits16,17

and associated proteins19 and are consistently used for

modeling the cerebellar, hindbrain, and motor neuron

dysfunction observed in human disease. We concluded

that zebrafish would therefore make a suitable in vivo dis-

ease model for the effects of reduced exosc9 function for

investigating whether a phenotype consistent with the

other exosomal models would result.

Injection of morpholino oligonucleotides and the

CRISPR/Cas9 system were used to knock down or induce

variants, respectively, in exosc9 in zebrafish embryos
The Ame
(Figure 5A). The exosc9 morpholino oligonucleotides led

to aberrant splicing of the exosc9 transcript, which was

confirmed via RT-PCR (Figure 5B), where morphant

zebrafish had a retained intron that was confirmed by

sequencing. In addition to the appearance of mis-spliced

transcripts, the amount of wild-type (WT) exosc9 transcript

was reduced in injected embryos. The embryos injected

with Cas9 and gRNA for exosc9 would be expected to be

mosaic; genomic DNA of cells would be a mixture of WT

and various mutated forms of exosc9 in varying propor-

tions. To confirm mutagenesis in the crispants, PCR with

primers flanking the sgRNA target area was performed on

genomic DNA. The PCR product was then cloned into

the pGEM-T easy vector and colony PCR, and sequencing

was performed on individual clones. Sequencing showed

that there was a variation in the amount of mutagenesis

occurring and that there was a phenotype-genotype

correlation (Figure 5D).
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Figure 4. RNA-Seq and qPCR in Fibroblasts of Affected Individual 1:II-1 Carrying the Homozygous c.41T>C Sequence Variant in
EXOSC9
(A) Differential expression analysis (DESeq2) detected 69 genes that were significantly upregulated and 138 that were significantly down-
regulated in the affected individuals’ fibroblasts.
(B) Gene-set enrichment analysis of GO terms with differentially expressed genes in fibroblast RNA-seq.
(C) Comparison of the numbers of upregulated and downregulated genes in muscle biopsy specimens of RNA-seq between affected in-
dividual 1:II-1 and affected individual 2:II-1. 2,778 transcripts were upregulated in both affected individuals, whereas 2,864 transcripts
were downregulated in both. 18 transcripts that were upregulated in affected individual 2:II-1 were downregulated in affected individual
1:II-1, and 45 transcripts were upregulated in affected individual 1:II-1 but downregulated in affected individual 2:II-1.
(D) Gene expression analysis of HOXC6, HOXC8, HOXC9, and HOTAIR through qRT-PCR in EXOSC3, EXOSC8, EXOSC9, and RBM7
mutant fibroblasts. Results were normalized to the average values obtained from two control fibroblast lines.
Zebrafish injected with the morpholino oligonucleotide

(morphants) and Cas9 and exosc9 sgRNA (crispants)

developed a similar range of morphological phenotypes

(Figure 6A). Mildly affected embryos had smaller heads

and eyes, whereas severely affected embryos had extremely

small, sometimes absent, eyes, very small heads, and trun-

cated bodies (Figure 6A). The relative distribution of

phenotypes was also similar in morphants and crispants

(Figure 6B).

In Zebrafish, exosc9 Is Required for Brain and

Neuromuscular Development

Next, we investigated whether exosc9 was required for

brain and neuromuscular development. Whole-mount

immunofluorescence performed on 48 hpf exosc9 mor-

phants and crispants with an antibody against the

neuronal marker, HuC, showed that the brain fails to prop-
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erly develop (Figure 7A). In exosc9 morphants and crisp-

ants, it was common for the brain to be misshapen and

for the cerebellum and hindbrain to be absent. Morpho-

lino knockdown and CRISPR/Cas9 mutagenesis of exosc9

was also performed in the transgenic line of zebrafish,

Islet1:GFP. This line of zebrafish produce green fluorescent

protein in themotor neurons in the hindbrain.43 InWT ze-

brafish, the cranial nerves are very distinct and can be visu-

alized in the Islet1:GFP zebrafish. Cranial nerve V is split

into two distinct parts, anterior (Va) and posterior (Vp).43

In the exosc9 morphants and crispants, it was common

for only Va to be present. This again suggests that func-

tional exosc9 is required for the posterior part of the brain

to develop in zebrafish (Figure 7B). Whole-mount immu-

nofluorescence using an antibody against synaptic vesicle

2 (SV-2, presynaptic motor axons) and a-bungarotoxin

(neuromuscular junctions) conjugated to Alexa Fluor 594
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Figure 5. Strategies Targeting exosc9 in
Zebrafish
(A) Schematic of exosc9 in zebrafish
demonstrating the sites to where the mor-
pholino, gRNA, and primers were targeted.
(B) RT-PCR of zebrafish morphants. The
morpholino caused the retention of an
intron and a reduction of the WT product
in a dose-dependent fashion. The identity
of the bands was confirmed by Sanger
sequencing.
(C) The target sequence for exosc9 gRNA
and an example of a mutation found in a
crispant.
(D) The mutation rate found in crispants
of differing phenotypes.
showed that the neuromuscular junctions developed

