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Breast cancer is a highly complicated disease. Advancement in the treatment and
prevention of breast cancer lies in elucidation of the mechanism of carcinogenesis and
progression. Rodent models of breast cancer have developed into premier tools for
investigating the mechanisms and genetic pathways in breast cancer progression and
metastasis and for developing and evaluating clinical therapeutics. Every rodent model
has advantages and disadvantages, and the selection of appropriate rodent models with
which to investigate breast cancer is a key decision in research. Design of a suitable
rodent model for a specific research purpose is based on the integration of the
advantages and disadvantages of different models. Our purpose in writing this review is
to elaborate on various rodent models for breast cancer formation, progression, and
therapeutic testing.
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INTRODUCTION

Breast cancer is the most commonly diagnosed cancer and one of the most common cause of cancer
death in women worldwide. Advancement in treatment and prevention of breast cancer lies in
elucidation of the mechanism of carcinogenesis and progression. Rodent models of breast cancer
have developed into premier tools for breast cancer research, and they have generated important
insights into the mechanisms that underpin development of the disease and interventional
therapies. This review summarizes various rodent models for breast cancer formation,
progression, and therapeutic testing.
A BRIEF HISTORY OF RODENT CANCER MODELS

In the past century, rodent models have proved to be powerful tools in improving knowledge of the
underlying mechanisms and genetic pathways of breast cancer and have also created approaches for
modeling clinical tumor subtypes and developing innovative cancer therapies. Certain mouse lines
can naturally develop breast cancer, or they can be transplanted with breast cancer. Tumors can also
be induced by manipulating the mouse genome or by delivery of a viral infection or carcinogen. The
relatively low cost of mice and their high reproductive cycle of only 9 weeks make them excellent
models for cancer research. In 1911, the first transplantable mouse mammary tumor line and the
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epithelial origin of a spontaneous mammary tumor were
described by Haaland (1). Jacksons Laboratories showed that a
retrovirus caused a high incidence of mammary tumors in mice
in 1936 (2). The first xenograft breast cancer model was reported
in 1962 via the heterotransplantation of human breast cancer
into an immune-deficient mouse (3). The development of
genetically engineered animal models offered a great leap in
understanding the genetic basis of breast cancer. The first report
of a transgenic mouse model of breast cancer, Oncomouse. In
1984, The Philip Leder research group generated transgenic mice
using mouse mammary tumor virus (MMTV)/c-myc fusion gene
expression. The mice developed mammary adenocarcinomas
spontaneously (4), and 3 years later, they produced transgenic
mice with coexpression of MMTV/v-Ha-ras and MMTV/c-myc
genes, which resulted in a dramatic and synergistic acceleration
of tumor formation (5). These milestones established an
entirely new research tool with which to explore the genetic
processes of breast cancer. The first transgenic mouse model
(GEMM) of HER2-positive breast cancer, reported in 1988,
represented another milestone in breast cancer research (6). In
1999, Chuxia Deng and colleagues succeeded in developing a
mouse model that ablated BRCA1 specifically in mammary
epithelial cells, resulting in mammary tumors (7). This mouse
model offered a notably large amount of information that greatly
facilitated our understanding of the gender- and tissue-specific
tumor suppressor functions of BRCA1 and enriched insights into
applying these preclinical models of disease to breast cancer
research. However, the GEMM requires time-consuming and
expensive work, and another main drawback is that it is highly
difficult to control the spatial and temporal expression of a gene
of interest. Actually, most human breast cancers are not due to
hereditary mutations, rather they arise from normal cells that
later suffered spontaneous mutations. The technique of virus-
mediated gene transfer into selected mammary cells (such as
stem cells and specific progenitor cells) at selected times can
overcome many of the shortcomings of the existing mouse
models and more closely mimics human breast cancer
formation in which only one or a few cells mutate to initiate
cancer development (8).
TRANSPLANTABLE MOUSE MODELS FOR
BREAST CANCER

Human cancer cells can be grown as transplants in mice. These
transplantable models are simple but have been proven to be
highly useful for assessment of breast cancer features, biological
behaviors, metastatic potential, and response to therapy.

