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A B S T R A C T

Background: Alzheimer’s disease (AD) is characterized by progressive cognitive decline and specific brain atrophy 
patterns, primarily involving the medial temporal lobes. A number of studies have discussed hypothalamic 
involvement in AD with consecutive metabolic and/or autonomic disturbances yet only few studies have 
investigated hypothalamic atrophy in AD and its early stages in particular. Methods: We applied semi-automated 
volumetry of the hypothalamus (HTH) in 3 T MRI in a sample N = 175 participants [age 74.9 ± 7.22; gender 85 
m/90f; cognitively normal controls (CN; N = 56); amnestic mild cognitive impairment (MCI; N = 78); AD (N =
41)] from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). In addition, we used voxel-based 
morphometry (VBM), cortical thickness (CTH) analyses and source-based morphometry (SBM) derived net
works of structural covariance to investigate brain structural covariance patterns of the HTH under consideration 
of diagnostic groups, β-amyloid (AB) positivity and apolipoprotein E (APOE) ε4 status. Results: Hypothalamic 
atrophy was observed in both early and advanced disease stages (i.e. hypothalamic volume CN > MCI > AD). 
VBM, CTH analysis and SBM revealed positive associations between hypothalamic volume (HV) and AD- 
vulnerable regions, largely corresponding to the Papez circuit and brain regions implicated in autonomic 
regulation, however, group differences regarding HTH structural covariance were not observed. Similar obser
vations were made in carriers and non-carriers of the ε4 allele, yet more pronounced in ε4 carriers. Although not 
reaching significance, comparisons of AB positive vs. negative subjects indicated stronger HTH atrophy in 
biomarker positive participants. HV was not associated with body mass index or longitudinal weight change. 
Conclusions: Our findings support early structural changes of the HTH in AD. HV covaries with regional volumes 
of AD-vulnerable regions. This could point to secondary atrophy of the HTH following atrophy of the hippo
campus and other structures of the Papez circuit in AD.
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1. Introduction

Alzheimer’s dementia (AD) is the most common neurodegenerative 
dementia with high socioeconomic relevance (Reitz et al. 2011; Prince 
et al. 2013; Nichols et al. 2019). The characteristic neuropathological 
correlate for AD pathogenesis is the formation of extracellular β-Amy
loid (AB) plaques and intracellular aggregates of hyperphosphorylated 
tau protein, which are understood to propagate throughout the brain in 
a characteristic pattern over the course of the disease (Braak and Braak 
1991; Walker 2018). Although many genetic and acquired risk factors 
have been identified there still remains uncertainty regarding the un
derlying causes of AD development and progression (Edwards et al., 
2019); Silva et al. 2019).

Recent studies have linked pathological and clinical changes in AD to 
the hypothalamus (HTH), a small but densely interconnected dience
phalic brain region with a variety of functions and regulatory tasks (Ishii 
and Iadecola 2015). For instance, the HTH is a key regulatory centre for 
the autonomic nervous system (Ulrich-Lai and Herman 2009), strongly 
connected to AD-typical structures like the hippocampus via the fornix 
(Papez 1937; Choi et al. 2019). Thus, hypothalamic dysfunction could 
influence metabolic and non-cognitive changes in AD, causing early 
symptoms like late-life weight loss and circadian disruption, although 
the full extent to which the HTH is affected in AD remains unclear (Hiller 
and Ishii 2018). As an indicator of hypothalamic involvement in AD, 
neuropathological studies have found AB plaques and neuro
degeneration in hypothalamic nuclei of AD patients (Ogomori et al. 
1989; Baloyannis et al. 2015). Brain atrophy – particularly atrophy of 
the medial temporal lobe and the hippocampus − has been well- 
established as an imaging biomarker in AD (Scheltens et al. 2016; 
Jack et al. 2013; Colliot et al. 2008; Whitwell et al. 2011), however, 
volumetric studies also suggest that AD might be associated with hy
pothalamic atrophy even early in the disease course (Baron et al. 2001; 
Copenhaver et al. 2006; Hall et al. 2008).

As the HTH is part of a large neural network (Kim et al. 2022), we 
hypothesized that hypothalamic atrophy could have implications on 
other structures as well. Conversely, degeneration and atrophy in other 

brain regions in AD could lead to secondary changes in the HTH. Thus 
far, few studies have investigated hypothalamic involvement in AD, 
mostly using common neuroimaging methods such as voxel-based 
morphometry (VBM; (Ashburner and Friston 2000)). However, 
methods such as VBM have limitations with respect to small subcortical 
regions such as the HTH, e.g. (Senjem et al. 2005; Wonderlick et al. 
2009; Zhou et al. 2022; Ashburner and Friston 2000), therefore we chose 
to re-evaluate involvement of the HTH in AD via a semi-automated al
gorithm that had been specifically developed for hypothalamic volu
metry (Wolff et al. 2018). In addition, we aimed to explore the 
relationship of hypothalamic volume (HV) with clinical parameters and 
genetic risk factors (i.e. ApoE status) as well as its structural covariance 
by making use of VBM, cortical thickness analysis (CTH) and source- 
based morphometry (SBM) derived structural covariance networks.

2. Methods

For an overview of our workflow see Fig. 1.

2.1. Study population

Data used for this study was downloaded from the Alzheimer’s Dis
ease Neuroimaging Initiative (ADNI) database (https://adni.loni.usc. 
edu/). Diagnosis of amnestic MCI and AD was standardised according 
to the Petersen criteria (Petersen et al. 2010); using the Mini-Mental- 
State Examination (MMSE; (Folstein et al. 1975)), Clinical Dementia 
Rating scale (CDR, (Hughes et al. 1982)) and the Logical Memory II 
subscale of the Wechsler Memory Scale-Revised (Sullivan 2005) for 
cognitive testing. In ADNI 1, structural images were obtained using 1.5 
T- and 3 T-scanners with the following parameters: 8-channel coil, TR =
650 ms, TE = min full, flip-angle = 8◦, slice thickness = 1.2 mm, reso
lution = 256 × 256 mm and FOV = 26 cm. ADNI pre-processing of 
MPRAGE images in ADNI 1 included gradwarp correction of distortions 
caused by non-linear gradients, B1 non-uniformity correction and N3 
processing for each MPRAGE image (https://adni.loni.usc.edu/meth 
ods/mri-tool/mri-pre-processing/). For a detailed description of 