abnormally in the 48 hpf morphants and crispants

(Figure 7C). In both morphants and crispants, the neuro-

muscular junctions appeared closer together and the mo-

tor axons failed to migrate properly to the neuromuscular

junctions, indicating a primary pathfinding defect of the

motor axons. Pathfinding defects in motor axons have

been illustrated in other zebrafish models of neuronopa-

thies—exosc3, exosc8, RBM7,19 and SMA.44 Phalloidin

staining in 48 hpf morphants and crispants showed a

reduced amount of muscle and damaged and misaligned

myofibres (Figure 7D). Together, these results show that

exosc9 is also important in neuromuscular development.
Discussion

We report four independent affected individuals with an

early-onset progressive axonal motor neuronopathy, re-

sulting in severe weakness and respiratory impairment,

in combination with cerebellar atrophy. All affected indi-

viduals harbor autosomal-recessive variants in EXOSC9,

which encodes an exosomal protein. Individual 2:II-1 pre-

sented with congenital fractures and arthrogryposis at

birth and subsequent symptom progression resulting in

respiratory failure and death at 15 months of age. This in-
The American Journal of Human
dividual carried the heterozygous

null variant in combination with

the missense variant, whereas the

three other affected individuals car-

ried this missense in homozygosity;

this might explain the more severe

clinical presentation in individual

2:II-1. Individual 1:II-1 and individ-

ual 4:II-1 showed milder phenotypes,

starting with congenital esotropia

and congenital nystagmus, respec-

tively, and poor head control in a

relatively normal neonatal course.

Significant developmental delay, pro-

gressive muscle weakness, oculomo-

tor dysfunction, and coordination
difficulties became evident only after 6 months of age. In

particular, the lower motor neuron symptoms subse-

quently progressed rapidly during the second year of life:

these included limited spontaneous movement of the ex-

tremities, and individual 1:II-1 also required mechanical

ventilation. Individual 3:II-1 had a more pronounced

neonatal presentation with muscle hypotonia, weak cry,

feeding difficulties, and early-onset seizures at the age of

5 months. The phenotype of individual 3:II-1 could be

partially due to another, yet to be identified, recessive ge-

netic disorder segregating in the family, given the parental

consanguinity and the history of a sister who had severe

spasticity and epilepsy and passed away at age 8 years. Un-

fortunately, DNA from the sister of individual 3:II-1 was

not available for genetic testing.

The involvement of spinal motor neurons together with

cerebellar atrophy, with or without pontine involvement,

is a common feature in affected individuals with variants

in different exosomal subunit (EXOSC3, EXOSC8, and

EXOSC9) and belongs to the spectrum of PCH1-related dis-

orders. Although these variants typically present with se-

vere weakness precluding sitting in most cases, variants

in EXOSC3 in particular are now recognized to also include

a milder presentation. However, CNS hypomyelination

has thus far been noted only in affected individuals with
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Figure 6. Knockdown of exosc9 in Zebrafish Causes Abnormal Morphology
(A) Representative morphological scoring of morphant and crispant exosc9 zebrafish embryos at 48 hpf. Normal, identical to uninjected
control clutchmates; mild, smaller head and smaller eyes; severe, very small head, smaller or absent eyes, and misshapen body.
(B) Relative distribution of morphological phenotypes in exosc9 morphants and crispants at 48 hpf. Scale bar represents 1 mm.
variants in EXOSC8. The presence of congenital symptoms

in more severe exosomal protein defects suggests a devel-

opmental impairment; however, a progressive deteriora-

tion of motor skills in the first few months of life confirms

that exosomal proteins are important not only for

neuronal development but also for the survival of spinal

motor and cerebellar neurons. Although the disease in

our affected individuals fits into the PCH1 spectrum, the

presence of congenital fractures in the severe case

described here (individual 2:II-1) is reminiscent of congen-

ital bone fractures with prenatal SMA caused by variants in

subunits of the transcriptional coactivator complex,

another disorder caused by abnormal RNA function.45

Although not all affected individuals present with obvious

pontocerebellar hypoplasia at birth, all affected individuals

show cerebellar atrophy and signs of motor neuronopathy

with onset in early childhood, suggesting the very charac-

teristic involvement of the cerebellum and spinal motor

neurons. Similar to PCH2, which results from variants in

genes encoding subunits of the tRNA-splicing endonu-

clease complex (TSEN),46 PCH1 has been also classified as

PCH1A (VRK1 variants), PCH1B (EXOSC3 variants), and

PCH1C (EXOSC8 variants). We propose to classify the dis-

ease caused by EXOSC9 variants as PCH1D. This would

allow the characterization of the different phenotypes

within each genotype.