Cancer Cell Line Transplantation
Mouse Model
Cell-derived xenograft (CDX) of human breast cancer is
performed from aggressive cancer cell lines. The CDX model
from different tumor cell lines has unique characteristics,
including relatively homogenous histological features,
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molecular subtype, and metastatic potential, among other
features. The CDX model makes it possible for different
mammary cancer cell lines to be transferred to the mouse in a
short time, allowing validation of the target genes of interest and
the possibility of research on metastasis and therapy response. It
represents a relatively homogenous mass but cannot mimic the
heterogeneity or the tumor microenvironment of human breast
cancer (9). This technique is usually performed in nude mice
(deficient in T-cell function) or other immunocompromised
mice but cannot mimic the immune system reaction. If the
cancer cells are derived from mouse, they can also be grafted into
mice with an intact immune system (10, 11). And the long-term
growth in vitro can alter some features from its origin cell.
Triple-negative breast cancer cell lines such as MDA-MB-231,
MDA-MB-435, and SUM1315 can be used to generate stable
orthotopic or spontaneous metastasis models of breast cancer via
orthotopic injection in the mammary fat pad (12). The
metastatic MDA-MB-231 and SUM149 CDX models can also
be generated by injection into the mouse tail vein (13). Not all
breast cancer cell lines from human can be used to successfully
establish a CDX mouse model (14). ER-positive luminal A cell
lines such as T47D or MCF-7 can only form a tumor mass in
immunodeficient mice supplemented with subcutaneous
estradiol pellets (15), which produces 18–40 times the
physiological levels of estrogen in mice (16, 17). HER2 subtype
cell lines such as SKBR3 and MDA-MB-453 cells have poor
tumorigenic potential (18).
Patient-Derived Tumor Xenograft
Mouse Model
Due to the limitation of CDX models, the patient-derived
xenograft (PDX) is generated by xenografting fresh human
tumor biopsies that recapitulate the diversity of breast cancer
into host mice. This model reflects the tumor original behavior,
histopathology, drug response, and metastatic potential of the
original tumor (19). In brief, human tumor fragments or tumor
cell suspensions are implanted into the immunocompromised
mice and subsequently passaged through several generations in
mice. The more heavily immunocompromised mice are usually
used to generate PDX, such as NOD-SCID mice (deficient in T-
cell and B-cell functions) and NSG mice (deficient in T-cells, B-
cells and NK cells).

The PDX modes are relatively stable after the third passage in
mice (20) and have relatively stable biological behaviors, such as
gene expression profiles, intrinsic phenotypes, and genomic
alteration, that are similar to the source of human breast
cancer (21–24). PDX also has selected structural variation or
mutation differences with the original primary tumor, perhaps
due to the adaption to transplantation into the new
microenvironment (25). PDX models appear to retain the
heterogeneity of the parental tumor of origin and experience a
“bottlenecking” clonal selection during transplantation and serial
passaging (26). Ding et al. reported comprehensive genomic
sequence analysis of DNA samples from an African-American
patient with basal-like breast cancer for peripheral blood, the
March 2021 | Volume 11 | Article 593337

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Liu et al. Rodent Models of Breast Cancer
primary tumor, a brain metastasis, and a xenograft derived from
the primary tumor (25). That group found that the PDX derived
from the primary tumor contained all of the primary tumor
mutations and displayed a mutation enrichment pattern that
resembled the metastasis. The metastatic subclone was present
within the primary tumor, the aggressive subclone with clonal
selection in PDX. The PDX drug screening test can mimic and
predict drug efficacy, especially in triple negative breast cancer
(27), and is a pivotal preclinical tool for evaluating drug response
and study of the clonal evolution of tumors and new biomarkers
(15). TNBC tumors and to a lesser degree the HER2+ tumors,
readily adapt to growth in mice, whereas only 2.5% of ER+
tumors successfully formed stable patient-derived breast cancer
xenografts (28). PDX models can’t mimic the immune system
and tumor-host interaction because it must also be grown in
immunocompromised mice.