Fig. 1. Illustrated workflow showing processing of ADNI 3 T MPRAGE data for hypothalamic volumetry as well as structural covariance analysis with SPM12 
software and the CAT12 toolbox implemented in SPM12. ADNI Alzheimer’s disease neuroimaging initiative, ACPC anterior commissure posterior commissure, CAT12 
computational anatomy toolbox, CTH cortical thickness, GM-TPM gray matter tissue probability map, GMV gray matter volume, HTH hypothalamus, ROI region of 
interest, SBM source-based morphometry, SPM statistical parametric mapping, VBM voxel-based morphometry, WMV white matter volume.
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structural imaging protocols as well as information on the acquisition 
and processing of imaging data as well as biological markers please refer 
to the ADNI website (https://adni.loni.usc.edu/methods/). Following 
ADNI recommendations, we made use of a standardized 3 T subsample 
from the ADNI 1 cohort (Wyman et al. 2013). Furthermore, we included 
25 additional subjects with structural 3 T MPRAGE data with identical 
pre-processing and sufficient quality. In total, our sample comprised n =
176 subjects, one of which was later excluded due to substantial arti
facts. Thus, we included a total of n = 175 subjects, n = 78 subjects with 
amnestic mild cognitive impairment (MCI), n = 41 subjects with AD and 
n = 56 cognitively normal (CN) controls. CSF AD biomarkers (i.e. 
“UPENNBIOMK_MASTER_FINAL” dataset) were available for N = 95. 
Here, AB positivity was defined by AB 1–42 < 192 pg/mL, as previously 
established (Shaw et al. 2009).

2.2. MR image pre-processing for hypothalamic volumetry

Hypothalamic volumetry was performed with a semi-automated 
approach according to the protocol by Wolff et al. (2018). Data were 
first carefully checked for relevant artifacts and then realigned to posi
tion the centres of the anterior and posterior commissure on the same 
horizontal level (i.e. “ACPC” orientation). Realignment was done using 
ITK-SNAP. Next, image flipping was performed using FSL software (htt 
ps://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL). After flipping, both the right 
and the left hypothalamus were displayed on the same half of the screen, 
thus allowing the rater to always apply the algorithm in the same way 
irrespective of hemisphere. We then calculated gray matter tissue 
probability maps (GM-TPM) which would later serve as an overlay over 
the anatomical T1-weighted image, using Statistical Parametric Map
ping software (SPM12, Wellcome Department of Imaging Neuroscience, 
London, UK; https://www.fil.ion.ucl.ac.uk/spm/) in MATLAB.

2.3. Semi-automated volumetry of the hypothalamus

Hypothalamic volumetry was performed with MeVisLab 3.4.1 (https 
://www.mevislab.de/) using the algorithm for semi-automated volu
metry published by Wolff et al. (2018): In brief, the rater manually de
fines four regions of interest (ROIs) using anatomical landmarks in the 
T1-weighted image as well as the GM-TPM-overlay as reference. ROI 1 
corresponds to the preoptic HTH situated in the same coronal plane as 
the anterior commissure. Caudal of ROI 1, the intermediate superior 
(ROI 2) and intermediate inferior (ROI 3) HTH begins with the opening 
of the interventricular foramen in coronal view. Special emphasis is put 
on including all lateral hypothalamic voxels yet excluding the fornix and 
the optic tract. Finally, ROI 4 encompasses the mamillary bodies. A 
detailed summary and visualisation of the algorithm landmarks is pro
vided in the original article by Wolff et al. (2018). In the next step, the 
rater chooses one voxel within the HTH as a starting point for volumetric 
segmentation by seed-growing technology. The software then includes 
all voxels within the ROIs if they are within predefined thresholds to 
calculate HV. In a third step the rater reviews and adjusts the segmen
tation result in triplanar view. The left and right HTH were segmented 
separately with this method. The rater was blinded for the whole pro
cess. Before volumetric assessment of our sample, we adapted the lower 
GM-TPM thresholds to our dataset as trial runs showed that hypotha
lamic voxels, especially in the preoptic ROI, were falsely excluded in our 
segmentation results (new lower thresholds: ROI 1: 0.47; ROI 2: 0.3; ROI 
3: 0.33; ROI 4: 0.22; original thresholds according to Wolff et al. (2018): 
ROI 1: 0.65; ROI 2: 0.05; ROI 3: 0.05; ROI 4: 0.01). When adapting the 
thresholds we were also careful to prevent inclusion of non- 
hypothalamic voxels in the intra- and periventricular areas as faulty 
voxel inclusion in these areas has been previously described (Thomas 
et al. 2019). Wolff et al. (2018) reported good interrater reliabilities in 
their methodological paper (ICC 0.78 to 0.82)) with voxel-wise overlap 
of appr. 90. To additionally determine intrarater reliability in our study, 
the rater segmented the hypothalami of a representative sample of N =

40 subjects twice, again blinded and after additional pseudonymization 
of image descriptions. Intrarater reliability was found to be excellent 
with an intraclass correlation coefficient (ICC) of 0.978. Finally, semi- 
automated volumetry was performed on N = 175 subjects and total 
HV was calculated as a sum of left and right HV.

2.4. MR image preprocessing for VBM and CTH analysis

We conducted VBM (Ashburner and Friston 2000) and CTH analysis 
of 3D MPRAGE data with SPM12 and the Computational Anatomy 
Toolbox 12 (CAT12; https://dbm.neuro.uni-jena.de/cat.html) within 
the MATLAB (https://www.mathworks.com) framework. Preprocessing 
for VBM analyses was performed with default settings of the CAT12 
toolbox, which include corrections for bias-field inhomogeneities, seg
mentation into gray matter (GM), white matter (WM), and cerebrospinal 
fluid (CSF), followed by spatial normalization to the DARTEL template 
in MNI space (voxel size: 1.5 mm x 1.5 mm x 1.5 mm). After pre
processing we performed smoothing with an 8 mm full-width-half- 
maximum (FWHM) isotropic Gaussian kernel (VBM data). For surface- 
based analyses of CTH, cortical thickness was estimated with the 
projection-based thickness method (Dahnke et al. 2013) while also 
receiving estimations of the central surface of both hemispheres, as 
implemented in the CAT12 toolbox. CTH data were smoothed with a 15 
mm FWHM kernel.

2.5. Statistical analysis

Statistical analysis of non-imaging data, volumetric data of the hy
pothalamus and source based morphometry (SBM) derived data was 
performed using SAS statistical software (SAS Institute Inc, version 9.4, 
Cary, NC). Statistical neuroimaging analyses were done with SPM12 and 
CAT12 within the MATLAB framework. Violin plots were created using 
GraphPad Prism version 10.0.0 for Windows, GraphPad Software, Bos
ton, Massachusetts USA, www.graphpad.com.

2.5.1. Hypothalamic volume (HV)
One-way analysis of variance (ANOVA) followed by post-hoc Dun

can’s multiple range test was used to test for group differences of right, 
left and total HV respectively. HV was residualized by correcting for age, 
gender, and total intracranial volume (TIV) within the general linear 
model (GLM). The resulting residual HV was used for further statistical 
analyses. We furthermore investigated the potential influence of APOE, 
AB positivity as well as the relationship of HV with body mass index 
(BMI) and 2-year weight loss using Spearman’s partial correlation 
analysis.