In the four families reported here, we detected two

different EXOSC9 variants (c.41T>C and c.481C>T). Inter-

estingly, haplotype analysis revealed a common haplotype
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shared among all three affected individuals homozygous

for the c.41T>C variant. Given the milder phenotype of

affected individuals carrying this homozygous variant,

we suspect that its loss of function is not as severe as in

the case of the nonsense variant c.481C>T. The presence

of two severe nonsense variants in one individual would

most likely result in intrauterine lethality, which has also

been proposed for other exosomal protein variants in

EXOSC817 and EXOSC3.47 We noted that there has been

no case of a complete loss of function in any of the exoso-

mal components, thus reinforcing our hypothesis that

such a defect would be cause intrauterine lethality.

We detected reduced levels of the protein EXOSC9 in

two affected individuals, indicating a loss-of-function ef-

fect of the variants, as we have shown previously for

EXOSC8 and RBM7 variants. Notably, the other subunits

of the exosome (EXOSC3 and EXOSC8) were also reduced,

suggesting that the exosome complex cannot be assembled

or might be unstable if one of the subunits is primarily

reduced. This notion was also supported by the detection

of a lower total amount of the entire exosome complex

by BN-PAGE in all cells from affected individuals with exo-

some variants. The individuals with EXOSC8 and EXOSC3

variants and severe phenotypes demonstrate the most

pronounced reduction of the whole exosome and its

subunits, whereas the reduction of the exosome was less

pronounced in affected individuals with EXOSC9 (individ-

ual 1:II-1) and RBM7 variants. This pathophysiological

concept would suggest that the disease manifestations
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Figure 7. Knockdown of exosc9 in Zebrafish Causes Abnormal Neuromuscular Development
(A) Whole-mount immunofluorescence of the pan-neuronal marker HuC shows that the midbrain (*) appears abnormal and the cere-
bellum (#) and hindbrain (þ) are absent in representative exosc9 morphants and crispants compared with uninjected controls.
(B) Islet1:GFP transgenic morphant and crispant zebrafish have absent cranial posterior nerve V (Vp).
(C) Whole-mount immunofluorescence of synaptic vesicle 2 (SV2, motorneurons, green) and a-bungarotoxin (neuromuscular junc-
tions, red) shows that motoneurons and neuromuscular junctions failed to properly develop in exosc9 morphants and crispants
compared with uninjected controls (white arrows).
(D) Phalloidin staining shows that muscle failed to develop properly. Fibers were sparser, more spread out, and irregular in the exosc9
morphants and crispants. All experiments were performed in 48 hpf zebrafish.
and their severity are more the result of the degree of over-

all exosome dysfunction rather than of a dysfunction of

individual exosome components. This would be consistent

with the similar nature of the ‘‘exosomopathies’’ as a

group.
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We performed RNA-seq analysis in fibroblasts and skel-

etal muscle of affected individuals with EXOSC9 variants

to investigate the effect of exosome impairment on the

mRNA level. In fibroblasts, we detected significantly

altered expression of genes involved in embryonic
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development of neurons (HOXB-A53, HOXB7, and

HOXC8) and genes encoding extracellular matrix proteins

and potassium channels, but we did not detect other

neuron-specific gene alterations, probably because we

studied fibroblasts and not neurons. RNA-seq in muscle

showed altered gene expression of a high number of genes,

suggesting that all tissues might be affected by the exo-

some defect. Expression of EXOSC9 and other genes en-

coding exosomal proteins was not different from control

levels, suggesting that the downregulation of the exosome

proteins is not due to reduced gene expression but is prob-

ably secondary to the instability of the holocomplex. Some

of the genes contained AREs, suggesting that EXOSC9 var-

iants affect the degradation of AU-rich transcripts, which is

one of the best-known functions of the exosome in the

cytosol. However, changes in gene expression of many

non-AU-rich genes suggest a more widespread exosome

function, potentially involving splicing and other forms

of gene expression regulation. Further studies are needed

to explore the mechanism of altered RNA metabolism in

neurons.

We studied reduced exosc9 in an in vivo model by mor-

pholino oligonucleotide knockdown and CRISPR/Cas9

mutagenesis in zebrafish embryos. Morpholino oligonu-

cleotide knockdown is an established technique used for

modeling diseases in zebrafish, although there has been

recent criticism of the specificity of the morpholino oligo-

nucleotides and suggestions of ‘‘off-target’’ effects.48 To

address this potential problem, we complementarily used

CRISPR/Cas9 mutagenesis to produce mosaic ‘‘crispant’’

zebrafish49 Knockdown and mutagenesis of exosc9 pro-

duced similar phenotypes in zebrafish, which suggests

that both methods specifically target and reduce exosc9,

although we could not find any antibody that successfully

identified any of the exosome components in zebrafish to

prove that there was indeed a reduction at the protein

level.

