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Correlated stochastic epidemic 
model for the dynamics 
of SARS‑CoV‑2 with vaccination
Tahir Khan1, Roman Ullah1, Basem Al Alwan2, Youssef El‑Khatib3* & Gul Zaman4

In this paper, we propose a mathematical model to describe the influence of the SARS‑CoV‑2 virus 
with correlated sources of randomness and with vaccination. The total human population is divided 
into three groups susceptible, infected, and recovered. Each population group of the model is 
assumed to be subject to various types of randomness. We develop the correlated stochastic model 
by considering correlated Brownian motions for the population groups. As the environmental 
reservoir plays a weighty role in the transmission of the SARS‑CoV‑2 virus, our model encompasses 
a fourth stochastic differential equation representing the reservoir. Moreover, the vaccination of 
susceptible is also considered. Once the correlated stochastic model, the existence and uniqueness 
of a positive solution are discussed to show the problem’s feasibility. The SARS‑CoV‑2 extinction, as 
well as persistency, are also examined, and sufficient conditions resulted from our investigation. The 
theoretical results are supported through numerical/graphical findings.

In Wuhan, China, a respiratory disease outbreak has been started in December 2019. Later, it was identified as 
a novel coronavirus (COVID-19), known as the SARS-CoV-2 virus. The initial spreading source of the novel 
disease was an animal. But the pandemic rises from human interaction. Total of 589 million infected individu-
als have been reported while around 6 and half million deaths occurred till August 13, 2022, around the world. 
Vaccination is an important weapon against controlling a disease. In the case of the SARS-CoV-2 virus, disease 
vaccination is very important and there are many vaccines that could be shown their effectiveness. World Health 
Organization (WHO) investigates that reliable vaccinations program will change the situation. But precautionary 
measures could be necessary for the time being as it is still doubtful that the vaccine of SARS-CoV-2 provides 
how many degrees of safeness.

Modeling the real-world problem is an emerging area in the field of science and technology. Mathematical 
models play a very significant role to explore the dynamics of disease and predicting for future. Also, effective 
control programs have been forecasted to suggest useful guidelines for health officials. On the basis of these 
guidelines, it could be easily implemented by taking serious steps to control the disease. Researchers studied 
epidemiological models to discuss the dynamic behavior of disease by suggesting control  mechanism1–6. Covid-19 
also called the SARS-CoV-2 virus and its vaccination is a challenging task, which attracts the attention of many 
researchers,  (see7–15). The reported literature reveals that the mathematical models which have been analyzed 
are simple and used deterministic approaches. However, the SARS-CoV-2 virus transmission is influenced by 
different factors (social behavior, age, mobility, virus mutation, etc.,) that can affect the  dynamics16–22. So from 
the characteristic of the disease, it could be very interesting if the stochastic approach will be used. A stochastic 
model has been studied for the novel coronavirus by Khan et al.,23 very recently, where the random fluctuation 
is assumed in transmission rate only, while as reported above that due to many factors the SARS-CoV-2 virus 
is influenced. The main contribution of this paper is to suggest an alternative stochastic model for the SARS-
CoV-2 virus, where each population group has its own randomness source, but they are all related by correlation 
factors. In addition, the correlated suggested model includes the vaccination impact. We formulate a stochastic 
mathematical model for capturing the realistic nature of the disease. For this, we will extend the work of Khan 
et al., by incorporating various random sources in which every individual class has various Brownian motions 
according to the disease characteristics. The vaccination of susceptible individuals is also assumed to investigate 
the efficiency of vaccination and its role in the minimization of the infection. First, the models will be formulated 
and then analyzed to discuss the detailed dynamics. We will discuss the existence as well as the uniqueness of the 
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proposed problem to show the well-possed ness and feasibility of the problem. We then show that under what 
conditions the SARS-CoV-2 virus disease is extinct as well as persists. It is essential to discuss extinction and 
persistence when investigating virus spread. The aim of this analysis is to determine when the disease will end 
(extinct) and under which conditions will stay (persist). Finally, all analytical findings will be supported by using 
some graphical representation in the form of a large-scale numerical simulation by using the Euler-Maruyama 
scheme. It will be performed via coding the proposed problem with the help of MATLAB and we will show the 
analytical finding graphically.