2.5.2. Voxel-based morphometry (VBM) and cortical thickness (CTH)
Structural covariance analyses (Mechelli et al. 2005; Evans 2013) 

were performed to investigate potential group differences regarding the 
relationship of HV with gray matter volume (GMV) and CTH. Within 
SPM12, ANOVA with a group*hypothalamic_volume interaction term 
was conducted using HV as seed and adjusting for age, gender and TIV 
(VBM only). Similar analyses were made for the interaction of carriers 
vs. non-carriers of the APOE ε4 allele with HV with additional adjust
ment for diagnostic groups. To account for multiple comparisons 
Family-wise error (FWE) was applied, and statistical significance was set 
at p < 0.05 FWE cluster level corrected with a cluster-forming threshold 
of p < 0.001. In addition, we performed structural covariance analyses 
of HV across the whole sample via multiple regression analyses with 
additional adjustment for diagnostic groups. Here a more stringent 
threshold was applied with p < 0.05 FWE voxel-level corrected and an 
extent threshold of k = 10. In contrast to FWE cluster-level statistics, 
voxel-level statistics do not take into account the cluster size (i.e. the 
number of neighbouring voxels or vertices) of the respective results, 
rather than performing a multiple comparisons correction for each voxel 
or vertex individually, thus providing a far more conservative statistical 
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approach. Since for structural covariance analyses without group com
parisons highly significant results were to be expected, we chose the 
latter for these particular analyses.

For quality assurance we also investigated the group specific atrophy 
patterns via ANOVA (data not shown).

2.5.3. Source-based morphometry (SBM)
For SBM analyses of structural covariance networks, smoothed GM 

data from the VBM preprocessing pipeline were used. SBM is a multi
variate approach for analysis of GM covariation (i.e. structural covari
ance networks). Methodological aspects are described in detail in (Xu 
et al. 2009). In brief: first, the number of components to be extracted 
from GMV data of our preprocessed sample of N = 175 subjects were 
estimated via the minimum description length (MDL) principle. This 
step identified N = 17 components in total which were covariant brain 
regions (C1 – C17). Next, spatial independent component analysis (ICA) 
was performed with the Infomax algorithm using the “Group ICA for 
fMRI Toolbox” (GIFT toolbox; https://trendscenter.org/software/gift/). 
All GMV images were used to compute a source matrix and a mixing 
matrix. Resulting subject- and component-wise, z-transformed loading 
coefficients, reflective of the contribution of each individual covariance 
pattern to the GM data of each individual participant can then be sta
tistically analyzed. Similar to the previously described approach we first 
investigated potential group differences regarding the relationship of 
HV with the SBM components (i.e. group*component interaction term 
within the GLM) next to Spearman partial correlation analyses of HV 
and SBM components with age, gender, group and TIV as additional 
covariates. Due to the comparably large number of components, ac
counting for multiple comparisons was necessary. To do so, we applied a 
false discovery rate of p < 0.05 FDR-corrected to account for multiple 
comparisons (https://www.sdmproject.com/utilities/?show = FDR). 
FDR was chosen for its greater probability to reject the null hypothesis 
(as compared to a Bonferroni correction).

3. Results

3.1. Comparisons of hypothalamic volumes

Subject characteristics are summarized in Table 1.
Graphical illustrations of HV group differences can be found in Fig. 2.
HV differed statistically significant for all three diagnostic groups 

with highest volumes in CN subjects and lowest volumes in subjects with 
AD (ANOVA p < 0.0001; post hoc Duncan’s Test: CN > MCI > AD). 
Similarly, volumes of the right HTH (ANOVA p < 0.0001) and left HTH 
(ANOVA p < 0.0001) showed significant group differences (i.e. CN >
MCI > AD). Effect sizes (via Cohen’s d) were moderate to high (for CN 
vs. MCI: 0.58; for CN vs. AD: 1.12; for MCI vs. AD: 0.55).

Carriers of the ε4-allele showed highly significant group differences 
regarding the right (ANOVA p = 0.0001), left (ANOVA p < 0.0001) and 
total HV (ANOVA p < 0.0001). Similar to the diagnostic group com
parisons, largest volumes were measured in CN, followed by MCI and 
AD. Here Duncan’s test revealed significant group differences for CN >
MCI as well as CN > AD but not for MCI > AD. In non-carriers of the ε4- 
allele we observed significant group differences for left HV (ANOVA p <
0.01) and total HV (ANOVA p = 0.02) while only a trend was observed 
for the right HTH (ANOVA p = 0.06) with Duncan’s test showing higher 
volumes in CN vs. AD only. Left HV in turn differed significantly be
tween CN vs. AD i.e. CN > AD) as well as MCI and AD (i.e. MCI >AD) but 
not in CN and MCI. Lastly, total HV was significantly different only 
between CN and AD subjects in APOE ε4-non-carriers (i.e. CN > AD).

Additional sub-sample analyses of β-amyloid positive (AB+ ) vs. 
negative (AB-) subjects yielded slightly smaller HV in AB+ vs. AB- 
subjects, yet these results were not significant (pooled sample, n = 95, 
corrected for diagnostic groups; ANOVA p = 0.65). Looking at AB- 
subjects (n = 34) ANOVA showed significant differences regarding 
diagnostic groups (ANOVA p = 0.03), yet Duncan’s test was not 

significant. For AB+ subjects (n = 61) both ANOVA and post-hoc Dun
can’s test were not significant (ANOVA p = 0.06). However, for the 
comparison of AB+ MCI and AB+ AD vs. AB- CN, ANOVA was signifi
cant (p = 0.003) and showed smaller HV in AD as compared to CN and 
MCI. Similarly to the pooled analyses, HV decreased across disease 
stages (i.e. CN > MCI > AD) although comparisons of CN vs. MCI and 
MCI vs. AD did not reach significance in post hoc Duncan’s test. HV did 
not correlate with AB, total tau (t-tau) or phosphorylated tau (p-tau).

No significant associations were found for HV with body weight (i.e. 
BMI) or longitudinal weight changes.

3.2. VBM structural covariance of hypothalamic volume with gray and 
white matter volume

Expectedly, group comparisons (ANOVA F-Test) showed the AD 
typical and highly significant pattern of medial temporal lobe atrophy 
(see Fig. S1; detailed data not shown).

Detailed results regarding the relationship of HV with GMV and 
white matter volume (WMV) can be found in Table 2 and Fig. 3.

ANOVA F-Test revealed no group differences regarding the rela
tionship of HV with GMV and WMV (at p < 0.05 FWE cluster-level).

Within the entire sample, multiple regression analysis revealed 
exclusively positive associations (p < 0.05 FWE voxel-level corrected) 
between HV and GMV, respectively WMV. Expectedly, HV was strongly 
positively associated with mes- and diencephalic GMV peaking within 
the right thalamus, but also extended towards the medial temporal lobe. 
Additional associations were found within several lateral temporal and 
parietal areas, the bilateral insula, orbitofrontal cortex and the 

Table 1 
Subject characteristics.