Mouse Intraductal Model (MIND) for
Studying Cancer Progression and
Immunotherapy
The breast ductal system is a complex series of branching tubules
extending from intralobular ductules to the major lactiferous
ducts that terminate in the nipple. The mouse intraductal model
is based on the special structure of the mammary mouse gland.
Human cancer cells can be introduced directly into the mouse
mammary ducts in immunodeficient mice to mimic the natural
progression of cancer cells in the mammary microenvironment.
Behbod et al. established the ductal carcinoma in situ (DCIS)
model by injecting the human DCIS cell lines (MCF-10 and SUM-
255) into mouse mammary ducts via up-the-teat injection (29).
This approach mimicked breast tumor carcinogenesis and
progression from in situ to invasive disease and spontaneous
metastasis to the relevant sites. In contrast to fat-pad-grafted ER+
tumor cell lines that require estrogen supplement, the MIND of
MCF-7 achieved a high engraftment rate without hormone
supplements and recapitulated the histopathology and kinetics
of human ER-positive tumors (16, 17). These MIND models also
often developed bone, lung, and brain metastases, whereas fat pad
injection xenografts developed few brain and no bone metastases.
The Ki67 indices of MIND MCF-7 tumors were 23%, highly
similar to MCF-7 cell lines, and the gene expression signatures are
highly similar to the luminal B subtype of clinical samples, as
shown by Affymetric microarray and PAM50 (30). For the triple-
negative breast cancer mouse model, a fully immunocompetent
4T1-based intraductal model can mimic breast cancer
advancement and metastasis to the lungs via lymphatic or
hematogenous dissemination within 4 weeks (31–33), and it can
also disseminate to the liver, brain and kidney (34). 4T1 is a
mouse breast cancer line derived from a spontaneously arising
mammary tumor in BALB/cfC3H mice (35). The 4T1 MIND
models overcome immunosuppression and allow effective
immunotherapy research for TNBC (33, 36). This model is
predictive, retransplantable, and genomically stable and is an
economical and practical mouse model for translational
research and study of physiologically relevant hormone action
in breast carcinogenesis.
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CARCINOGEN-INDUCED RODENT
MODELS

Chemical compounds can induce breast cancer. For
example, the carcinogen 7,12-dimethylbenzathracene
(DMBA), delivered intragastrically by gavage, can induce
mammary adenocarcinomas with several morphological types
in mice (37). The induced tumors were luminal-like and mostly
ER/PR+ (38, 39). Previous research indicated that estrogen
exposure was closely related to elevated breast cancer risk in
women (40, 41). The 17b-estradiol-induced mammary cancers
highly express ER, PR, and GATA binding protein 3 (42–45),
and others such as N-nitroso-N-methylurea (NMU) can induce
mouse breast cancer similar to that of low-grade estrogen-
receptor positive human breast cancer (46–48). Spontaneous
chemically induced mouse models are helpful for investigation
of the pathogenesis and therapeutics of breast cancer (49).
GENETICALLY ENGINEERED MOUSE
MODELS OF BREAST CANCER

Genetically engineered mouse models (GEMM) of breast cancer
have supplied a wealth of knowledge for both basic cancer
research and translational oncology by introducing DNA into
the mouse genome. GEMMs reflect some of the diversity of
genetic lesions in human breast cancer. These models include
three broad groups: transgenic mouse model, knockout mouse
model, and genetic models of breast cancer based on intraductal
injection of virus to modify the genes of the mammary cells.

Transgenic Mouse Model
Transgenic mouse models refer to those which have exogenous
DNA integrated in their germline as a consequence of
experimental DNA transfer application. The integrated DNA
may or may not be derived from the same species as the host
genome, it may or may not be targeted to an intended site of
incorporation in the genome, and it may or may not encode for a
functional gene.

The MMTV-PyMT transgenic mouse is a model that carries
the polyoma virus middle T-antigen under the control of the
mouse mammary tumor virus (MMTV) promoter. The PyMT is
involved in multiple oncogenic pathways that lead to an
aggressive tumor phenotype such as Src, Ras, and PI3K (50–
54). MMTV-PyMT females develop multifocal, poorly
differentiated, highly invasive ductal carcinoma as early as 4
weeks of age, reaching the maximum tumor burden at 12 weeks
of age, and they also exhibit lung metastasis near 10 weeks of age
(55–59). This model is used in breast cancer research to analyze
the mechanism of carcinogenesis and alter the tumor
microenvironment. Maglione also reported that atypical lesions
had levels of detectable ER expression, and the mammary
intraepithelial neoplasia and tumor cells had variable sporadic
ER-positive nuclei staining (58). Previous research indicated that
the PyVT mammary tumors were shown to be ER+, PR+, P53+,
and HER-2+ via immunohistochemistry at the early stage of
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tumor formation, progressing to the triple-negative subtype (57,
58). This model has drug resistance to cisplatin and paclitaxel,
but tamoxifen is effective in the prestage and early stage of tumor
formation (57).