Formulation of the model with fundamental analysis
Let us assume a filtered probability space (�,FT , (Ft)t∈[0,T], P) on which lives W := (W(t))t∈[0,T] with 
W(t) :=

(

Wi(t) : such that i = 1, . . . , 4
)

 , where W is a Brownian motion of 4th dimension. Moreover, the 
natural filtration (Ft)t∈[0,T]) is assumed generated by the Brownian motion W. For k = 1, 2, 3, 4 , we consider 
the correlated 1-dimensional Brownian motions (Bk(t))t∈[0,T] given by

We classify the total human population into three human population groups and one class of reservoir. The 
three population groups are susceptible, SARS-CoV-2 virus infected and recovered, which are symbolized by 
s(t), i(t) and r(t) respectively, while the reservoir class is denoted by w(t). The quantity w is the environmental 
reservoir which is an important element in the study of our epidemic model. It represents the concentration 
of the coronavirus in the environmental reservoir and it includes rates of the infected individuals contributing 
the coronavirus to the environmental reservoir and the removal rate of the virus from the environment. All the 
population groups and the reservoir is distributed by different Brownian motions. The schematic diagram for 
distribution process of the various population groups is given in Fig. 1. Thus we suggest a correlated stochastic 
epidemic model by the following system:

The above-proposed model is a generalization of standard epidemic deterministic models. It allows the dif-
ferent quantity of the model to vary stochastically, which mean that the variations are not only time-dependent 
but also subject to haphazard fluctuations. The random noise detected from real data is considered in the above 
stochastic model but neglected in deterministic models. In Eq. (1) the various parameters are characterized as: 
the newborn rate is symbolized with � , and βi , i = 1, 2 , are routes of disease transmission from the infected 
human as well as from the reservoir. Moreover, v is the vaccination of the susceptible population and µ is the 
natural death rate while death from the disease is described with d1 . We also symbolize the recovery rate by σ 
and a rate contributed to the virus to the environment by α . The removing SARS-CoV virus rate is denoted by 
η . If �k1 = 1 for k = 1, 2, 3, 4 , and �ki = 0 otherwise, then B1 = B2 = B3 = B4 and the model is reduced to the 
stochastic model studied in Khan et al.,23. Also, it could be clearly noted that the above system (1) will reduce 
to the deterministic form, whenever η1 = η2 = η3 = η4 = 0 . It can be seen also an extension  of1. In addition 

Bk(t) :=

4
∑

i=1

�ki(t)Wi(t) where �ki are constant in [−1, 1].

(1)

ds(t) = {�− (β1i(t)+ β2w(t)+ µ+ v)s(t)}dt + η1s(t)dB1(t),

di(t) = {(β1i(t)+ β2w(t))s(t)− (σ + d1 + µ)i(t)}dt + η2i(t)dB2(t),

dr(t) = {σ i(t)+ vs(t)− µr(t)}dt + η3r(t)dB3(t),

dw(t) = {αi(t)− ηw(t)}dt + η4w(t)dB4(t).

Figure 1.  The graph represent the schematic diagram of the proposed model.
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the disease-free and endemic equilibriums of the associated deterministic form of the model are respectively 
symbolized with E0 = (s0, 0, 0, r0) and E∗ = (s∗, i∗, r∗,w∗) with s0 = �/µ , r0 = v�/dq1 , where p1 = µ+ v . To 
move towards the endemic equilibrium, we will calculate the basic reproductive number first, which is defined to 
be the average number of secondary infectious produced an infective whenever reached to a totally non-infected 
population. We assume X = (i,w)T and p2 = σ + µ+ d1 , then the deterministic version of the model (1) yields