Group CN (N =
56)

MCI (N =
78)

AD (N =
41)

total (N =
175)

p-value

Age in 
years

75.5 ± 4.8 74.7 ±
7.93

74.5 ±
8.46

74.9 ±
7.22

n.s.

Gender ​ ​ ​ ​ 0.003
female (N) 35 (62.5 

%)
29 (37.2 
%)

26 (63.4) 90 (51.4 
%)

​

male (N) 21 (37.5 
%)

49 (62.8 
%)

15 (36.6 
%)

85 (48.6 
%)

​

BMI in 
kg/m2

26.6 ± 4.4 25.1 ± 3.0 24.5 ± 3.9 25.4 ± 3.8 0.01

Weight in 
kg

74.4 ±
13.78

74.5 ±
12.50

67.8 ±
14.81

72.8 ±
13.8

0.02

MMSE 29.2 ± 0.8 25.7 ± 2.6 21.4 ± 3.5 25.8 ± 3.8 0<.0001
CDR 0 ± 0 0.5 ± 0 0.67 ±

0.24
0.38 ±
0.29

0<.0001

t-tau in pg/ 
ml

75 ± 31 
(N = 25)

95 ± 59 
(N = 44)

127 ± 40 
(N = 23)

97 ± 52 
(N = 92)

0.001

p-tau in pg/ 
ml

26 ± 13 
(N = 25)

34 ± 19 
(N = 46)

43 ± 17 (N 
= 24)

34 ± 18 
(N = 95)

0.003

Subgroups for APOE-allele-status and β-Amyloid-positivity
APOE ε4 N = 56 N = 78 N = 41 N = 175 0.002
ε4-negative 

(N)
39 (69.6 
%)

37 (47.4 
%)

14 (34.1 
%)

90 (51.4 
%)

​

ε4-positive 
(N)

17 (30.4 
%)

41 (52.6 
%)

27 (65.9 
%)

85 (48.6 
%)

​

AB N = 25 N = 46 N = 24 total (N =
95)

0.0004

AB- (N) 17 (68 %) 13 (28.3 
%)

4 (16.7 %) 34 (35.8 
%)

​

AB+ (N) 8 (32 %) 33 (71.7 
%)

20 (83.3 
%)

61 (64.2 
%)

​

Subject characteristics with p-values indicating significance of group differ
ences. Data is expressed as mean ± SD except for Gender, APOE-allele status, 
β-Amyloid-positivity. Subject count is indicated as N. AB β-Amyloid 1–42, AB +
Aβ-positive, AB- Aβ-negative, AD Alzheimer’s Disease, APOE apolipoprotein E, 
BMI body mass index, CDR clinical dementia rating, CN cognitively normal, MCI 
mild cognitive impairment, MMSE mini-mental-status exam, n.s. not significant, 
SD standard deviation.
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cerebellum.
For WMV, positive associations of HV were observed with several 

WM regions, including the corpus callosum and adjacent parts of the 
fornix, as well as WM within the hippocampal formation.

Overlap of HTH GMV/WMV associations with GMV group differ
ences is illustrated in Fig. S1.

3.3. Associations of hypothalamic volume and cortical thickness

Group comparisons (ANOVA F-Test) showed typical patterns of CTH 
reductions in anterior temporal and – to a lesser degree − the prefrontal 
cortex (data not shown). Detailed results regarding the relationship of 
HV with CTH can be found in Table 3 and Fig. 3. ANOVA F-Test revealed 
no group differences regarding the relationship of HV with CTH (p <
0.05 FWE cluster level).

Within the entire sample, multiple regression analysis revealed 
exclusively positive associations (p < 0.05 FWE voxel-level corrected) 
between HV and CTH, including the right medial OFC, the bilateral 
occipital cortex (i.e. cuneus), insula, posterior temporomesial regions (i. 
e. fusiform gyrus), postcentral gyrus, and multiple temporal areas. 
Overlap of HTH CTH associations with CTH group differences is illus
trated in Fig. S1.

3.4. Associations of SBM-based networks of structural covariance with 
hypothalamic volume

For detailed information see Fig. 4. More in depth information on the 
SBM output including methodological aspects is provided as supple
mentary material.

Source based morphometry (SBM)-analysis of structural covariance 
networks (SCN) yielded a total of N = 17 components. Regarding the 
relationship of HV with SCN we only found a significant group*SCN 
interaction for the temporomesial component 8 (C8; GLM p = 0.017), 
however this did not remain significant after additional correction for 
multiple comparisons (i.e. p > 0.05 FDR).

Across all groups HV was significantly correlated (pFDR < 0.05; 
partial Spearman correlation adjusted for TIV, age, gender and diag
nostic group) with factor loadings of component 1 (mainly characterized 
by precuneus and parietal regions), component 3 (mainly characterized 
by right parietal/temporal regions), component 6 (mainly characterized 
by anterior cerebellar regions;), component 7 (mainly characterized by 
frontoinsular regions), component 8 (mainly characterized by tempor
omesial regions;), component 9 (characterized by thalamic regions), 
component 12 (mainly characterized by occipital regions), component 
14 (mainly characterized by anterior cerebellar regions), component 15 
(mainly characterized by left parietal/temporal regions) and component 

Fig. 2. Left: Residualized HV visualised across diagnostic groups showing distribution of HV for cognitively CN subjects, subjects with MCI and AD. Data distribution 
is visualized using a truncated violin plot with dashed lines indicating median and dotted lines indicating quartiles. Results of pairwise comparison are illustrated 
with asterisks indicating p-value (ns = P > 0.05; * = P ≤ 0.05; ** = P ≤ 0.01; *** = P ≤ 0.001; **** = P ≤ 0.0001). Right: Residualized HV in APOE- ε4-negative vs. 
APOE- ε4-positive subjects and β-amyloid-positive and − negative subjects across diagnostic groups with embedded results of post-hoc Duncan’s test showing dif
ferences between subgroups. AD alzheimer’s dementia, APOE apolipoprotein E, CN cognitively normal, HV hypothalamic volume, MCI mild cognitive impairment, ns 
not significant, sign. significant.
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16 (mainly characterized by posterior cerebellar regions) areas. Ana
lyses of individual groups yielded – apart from C8 − largely comparable 
results with similar directionalities (see Table 4).

With respect to APOE-ε4 carriership, no differences regarding the 
relationship between HV and SCN were observed (i.e. ε4*SCN interac
tion term within the GLM).