The Wnt-1 (int-1) proto-oncogene was originally cloned
following activation by MMTV insertion in mouse mammary
tumors (60, 61). The MMTV-wnt-1 mouse model was
established with the MMTV-LTR upstream of wnt1 insertion
in the opposite transcription orientation (62, 63). This model
is characterized by grossly ductal hyperplasia with extensive
fibrosis, and these mice can develop breast cancer at an onset
of 24 weeks (64). Females cannot deliver milk to their young
because of extensive ductal hyperplasia (64). The tumors in
MMTV-wnt-1 transgenic mice are composed of myoepithelial
(basal-like) and luminal epithelial cells. b-catenin is an integral
player in the Wnt signal transduction pathway, and b-catenin
transgenic (MMTV‐bcatDN) mice exhibit mammary gland
hyperplasia and mammary adenocarcinoma, which are highly
similar to the corresponding lesions in MMTV-wnt-1 mice (65).
Wnt10b is a ligand that activates the canonical Wnt/b-catenin
pathway, and MMTV-Wnt-10b transgenic mice showed
hyperplastic mammary development involving highly branched
mammary ducts and gynecomastia (66). LRP6 is a Wnt signaling
coreceptor, and MMTV‐LRP6 mice exhibit significant
hyperplasia with upregulated expression of Axin2, Cyclin D1,
and c-Myc (67). MMTV-c-Myc and MMTV-int2 mice also
develop pronounced mammary hyperplasia and adenocarcinoma
in proportion (65, 68). Indeed, the wnt-associated mouse model
has made a great contribution to elaboration of the wnt pathway in
breast carcinogenesis.

The first MMTV-ErbB2 transgenic mouse model expressed
an activated Erbb2 under promoter of MMTV-LTR, and these
mice are viable and fertile (6). There is no phenotypic effect in
males. This transgene is expressed at low levels in the normal
mammary epithelium, salivary gland, and lung (69, 70), and
higher expression is detected in tumor tissue. This model
produces multifocal and stochastic mammary tumor formation
near 15 weeks of age (69, 71) and lung metastasis with long
latency (approximately 32 weeks or longer) (72) and had positive
cyclin D1 and CDK4 expression and a high Ki-67 proliferative
index. In contrast to the MMTV-ErbB2 mouse line, Muller et al.
later established transgenic mice carrying unactivated neu under
the MMTV promoter (73). The mice began to develop focal
mammary adenocarcinoma surrounded with hyperplastic
mammary epithelium at 16 weeks of age, with decreased neu
intrinsic tyrosine kinase activity. Many of these tumor-bearing
transgenic mice with unactivated neu also developed metastatic
tumors in the lung (73). Li et al. found that 37% of tumors in the
MMTV-ErbB2 mouse had mis-sense mutations in p53 (74), and
thus, they established bitransgenic mice carrying MMTV-neu
and a 172Arg-to-His p53 mutant (p53-172H). The bitransgenic
mice developed anaplastic and aneuploidy tumors that exhibited
increased apoptosis, distinct from the tumors with diminished
apoptosis arising in p53-null mice (74).

The C3(1)/SV 40/t-antigen (C3(1)/Tag) mouse model contained
a recombinant gene expressing the simian virus 40 early-region
Frontiers in Oncology | www.frontiersin.org 4
transforming sequence under rat prostatic steroid binding protein
[C3(1)]. Female hemizygous mice generally developed mammary
hyperplasia at 9 weeks of age and mammary intraepithelial
neoplasia with similarities to DCIS at 12 weeks, with subsequent
development of mammary adenocarcinoma at an onset of 24 weeks
in 100% of the animals and 15% incidence of lung metastasis (75–
81). This model develops invasive carcinoma independently of
hormones or pregnancy (72). All mammary adenocarcinomas
were diffuse immunopositive for CK14, CK18, and p53 and
negative for aSMA, ERa, PR, and C-erbB-2 (81). Previous study
indicated that human basal-like breast cancer exhibits a high
frequency of p53 mutation of deletion. It is a suitable mouse
model for research on basal-like breast cancer because of the gene
expression and DNA somatic alteration levels.