The phenotype caused by the reduction of exosc9 in ze-

brafish is generally consistent with the phenotypic aspects

(in particular, cerebellar defects and motor neuron pathol-

ogy) seen in the four affected individuals. The phenotype

of the exosc9 morphants and crispants was also similar to

that observed in exosc3, exosc8, and rbm7 morphant zebra-

fish.16,17,19 Interestingly, other zebrafish models of cere-

bellar hypoplasia and atrophy caused by abnormal RNA

processing have a phenotype similar to that of the exosc9

downregulated zebrafish. Morpholino oligonucleotide

knockdown of Toe1 causedmidbrain and hindbrain degen-

eration.50 TOE1 has roles in RNA degradation, and variants

in TOE1 have been reported in affected individuals with

PCH7. TSEN variants and the associated protein CLP1

have been associated with PCH in affected individ-

uals.51,52 Morpholino knockdown of these genes in zebra-

fish embryos also recapitulated the phenotype seen in

affected individuals. Together, these studies highlight the

consistency of zebrafish as amodel of cerebellar hypoplasia

and atrophy in particular in disorders of RNA processing.
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Morpholino knockdown of exosc9 has previously been

performed in Xenopus embryos.53 However, the Xenopus

exosc9 morphants had defects in skin development but

not the cerebellum. The discrepancy between zebrafish

and Xenopus could be due to inherent differences in the

models, or it could simply be that the cerebellum was

not examined in the Xenopus morphants. Our results

here show that zebrafish are a useful tool for generating

rapid in vivo models of rare genetic diseases involving the

development of the brain and spinal cord.

In summary, we have described four independent indi-

viduals who are affected by variants in EXOSC9 and who

presented with motor axonopathy resembling SMA, cere-

bellar atrophy, and in one affected individual, multiple

bone fractures. These EXOSC9-related phenotypes closely

resemble the clinical spectrum of other exosomal defects,

which could be referred to as ‘‘exosomopathies.’’ The clin-

ically unique combination of a motor neuronopathy with

cerebellar atrophy typical for the exosomopathies link the

other two major clinical groups of the disorders of RNA

processing, namely SMA without cerebellar involvement

on the one end and the pontocerebellar hypoplasias

without SMA on the other. Molecular studies indicate

that the pathology is linked to a loss of function of

the RNA processing by the exosome. Further studies on

neuronal cells of affected individuals or zebrafish neurons

might reveal neuron-specific alterations, which could be

targeted in future interventions.
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L.M., Jacquier, A., and Libri, D. (2012). Extensive degradation

of RNA precursors by the exosome in wild-type cells. Mol. Cell

48, 409–421.

10. Bousquet-Antonelli, C., Presutti, C., and Tollervey, D. (2000).

Identification of a regulated pathway for nuclear pre-mRNA

turnover. Cell 102, 765–775.

11. Sayani, S., and Chanfreau, G.F. (2012). Sequential RNA degra-

dation pathways provide a fail-safe mechanism to limit the

accumulation of unspliced transcripts in Saccharomyces cere-

visiae. RNA 18, 1563–1572.

12. van Hoof, A., Lennertz, P., and Parker, R. (2000). Yeast exo-

some mutants accumulate 30-extended polyadenylated forms

of U4 small nuclear RNA and small nucleolar RNAs. Mol.

Cell. Biol. 20, 441–452.

13. Büttner, K., Wenig, K., and Hopfner, K.P. (2006). The exosome:

a macromolecular cage for controlled RNA degradation. Mol.

Microbiol. 61, 1372–1379.

14. Lubas, M., Christensen, M.S., Kristiansen, M.S., Domanski,

M., Falkenby, L.G., Lykke-Andersen, S., Andersen, J.S., Dziem-

bowski, A., and Jensen, T.H. (2011). Interaction profiling iden-

tifies the human nuclear exosome targeting complex. Mol.

Cell 43, 624–637.

15. Hrossova, D., Sikorsky, T., Potesil, D., Bartosovic, M., Pasulka,

J., Zdrahal, Z., Stefl, R., and Vanacova, S. (2015). RBM7 subunit

of the NEXT complex binds U-rich sequences and targets

30-end extended forms of snRNAs. Nucleic Acids Res. 43,

4236–4248.

16. Wan, J., Yourshaw, M., Mamsa, H., Rudnik-Schöneborn, S.,
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