3.5. APOE ε4-allele carriership and structural covariance of 
hypothalamic volume

For detailed results regarding the structural covariance of HV in 
APOE ε4-allele carriers vs. non-carriers please see Fig. 5. In brief, we 
only found significant results for CTH analyses. Here, ε4-carriership was 
associated with a weaker association of HV with CTH within the bilat
eral insular cortex and adjacent temporal regions (left: MNIxyz [-40 mm 
− 8mm − 15 mm], pFWEc = 0.01, pFWEp = 0.0, k = 171; right: MNIxyz 
[38 mm − 8mm − 6mm], pFWEc = 0.023 pFWEp = 0.06, k = 144].

4. Discussion

We investigated HV in a sample of cognitively healthy subjects, 
subjects with amnestic MCI and dementia due to AD by applying a semi- 
automated algorithm specifically developed for HTH segmentation. 

Table 2 
Positive associations of hypothalamic volume with gray and white matter 
volume.

Regions p(FWE- 
corr)

k T MNIxyz

VBM: Positive associations of hypothalamic volume with gray matter volume
R Thalamus 0.000 35,123 9.61 6––12 14
R extra-nuclear 0.000 ​ 9.59 3––2 − 6
L extra-nuclear 0.000 ​ 7.74 − 9––6 − 10
R medial frontal gyrus 0.000 2344 6.76 8 64––16
R rectal gyrus sub-gyral 0.000 ​ 6.56 8 40––22
R rectal gyrus frontal lobe 0.000 ​ 6.25 9 30––22
R Inferior Semi-Lunar Lobule 

(Posterior Cerebellum)
0.000 2153 6.01 24––72 − 50

R Pyramis 0.000 ​ 5.97 24––78 − 40
R Declive 0.033 ​ 4.76 22––69 − 26
L Inferior Semi-Lunar Lobule 

(Posterior Cerebellum)
0.000 1307 5.92 –22––78 

− 50
L Pyramis 0.000 ​ 5.84 − 18––80 

− 42
L Uvula 0.011 ​ 5.03 − 26––70 

− 34
L Medial Frontal Gyrus 0.001 929 5.71 − 10 30––20
L Sub-Gyral Frontal Lobe 0.001 ​ 5.71 − 18 22––16
L Sub-Gyral Frontal Lobe 0.009 ​ 5.08 − 12 46––20
R postcentral gyrus 0.002 337 5.51 58––33 42
R postcentral gyrus 0.017 ​ 4.93 45––36 50
L Fusiform Gyrus 0.002 582 5.47 − 39––66 

− 21
L Fusiform gyrus 0.003 ​ 5.34 − 44––56 

− 21
L Inferior temporal gyrus 0.007 ​ 5.15 − 45––45 

− 24
L Cingulate Gyrus 0.004 142 5.29 − 4––39 27
R Inferior Frontal Gyrus 0.004 115 5.29 36 36––10
L Medial Frontal Gyrus 0.005 29 5.24 − 14 51 4
L Superior Temporal Gyrus 0.005 61 5.21 − 56––62 18
L Middle Temporal Gyrus 0.005 111 5.21 − 66––42 0
R Middle Temporal Gyrus 0.006 83 5.18 39––75 15
L Paracentral Lobule 0.006 36 5.18 − 8––21 50
L Precuneus 0.007 46 5.16 − 20––75 39
L Middle Temporal Gyrus 0.007 145 5.14 − 60––42 

− 10
R Superior Temporal Gyrus 0.007 93 5.14 50 10––26
R Inferior Parietal Lobule 0.008 71 5.11 66––45 32
R Dorsolateral Prefrontal Cortex 0.010 73 5.06 40 21 27
L Postcentral Gyrus 0.012 47 5.01 − 58––22 24
R Superior Temporal Gyrus 0.019 86 4.89 30 18––32
L Middle Temporal Gyrus 0.020 18 4.89 − 54––70 10
L Precentral Gyrus 0.023 32 4.85 − 52––10 32
L Middle Frontal Gyrus 0.024 56 4.84 − 27 36––16
R Cingulate Gyrus 0.025 18 4.83 9––14 44
L Cingulate Gyrus 0.028 15 4.80 − 6 8 44
L Postcentral Gyrus 0.029 10 4.79 − 66––21 32
VBM: Positive associations of hypothalamic volume with white matter volume
L Corpus Callosum and Fornix 0.000 852 5.67 − 4––28 15
R Corpus Callosum and Fornix 0.001 ​ 5.38 6––30 15
R Corpus Callosum 0.003 401 5.20 28––28 − 9
R Hippocampus 0.005 ​ 5.10 38––24 − 14
L Hippocampus 0.010 17 4.90 − 30––30 

− 9
L Corpus Callosum 0.010 64 4.89 0 33 6

Results are listed at p < 0.05 (voxel-level FWE-corrected) with corresponding 
cluster size (k), peak T-value and MNI coordinates. Bold text is used to indicate 
primary clusters, while secondary peaks within a cluster are not formatted bold. 
FWE family wise error, L left, R right, VBM voxel-based morphometry.

Fig. 3. Structural covariance of hypothalamic volume with gray and white 
matter volume (i.e. GMV, WMV) via voxel-based morphometry (VBM) and with 
cortical thickness (CTH). Numbers indicate location on the z axis and colours 
indicate t-score value. Results are illustrated at p < 0.05 FWE voxel-level cor
rected and k = 10.
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Furthermore, we investigated brain structural covariance of the HTH 
with VBM based gray and white matter volume and CTH analyses. In a 
more data-driven approach we made use of SBM to investigate the as
sociations of HV with structural covariance networks. Overall, our re
sults show early hypothalamic atrophy in AD and structural covariance 
between HV and typical AD-vulnerable regions. Furthermore, we found 
these results to be somewhat more pronounced in APOE ε4-allele car
riers. In turn, HV was not correlated with neither CSF-AB nor BMI or 

weight change in our cohort.
In AD, involvement of the HTH has been increasingly recognized as 

potential cause for metabolic and endocrine changes which may 
potentially further amplify the disease’s neuropathological un
derpinnings (Ishii and Iadecola 2015). So far, relatively few volumetric 
studies have investigated structural changes of the HTH in AD, likely due 
to the inherent difficulties in accurately identifying the HTH and 
measuring its volume. One study using manual segmentation with ROI 
tracing found hypothalamic atrophy in AD compared to healthy controls 
(Callen et al. 2001). Using fully automated VBM analysis pipelines, 
several studies have described hypothalamic involvement in brain at
rophy due to AD including its presymptomatic stages, e.g. Hall et al. 
(2008). Interestingly, Loskutova et al. (2010) found reduced bone den
sity in AD to be associated with HV, indicating that AD related hypo
thalamic involvement may cause systemic metabolic alterations.

Our study provides additional support regarding early hypothalamic 
involvement in AD. Here, we found significant differences in HV indic
ative of increasing hypothalamic atrophy as the disease advances. 
Importantly, since we found significant reductions of HV in MCI and AD 
as compared to CN, our findings also indicate early involvement of the 
HTH in non-dementia stages of AD.