Cyclin D1 is essential in breast carcinogenesis induced by
c-neu and v-Ha-ras and not induced by c-myc or Wnt-1 (82).
The MMTV-cyclin D1 mouse can develop mammary
adenocarcinomas quite late stochastically (83, 84). Cyclin E is a
cancer marker that is the limiting factor for the transition from
G1 to the S-phase of the cell cycle, which determines ignition of
DNA duplication. Previous research indicated that the 27% low-
molecular-weight isoform of cyclin E transgenic mice can induce
metastatic mammary carcinoma (85).

Knockout Mouse Models of Breast Cancer
Knockout animals are mice with targeted disruption of selected
endogenous gene sequences. These models are used to reveal
valuable clues related to the biological and molecular function of
a gene in the setting of a developing or developed tumor. The
constitutive knockout model refers to the whole-body knockout
model, i.e., the target gene is knocked out in all tissues at all
times. Many tumor suppressors often result in lethality during
embryonic development or at developmental stages prior to
tumor formation. This obstacle has been effectively overcome
by applying the conditional knockout model (86) in which the
gene knockout can be spatially and even temporally regulated.
With a conditional KO, gene inactivation can occur in a certain
tissue type, made possible by Cre-LoxP and Flp-Frt recombinase
system. Today, the development of the clustered regularly
interspaced short palindromic repeats (CRISPR)/Cas9
technique has made conditional knockouts even more popular
and widely used. This new technology is more efficient and easier
than the Cre-LoxP or Flp-Frt recombinase technology.
Therefore, we summarize the tumor phenotype of the popular
conditional knockout strains reported in the literature.

BRCA1 inherited mutations predispose carriers to female breast
and ovarian cancers. Constitutive knockout of mouse BRCA1
causes recessive mouse embryonic lethality (87), and therefore,
the BRCA1 conditional mutant mouse model was used to
overcome this obstacle (88). Exon 11 is a large central exon of
3426 bp that represents 60% of the coding sequence in BRCA1 (89).
In 1999, Xu established a BRCA1flox11 mutant mouse, which was
achieved by deleting only exon 11 of the full-length BRCA1 gene
and leaving expression of the short BRCA1 transcript with loxP sites
(BRCA1flox11) (7). The 25% BRCA1flox11mutant mouse develops
mammary tumors after a long latency (7). The 94% BRCA1flox11
March 2021 | Volume 11 | Article 593337
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mouse develops mammary tumors with a long latency (T50 = 17
months), and the tumors exhibit an atypical medullary phenotype
strongly reminiscent of basal-like breast tumors (90). Xu et al. found
that the BRCA1flox11 mutation mouse often had had spontaneous
p53 mutation, and thus they introduced heterozygous deletion of
p53 in the BRCA1flox11mouse, which accelerated tumor formation
(91). Weaver et al. also revealed that certain of the tumors had
structural abnormalities on the map location of c-myc gene, Rb1,
and p53, similar to BRCA1-associated breast cancer in patients (92).

Other conditional BRCA1 alleles are reported to cause
functionally null BRCA1 alleles by flanking exon 2 (BRCAf2)
(90), exons 5–6 (BRCA1f5–6) (93), exons 5–13 (BRCA1f5–13) (94),
or exons 22–24 (BRCA1f22–24) (95). The BRCA1f5–13 mouse had
intermediate to high grade tumors with high mitotic count,
expansive growth, moderate to high nuclear grade also
displayed ER-negative immunohistochemistry staining with
pushing borders, and increased expression of basal epithelial
markers, similar to human basal-like breast cancer (94). The 64%
mouse with BRCA1f22–24 mutat ion combined with
heterozygosity for a p53 mutation developed tumors with
basal-like markers in all cases before 22 months of age. This
model had high histological grade, central necrotic areas, and
presence of homologous metaplastic elements and is a suitable
model for metaplastic basal-like breast cancers (95).