Of note, we applied a validated semi-automated approach which 
combines ROI-based manual segmentation with automated calculation 
of HV using seed-growing technology, thus largely avoiding methodo
logical pitfalls of common structural imaging methods such as VBM, 
which suffer from difficulties in accurately measuring subcortical 
structures (Bergouignan et al. 2009). Importantly, segmentation issues 
have been reported when using VBM for HTH volumetry in the AD brain. 
For instance, Baron et al. (2001) encountered a segmentation issue 
where nonbrain tissue around the venous sinuses was falsely included as 
GM. Karas et al. (2003) further classified this problem to be the result of 
smoothing and identified the ventricles to be especially prone to this 
error. The HTH is bordering the third ventricle; hence it may be affected 
by this misclassification error which could lead to overestimation of HV. 
This proves to be particularly problematic in AD as ventricular 
enlargement is common. As an alternative to VBM a new automated 
algorithm for segmentation of the HTH and its subunits based on deep- 
learning algorithms has been proposed by Billot et al. (2020). Indeed, we 
did resegment the hypothalami of our sample using the automatic 
method proposed by Billot et al. and found a moderate correlation be
tween measurements (rho = 0.57). Considering the apparent differences 
between these measures of HV, further research regarding pitfalls in 
hypothalamic volumetry with semi-automated and fully automated 
methods might be needed.

Nonetheless manual segmentation is still considered the gold stan
dard in hypothalamic volumetry and studies which investigated HV with 
a manual algorithm obtained highly accurate results (Schindler et al. 
2013; Billot et al. 2020; Ali et al. 2022). Yet, manual segmentation is 
often time consuming and can be less accessible (i.e. 7 T MRI required 
(Schindler et al. 2013)) which is why we chose a validated semi- 
automated approach in our study (Wolff et al. 2018). The use of GM- 
TPM-guided anatomical landmarks allows for correct and precise iden
tification of hypothalamic voxels and manual review of the segmenta
tion result is possible while the use of seed growing technique makes the 
segmentation process more efficient. Thus, the method we chose for 
hypothalamic volumetry is a major strength of our study.

Investigating the relationship of APOE ε4-allele carriership and HV, 
we did find significant group differences regarding HV in both ε4-posi
tive and ε4-negative subjects, while group differences were more pro
nounced in APOE ε4-carriers. APOE ε4 carriership in AD has been 
associated with accelerated clinical progression in some cohorts (Sando 
et al. 2008; Qian et al. 2021; Suzuki et al. 2020) as well as faster spread 
of amyloid and tau pathology and brain metabolic alterations (Murphy 
et al. 2013; Steward et al. 2023). Considering this, APOE ε4 could have 
also promoted accelerated neurodegeneration of the hypothalamus in 
subjects with MCI and AD in our cohort, which could explain why 

Table 3 
Positive associations of hypothalamic volume and cortical thickness.

Regions p(FWE-corr) k T MNIxyz

R Cingulate Gyrus 0.000 107 6.52 3––43 30
L Cuneus 0.000 137 5.83 − 20––74 6
L Superior Temporal Gyrus 0.000 482 5.78 − 46––35 9
L Transverse Temporal Gyrus 0.001 ​ 5.35 − 45––23 9
L Superior Temporal Gyrus 0.003 ​ 4.98 − 47––16 − 5
R Frontal Operculum 0.000 188 5.73 39 5 26
R Inferior Frontal Gyrus 0.002 ​ 5.11 52 8 31
R Middle Frontal Gyrus 0.021 ​ 4.52 38 17 35
L Middle Temporal Gyrus 0.000 132 5.58 − 44––66 10
L Middle Temporal Gyrus 0.024 ​ 4.49 − 48––75 12
L Middle Temporal Gyrus 0.027 ​ 4.46 − 46––68 21
R Inferior Frontal Gyrus 0.000 461 5.58 38 26 6
R Insula 0.001 ​ 5.39 35 7 12
R Insula 0.001 ​ 5.31 40 17 7
L Precuneus 0.000 85 5.44 − 8––57 33
R Precentral Gyrus 0.001 94 5.40 37––16 36
L Fusiform Gyrus 0.001 247 5.36 − 26––68 − 6
L Fusiform Gyrus 0.005 ​ 4.90 − 27––56 − 13
R Cuneus 0.001 262 5.36 14––79 11
R Posterior Cingulate 0.002 ​ 5.14 17––66 8
R Lingual Gyrus 0.015 ​ 4.61 16––93 − 3
L Postcentral Gyrus 0.001 78 5.34 − 53––24 32
L Fusiform Gyrus 0.001 87 5.33 − 46––37 − 26
R Middle Temporal Gyrus 0.001 206 5.18 38––63 16
R Middle Temporal Gyrus 0.005 ​ 4.88 48––60 − 2
R Middle Temporal Gyrus 0.012 ​ 4.66 45––68 5
R Inferior Parietal Lobule 0.002 136 5.17 50––30 27
R Inferior Parietal Lobule 0.003 ​ 5.04 44––34 24
R Orbital Gyrus 0.002 54 5.08 4 50––21
L Inferior Frontal Gyrus 0.003 76 5.05 − 59 5 29
R Insula 0.003 72 5.05 39––15 − 0
R Insula 0.003 104 5.04 33––29 17
R Fusiform Gyrus 0.003 51 5.03 47––28 − 25
L Superior Temporal Gyrus 0.004 39 4.95 − 60––7 8
R Middle Occipital Gyrus 0.004 48 4.93 29––86 3
L Precentral Gyrus 0.005 110 4.91 − 52 11 8
L Cuneus 0.005 82 4.88 − 17––77 29
L Middle Temporal Gyrus 0.005 93 4.86 − 58––22 − 13
L Middle Temporal Gyrus 0.022 ​ 4.51 − 65––20 − 17
R Fusiform Gyrus 0.006 71 4.83 28––66 − 9
R Inferior Temporal Gyrus 0.006 49 4.83 50––7 − 39
R Inferior Temporal Gyrus 0.033 ​ 4.39 47––17 − 35
L Inferior Frontal Gyrus 0.010 60 4.72 − 47 40––12
L Middle Frontal Gyrus 0.011 ​ 4.69 − 49 36––4
L Lingual Gyrus 0.010 29 4.72 − 10––61 − 3
R Precuneus 0.011 24 4.68 6––56 34
L Superior Temporal Gyrus 0.013 19 4.65 − 42––59 27
L Dorso-lateral Prefrontal Cortex 0.014 27 4.62 − 38 20 28
L Cuneus 0.015 35 4.61 − 20––87 21
L Middle Temporal Gyrus 0.016 19 4.59 − 59––57 6
L Middle Temporal Gyrus 0.016 38 4.58 − 57––57 − 14
L Middle Occipital Gyrus 0.017 37 4.57 − 31––84 14
L Postcentral Gyrus 0.018 25 4.56 –32––28 49
L Superior Frontal Gyrus 0.018 14 4.56 − 4 57––20
R Fusiform Gyrus 0.019 21 4.55 42––49 − 15
L Insula 0.020 15 4.53 –32 21 11
R Postcentral Gyrus 0.028 12 4.44 66––11 15
L Precentral Gyrus 0.031 23 4.41 − 35––20 38
L Supramarginal Gyrus 0.032 11 4.41 − 60––45 31
L Precentral Gyrus 0.033 10 4.40 − 45––13 29