Germline mutations of BRCA2 are associated with one-third
of hereditary breast cancer. Jonker et al. generated a mouse
model with conditional mutants of BRCA2f11 (flanking exon 11
of the gene with loxP sites) and found that no BRCA2f11 mice
developed tumors. The mammary glands and skin frequently
developed tumors in females carrying conditional BRCA2f11 and
p53 knockout alleles (96). The vast majority of the mammary
tumors were carcinomas with myoepithelial or basal cell types.
Most tumors arising in the conditional BRCA2f11 and p53
knockout mice had high-grade invasive ductal carcinoma, with
a solid growth pattern, a large CK8-positive and ER-negative cell
type with high mitotic count, high-grade nuclei and with pushing
borders (96). The tumors often harbor the undifferentiated basal
cell type. Based on the results from cross-species comparison by
unsupervised clustering, these tumors are closely similar to
human BRCA1-mutated breast cancers with basal-like
phenotypes. Ludwig generated mice with BRCA2f3–4 (flanking
exons 3 and 4 of the gene with loxP sites) mutation, which had a
high incidence (77%) of breast tumors that developed in one or
more glands after a long latency (time for median tumor-free
survival of approximately 1.4 years; total of 40 tumors in 20
animals) (97). In addition, Cheung generated a mouse model
with BRCA2f9–11 (flanking exon 9–10 of the gene with loxP sites),
which had mammary adenocarcinomas after a long latency
(average, 1.6 years). A subset of these tumors also showed
downregulated p53 expression (98).

As mentioned previously, the p53 mutation is linked tightly
with breast cancer. The conditional knockout p53D2–10 (deletion
of exon 2–10 of the gene with Cre recombinase) model generated
by Jonker et al. develops lymphomas and sarcoma rather than
epithelial tumors (96), and therefore, those researchers crossed
p53D2–10 mice with K14-cre transgenic mice (Cre recombinase
Frontiers in Oncology | www.frontiersin.org 5
expression is restricted to skin and mammary gland epithelium
and other epithelial tissues). The resulting K14-cre p53D2–10 mice
developed mammary tumors with a median latency (T50) of 288
days. Interestingly, 38% of the mammary tumors were pure
epithelial tumors (intermediate to high-grade), 48% were poorly
differentiated biphasic carcinoma, and 14% were well
differentiated biphasic carcinoma. The molecular signatures of
these tumors showed a significant association with human
sporadic ER-negative tumors (94). These tumors closely mimic
human sporadic basal-like breast cancer. Lin et al. generated a
mouse breast cancer model with inactivated p53 (deletion of
exon 2–10 of the gene with Cre/loxp) in mammary epithelial cells
(99). The tumors are heterogeneous, including adenocarcinoma,
myoepithelial adenocarcinoma, spindle cell tumor, and
adenosquamous carcinoma, and most were poorly
differentiated invasive adenocarcinomas, which share the most
histopathological similarity with human breast cancer. A total of
35% had c-myc amplification, and 66% had erbB2
overexpression. The tumors were initially ERa-positive but
progressed to ERa-positive and -negative tumors (99), similar
to human breast cancer. Multistep histopathological changes and
alterations in the ERa expression pattern are observed during
progression of mammary carcinogenesis in these models.

PTEN is a tumor suppressor that is frequently mutated in
breast cancers. Germline PTEN mutations cause inherited
syndromes that lead to an increased risk of breast cancer. Wu
Hong and colleague generated PTEND5 allele (flanking exon 5 of
PTEN with loxP sites) and established mammary-specific PTEN
deletion mice (100, 101). PTEN null mammary epithelial cells
were hyperproliferative and showed decreased apoptosis. Mutant
females developed mammary tumors with upregulated
populations of cells expressing cytokeratin 5 and 6 within 400
days (101). When a PTEN conditional allele was mated with
MMTV-NIC mice, which coupled expression of Cre and
activated ErbB2 from the bicistronic transgenic transcript, all
female mice developed multifocal mammary tumors and high
lung metastases, which displayed histopathological and
molecular characteristics of the luminal subtype of primary
human breast cancer (102).