Results are listed at p < 0.05 (voxel-level FWE-corrected) with corresponding 
cluster size (k), peak T-value and MNI coordinates. Bold text is used to indicate 
primary clusters, while secondary peaks within a cluster are not formatted bold. 
FWE family wise error, L left, R right.
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Fig. 4. Radar chart illustrating the correlations (i.e. Spearman rho) between hypothalamic volume (HV) and individual source-based morphometry (SBM)-based 
structural covariance networks across diagnostic groups and within the entire sample. Components significantly correlated with HV (i.e. whole sample; pFDR < 0.05) 
are shown to the left with yellow/red indicating positive covariation and blue colours indicating negative covariation. Scatter plot illustrates the relationship between 
HV and temporomesial component 8 (C8) and the trend-level significant (p < 0.05 uncorrected) Group*C8 interaction term. HTH hypothalamus. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 4 
Partial correlations of hypothalamic volume with gray matter structural covariance networks across diagnostic groups.

Group
SBM Components Pooledrho pFDR CN rho pFDR MCI rho pFDR AD rho pFDR

C1 0.20 0.02 0.21 n.s. 0.12 n.s. 0.41 n.s.
C2 0.08 n.s. 0.01 n.s. 0.08 n.s. 0.04 n.s.
C3 0.31 0<.001 0.31 n.s. 0.30 0.04 0.30 n.s.
C4 − 0.08 n.s. − 0.06 n.s. − 0.13 n.s. − 0.10 n.s.
C5 − 0.12 n.s. 0.05 n.s. − 0.13 n.s. − 0.17 n.s.
C6 0.18 0.03 0.06 n.s. 0.25 n.s. 0.15 n.s.
C7 0.30 0<.001 0.29 n.s. 0.30 0.04 0.19 n.s.
C8 0.43 0<.001 0.59 0.002 0.36 0.011 0.31 n.s.
C9 0.43 0<.001 0.42 0.015 0.46 0.002 0.48 0.019
C10 0.08 n.s. 0.00 n.s. 0.09 n.s. − 0.01 n.s.
C11 0.06 n.s. 0.16 n.s. − 0.14 n.s. 0.23 n.s.
C12 0.24 0.004 0.26 n.s. 0.25 n.s. 0.12 n.s.
C13 0.12 n.s. 0.23 n.s. 0.13 n.s. 0.01 n.s.
C14 0.26 0.002 0.28 n.s. 0.24 n.s. 0.05 n.s.
C15 0.26 0.002 0.16 n.s. 0.21 n.s. 0.27 n.s.
C16 0.31 0<.001 0.20 n.s. 0.35 0.011 0.52 0.014
C17 − 0.10 n.s. − 0.08 n.s. − 0.02 n.s. − 0.22 n.s.

Partial spearman correlations (rho) of structural covariance network loading coefficients with hypothalamic volume across diagnostic groups [all partial spearman 
correlations adjusted for TIV, age, gender and diagnostic groups (pooled group only)]. Results are listed at p < 0.05 False Discovery Rate (FDR) corrected; n.s. not 
statistically significant; CN cognitively normal; MCI mild cognitive impairment; AD alzheimer’s dementia; SBM source-based morphometry.
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changes would be more pronounced in APOE ε4-carriers.
In a subsample (N = 95) with available CSF data, we did not find 

significant differences of HV between AB+ vs. AB- subjects. It needs to 
be noted though, that these results are based on pooled samples due to 
small sample sizes, although diagnostic groups were taken into account. 
Formation of AB plaques (Ogomori et al. 1989; Standaert et al. 1991) 
and neurodegeneration (Ogomori et al. 1989; Standaert et al. 1991; 
Baloyannis et al. 2015; Baloyannis et al. 2016) have been shown to affect 
the HTH of AD patients. Yet, MRI-measured atrophy does not always 
seem to correlate with amyloid distribution in the AD brain. Jack et al. 
(2013), for instance, found brain atrophy to correlate only with distri
bution of neurofibrillary tangles (NFT) not AB, showing that tau- 
mediated neurodegeneration might have more impact on volumetric 

changes. Studies correlating CSF-t-tau and p-tau with regional and 
whole brain atrophy in AD have been reporting mixed results 
(Schönknecht et al. 2003; Sluimer et al. 2010; Tarawneh et al. 2015; 
Llibre-Guerra et al. 2019; Contador et al. 2021). In our study, we did not 
find a significant correlation of total HV with CSF t-tau/p-tau. Overall, 
our results do not support a strong relationship of AD biomarker status 
with hypothalamic atrophy.

Considering metabolic impacts, we investigated correlations of HV 
with BMI and longitudinal weight changes yet did not find significant 
associations. Previous VBM studies in obese but neurologically healthy 
humans found contradicting results regarding the association of HV with 
BMI (Horstmann et al. 2011; Kurth et al. 2013). Using the same semi- 
automated algorithm for HTH volumetry as in our study, Thomas 

Fig. 5. Structural covariance of hypothalamic volume (HV) with cortical thickness (CTH) and gray matter volume (GMV) depending on apolipoprotein E (APOE) ε4- 
allele carriership. Numbers indicate location on the z axis and colour indicates t-score value. ε4 = 1 homo- or heterozygous carriership of APOE ε4-allele, ε4 = 0 no 
APOE ε4-allele carriership. Results of CTH analyses are illustrated at p < 0.05 family-wise error (FWE) voxel-level corrected and k = 10. Voxel-based morphometry 
(VBM) GMV analyses are illustrated at a liberal, uncorrected threshold of p < 0.001 and k = 100.
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et al. (2019) also found no correlation between HV and BMI. Instead, 
they found associations of BMI with microstructural changes in the HTH 
with diffusion tensor imaging (DTI). Spindler et al. (2020) also discov
ered a significant association of BMI and mean diffusivity (MD) within 
the anterior–superior HTH in a large sample of healthy subjects. This 
could be an indicator that volumetry might be limited in detecting subtle 
hypothalamic changes in AD, which in turn could have limited our 
results.