Genetic Models of Breast Cancer Based
on Intraductal Injection of Virus for
Delivery of Oncogenic Mutations to Mimic
Human Cancer Formation
Based on molecular biology, breast cancer is highly complicated.
Most human cancers are not due to hereditary mutations, and
instead, they arise from normal cells that later suffer spontaneous
mutations. It is notably difficult to manipulate the spatial and
temporal expression of genes in mouse. Genetic models of breast
cancer based on intraductal injection of a virus can circumvent
selected disadvantages of the typical transgenic or knockout
mouse models. Currently, in clinical and basic research,
compound techniques of mouse models have more practical
applications. The avian leukosis-sarcoma virus (ALSV) and its
specific receptor tumor virus A (TVA) play a vital role in this
model. Mammalian cells lack the TVA gene sequence, and the
March 2021 | Volume 11 | Article 593337
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transfer of the TVA gene to specific cells in mouse renders them
uniquely susceptible to infection by ALSV-based RCAS virus
(103). RCAS viruses can be delivered into mice by injection of
virus-producing cells or by injection of concentrated virus (103,
104). Harold Varmus and colleagues constructed the RCAS-TVA
avian retroviral system, which can carry oncogenes (e.g., K-ras, c-
myc), marker genes (e.g., green fluorescent protein, alkaline
phosphatase), dominant negative tumor suppressors (e.g.,
mutant p53), or recombinases (e.g., Cre) (105). This method
offers a precise way to manipulate the temporal and spatial
expression of genes in the mammary epithelium. A single TVA
mouse stain can be used to evaluate the effects of multiple genes,
individually or in combination, instead of generating a mouse
line for each gene of interest. Yi Li modeled breast cancer in a
mouse with the RCAS-TVA system by mammary gland
intraductal injection (106) (Figure 1). Precancerous lesions can
be detected by 7 days following RCAS-PyMT injection (107).
The PyMT oncogene delivered by RCAS-TVA caused multifocal
mammary tumors after a notably short median latency of only
12.5 days. The tumors were composed of myoepithelial (basal-
like) and luminal epithelial cells and were relatively well
differentiated, consisting of many acini and heterogeneous cell
types with ER positive expression (8, 108). In mice injected with
Frontiers in Oncology | www.frontiersin.org 6
RCAS-erbB2, precancerous lesions can be detected 14 days after
injection (109). The mice developed high grade, poorly
differentiated, stroma-rich, and ER-negative mammary tumors
(109–111).
CHALLENGES IN MODELING ER+
BREAST CANCER

Majority GEMMs are ER negative and most xenograft mouse
models are based on few ER+ cancer cell lines (112). And there
are no reliable mouse models of ER+ breast cancer that are also
estrogen-dependent (113, 114). For example, STAT1−/− mice
express abundant amounts of ER and PR (115), but tumor
development is not hormone-dependent (116). A K-Ras
mutant has been reported to induce ER+ tumors in mice
(114), but the resulting tumors have not been thoroughly
tested for estrogen dependency. As we previous indicated that
the RACS-TVA approach can especially introduce genetic
alterations into only a small number of the mammary cells
(103). Lentiviral PyMT produces both luminal and basal-like
tumors (55). TVA-PyMT mice and TVA-erbB2 mice had ER
expression in greater than 10% of mammary tumor cells (117).
FIGURE 1 | The intraductal injection of retrovirus into mammary glands in vivo with virus vector initiates and promotes carcinogenesis in mouse models. It is a novel
mouse mammary gland cancer model which mimics human breast cancer non-invasive-to-invasive progression with virus vector. Most human breast cancers are
not due to hereditary mutations, rather they arise from normal cells that later suffered spontaneous mutations. This mouse model was established by intraductal
injection of retrovirus carrying the oncogenes with blue dye into one of the fifth mouse mammary glands. The technique of virus-mediated gene transfers into
selected mammary cells (such as stem cells and specific progenitor cells) at selected times can overcome many of the shortcomings of the existing mouse models
and more closely mimics human breast cancer formation in which only one or a few cells mutate to initiate cancer development. It allows temporal analysis of many
processes involved in early breast cancer invasive progression including intraductal cancer cell growth, the cell interactions with the surrounding normal epithelial and
myoepithelial cells, and their escape into the surrounding stroma. Photo of nipple injection – courtesy of Wen Bu (Baylor College of Medicine).
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And PyMT-induced tumors exhibited a two-fold increased ER-
positivity versus erbB2-induced tumors. Compare with mice
mammary glands, rats are more similar to the human breast,
rats mammary glands had a ductal tree terminates in TDLUs
with connective tissues and organized fibroblasts as sheath
around and shows extensive alveolar development (118). Oral
DMBA or intravenous or subcutaneous of NMU induced ER+
and PR+ tumors in rats (119), and many of these tumors harbor
Ras mutations (49, 120). Ras signaling is frequently activated in
human breast cancer, usually not by mutations in a Ras gene per
se, but by mutations and overexpression of upstream signaling
components such as receptor tyrosine kinases and NF1
mutations (121). Wang et al. found that intraductal injection
of retrovirus expressing activated versions of Ras or
erbB2 into Sprague/Dawley rats led to ER+ tumors (122). This
intraductal model has a defined genetic mutation and is more
relevant to human breast cancer etiology than DMBA models.
NF1 mutations are enriched in ER+ breast cancers of patients.
Crispr-mediated germline knockout of NF1 has been reported to
induce ER+ tumors that are estrogen dependent (123). The
CRISPRs technology is already widely used to edit somatic
cells, and CAS9 rats are already commercially available.
Therefore, intraductal injection of a virus carrying gRNA could
be used to mutate NF1 and other genes associated with human
ER+ cancer to generate somatic models of ER+ cancer in rats.
Wen and Yi also described the intraductal injection of lentiviral
vector FUCGW carrying the mutated oncogene HrasQ61L to
Sprague/Dawley rats led to mammary tumors with high positive
expression of both ER and PR (124). This technique is an
efficient tool for modeling formation, prevention, and
treatment of human breast cancer, especially ER+ breast cancer.
TRANSLATIONAL APPLICATION OF
RODENT MODELS FOR BREAST
CANCER TREATMENT

Actually, to mimic human breast cancer accurately is very
difficult, especially in breast cancer therapy. CDX or PDX
models are widely used because of its easy application, large
and rapid tumor cohort generation, and simple preclinical data
assessment. They can’t recapitulate tumorigenicity and treatment
response in immunocompromized or immune-competent host
system. In clinic, cyclin dependent kinase 4/6 (CDK4/6)
inhibitors PD0332991 (palbociclib) has shown great efficacy in
the treatment of hormone receptor-positive breast cancer, has
received conditional approval from the FDA for metastatic breast
cancer. Roberts et al. indicated that palbociclib is effective in a
HER2-positive mouse model of breast cancer (MMTV-c-neu)
but had no effect in the basal-like breast model C3-TAg (125,
126). The combination of carboplatin plus PD0332991 decreased
antitumor activity compared with carboplatin alone in MMTV-
c-neu with hematopoietic stem cell dormancy (125). It mimicked
the therapy response of palbociclib in different subtype breast
cancer. Usary et al. examined a range of therapeutics focused on
Frontiers in Oncology | www.frontiersin.org 7
MEK, mTOR, and PIK3CA/mTOR inhibitors in basal-like
(C3-TAg), luminal B (MMTV-c-neu), and claudin-low (T11/
TP53−/− OST) GEMM (127). They found variable responses in
different GEMM. The MMTV-c-neu and basal-like breast model
C3-Tag was the most responsive in general and claudin-low T11/
TP53−/− model was the most resistant with only small
responses. GEMMs recapitulated characteristics of human
breast cancer have become a promising tool in cancer research
to predict clinical outcome. A successful GEMM is very slow and
laborious so that it has not been widely used. And there are still a
lot of deficiencies with GEMM in preclinical research. The “co-
clinical” trials which are validated in vivomodels to pursue high-
throughput drug screening and rapid translation of effective
anticancer drugs into the clinical setting (128, 129). The co-
clinical trials are underway in breast cancer, and we are looking
forward to better rodent models for therapeutic testing of
breast cancer.
SUMMARY

The selection of appropriate rodent models for investigation of
breast cancer is an important experimental decision. Every
mouse model has advantages and disadvantages, and thus it is
highly important to design a suitable mouse model for each
research purpose based on integration of the advantages and
disadvantages of different models, and compound techniques of
mouse models have more practical application. The rodent
models may help to improve the knowledge of breast
carcinogenesis mechanism and genetic pathways, as well as
creating therapy for modeling clinical breast cancer subtypes
and develop innovative cancer therapy.
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