As a homeostatic and autonomic key structure, the HTH is densely 
connected not only within the Papez circuit but throughout the entire 
CNS. On the topic of neural networks, Kim et al. (2022) investigated the 
alteration of large neural circuits in AD, which connect the hippocam
pus, thalamus, and HTH with septal, olfactory, visual, and other limbic 
brain areas and influence AD pathology and clinical manifestation. They 
argue that impaired connectivity between these areas could help explain 
many of the symptoms of AD and possibly provide new therapeutic 
targets. Therefore, we additionally investigated hypothalamic structural 
covariance with the entire brain. Structural covariance analyses – both 
seed based and SBM based – have shown to reliably provide information 
regarding the structural organization of the brain on a network level (Xu 
et al. 2009; DuPre and Spreng 2017). Across the entire sample, we 
observed comparable results in GMV, CTH and SBM structural covari
ance analyses, with HV being associated with widespread parts of the 
brain, most significantly however the hippocampal region, next to 
neighbouring subcortical mes- and diencephalic structures. While ana
lyses of GMV showed substantial overlap with disease related atrophy 
(see Fig. S1), CTH analyses only yielded smaller overlapping regions 
within the posterior cingulum and the left temporal lobe. While the 
HTHs dense connections that include brain regions not primarily 
affected by AD may have contributed to this observation, it must be 
noted that CTH – in contrast to VBM based analyses of GMV – captures 
only one aspect of brain morphology.

Considering potential diverging and group specific relationships of 
HV with brain structural parameters (i.e. group*HTH Interaction term) 
no significant results were found in VBM and CTH analyses. Only our 
SBM analyses point to an attenuated association of HV with the hippo
campal region in humans with more advanced disease stages, although 
this observation did not reach significance when taking multiple com
parisons into account (i.e. p > 0.05 after FDR correction). Nevertheless, 
considering the critical role of the hippocampus in AD these results seem 
plausible and may be explained by increasing hippocampal atrophy and 
a delayed – and potentially secondary – atrophy of the HTH. The hip
pocampus is a pivotal brain structure with regards to episodic and 
spatial memory (Maguire et al. 2000; Di Paola et al. 2007), thus its early 
affection in AD contributes to episodic memory loss. However, moving 
away from a hippocampus-centred understanding of the disease, some 
authors argue that deficits of episodic and spatial memory in AD can 
only be fully understood by including other structures of the Papez 
circuit and their interconnections in future analyses (Di Paola et al. 
2007; Forno et al. 2021; Aggleton et al. 2022). Under this consideration 
we also investigated VBM-based associations of HV with WMV. 
Although again, no significant group*HTH interaction term was 
observed, we did find a positive association of HV with fornix WMV 
within the entire sample. Several authors have previously found atrophy 
of the fornix in AD which has been associated with changes in hippo
campal volume and clinical manifestations of AD (Callen et al. 2001; 
Copenhaver et al. 2006). We speculate that hippocampal atrophy in AD 
might contribute to atrophy of the fornix which in turn may cause sec
ondary atrophy of the HTH. Additionally, a primarily neurodegenerative 
genesis of hypothalamic atrophy in AD is also possible since neuro
degeneration in AD spreads across the brain following Braak’s stages. 
From the hippocampus, which is affected in the early entorhinal stage, 
tau-mediated neurodegeneration is postulated to spread across the brain 
transneuronally (Vogel et al. 2020), thus areas connected to the hip
pocampus, like the HTH, are likely to be affected as well. To summarize, 
both secondary atrophy following hippocampal atrophy as well as 

atrophy resulting from tau-mediated neurodegeneration in AD are 
possible causes for hypothalamic atrophy in AD and future research 
should address potential mechanisms involved.

Hypothalamic dysfunction has been discussed as a driver of 
noncognitive and metabolic AD symptoms like late-life weight loss, 
reduced bone density and circadian disruption (Loskutova et al. 2010; 
Ishii and Iadecola 2015; Hiller and Ishii 2018), thus further in
vestigations of hypothalamic involvement in AD might help discover 
new therapeutic targets. Since metabolic alterations have been shown to 
have multiple adverse effects in AD (Loskutova et al. 2009; Burns et al. 
2010; Pillai et al. 2023) and considering that our data indicate early 
involvement of the HTH, therapeutic approaches specifically targeting 
hypothalamic function in early disease stages could have implications 
for disease progression and the overall prognosis. However, while there 
have been pharmacological as well as interventional approaches tar
geting disrupted hypothalamic pathways in AD mouse models, like 
leptin therapy (Tezapsidis et al. 2009; Greco et al. 2010), glucocorticoid 
receptor antagonists (Lesuis et al. 2018) or light flicker stimulation of 
the central clock in suprachiasmatic neurons (Yao et al. 2020), prom
ising studies in humans are still missing.

Our study has several limitations. First, this is a secondary analysis of 
pre-existing data with only limited AD biomarker data for our subsam
ple. Nevertheless, the data we used were acquired following strict and 
optimized protocols of clinical diagnosis and image acquisition. Of note, 
ADNI used a clinical approach for diagnosis (McKhann et al. 1984; 
Petersen et al. 2010), yet current diagnostic consensus guidelines 
highlight the necessity of fluid or imaging biomarker positivity to 
accurately diagnose AD (Dubois et al. 2021). Interpreting biomarker- 
negative AD is challenging, yet in amyloid-negative subjects with clin
ical AD, cognitive decline may be caused by other pathologies such as 
vascular disease, depression (Landau et al. 2016; Jack et al. 2016) or 
other neurodegenerative diseases (e.g. LATE; limbic-predominant age- 
related TDP-43 encephalopathy; Nelson et al. 2019). For our study, CSF 
AD biomarker data were available in a subsample only with some par
ticipants being categorized as AB- MCI or AD. Albeit limited by small 
sample sizes, corresponding analyses of HV in AB- and AB+ subsamples 
do support the findings from our main analyses. Still, in light of this 
limitation, the results of our study should be interpreted with caution 
and reproduced in more detailed characterized populations. Another 
limitation is the cross-sectional and purely associative design of our 
study, which does not allow claims of causality. Although our volu
metric approach is accurate, it does not allow for segmentation of in
dividual hypothalamic nuclei which might provide further functional 
insight into hypothalamic involvement in AD than just volumetry of the 
whole HTH. Lastly, we used VBM for analysis of gray and white matter 
covariance, which can have limited spatial resolution regarding small 
subcortical structures. Particularly for white matter changes, more ac
curate measures like DTI are required to provide additional and more in- 
depth insight.

5. Conclusions

To summarize, we found increasing hypothalamic atrophy from 
early, non-dementia stages (i.e. amnestic MCI) towards dementia stages 
of AD in comparisons to healthy controls. While HV showed strong 
structural covariance with structures typically affected by MCI and AD, 
our findings suggest that AD related atrophy of the hippocampus and 
structures of the Papez circuit could promote secondary atrophy of the 
HTH. Future studies are required to evaluate additional contributions of 
AD pathology.
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