The basic reproductive number is then the spectral radius of ρ(FV−1) and consequently looks like

We use this quantity, to find the components of the endemic equilibrium which may take the form

Sensitivity analysis. In every disease the role of the threshold parameter (basic reproductive number) is 
very important and the disease spreads whenever the value of this quantity is more than one and the disease dies 
out if its value is less than unity. We will discuss the sensitivity of threshold parameter to find the relation between 
basic reproductive number and model parameter. We also calculate the sensitivity indexes that which parameters 
is how much sensitive to disease control and transmission. Generally the sensitivity index of a parameter say 
φ is denoted by ϒφ and define as φR0

∂R0
∂φ

 . By following this formula we calculate the sensitivity indices of model 
parameters as: ϒβ1 = 0.9937106918 , ϒβ2 = 0.006289308180 , ϒα = 0.006289308180 , ϒν = −0.8333333334 and 
ϒσ = −0.6862610536 , where the parameters value are taken to be � = 2 , β1 = 0.079 , β2 = 0.001 , µ = 0.16 , 
ν = 0.8 , d1 = 0.00001 , σ = 0.35 , α = 0.1 and η = 0.2 . The biological interpretation of these analyses investigate 
that the epidemic parameters β1 , β2 and α have a positive influence on the threshold quantity while there is a 
negative influence with the parameters ν and σ . This shows that decreasing in the value of β1 , β2 and α , and 
increasing in the value of ν and σ will decrease the value of the basic reproductive number, which is significant 
in disease elimination. It could be also noted that β1 and ν got the highest sensitivity index and so are the most 
sensitive parameters to the disease transmission and control. We observed that increasing the value of β1 say 
by 10% would significantly increase the value of R0 by 9.9% as depicted in Fig. 2, while increasing the value of 
ν say by 10% decreasing the value of R0 by 8.3% as shown in Fig. 5. Similarly, β2 and α collectively effect R0 by 
0.1257861636 whenever these parameters are increased or decreased by 10% as depicted by Figs. 3 and 4. The 
relation between σ and R0 is also an inverse as increased σ by 10% would decrease the threshold quantity by 
6.86% is given in Fig. 5.

Existence and uniqueness analysis. In this portion of the manuscript the existence of the solution and 
uniqueness with the positivity of Eq. (1) will be discussed.

It is worth mentioning that the Itô formula is one of the most useful formulas in stochastic calculus. It is uti-
lized, among others, to solve stochastic differential equations. Here, we describe a Multidimensional Itô formula 
for getting our results by following the book of stochastic  calculus24.

(2)
dX

dt
|E0 = −V + F, and F =

[

β1s0 β2s0
0 0

]

, V =

[

p2 0
−α η

]

.

(3)R0 =
�β1

p1p2
+

�αβ2

ηp1p2
.

(4)s∗ =
ηq2

ηβ1 + β2α
, i∗ =

ηq1(R0 − 1)

β1η + β2α
, r∗ =

vs∗ + σ i∗

µ
, w∗ =

α

η
i∗.

Figure 2.  The picture visualizes the variation of the reproductive number against β1 and β2.
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Figure 3.  The graph visualizes the variation of the basic reproductive number against β1 and α.

Figure 4.  The graph visualizes the variation of the basic reproductive number against β2 and α.

Figure 5.  The graph visualizes the variation of the basic reproductive number against σ and ν.
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Lemma 2.1 Let a = (α1, . . . ,αn) and b = (β1, . . . ,βn) represent the adapted processes with square-integrable 
n-dimensional. We consider X = (X1, . . . ,Xn) , where Xk is driven by the stochastic differential equation and 
k ∈ {1, . . . , n} , thus

Let F is a given twice continuously differentiable function f : Rn → R , then we have

where d �Xk(t),Xl(t)� = bk(t)bl(t)dt , dt = d �B(t),B(t)� , and d �B(t), t� = d �t, t� = d �t,B(t)� = 0.

We use the Lyapunov theory and the virtue of the Itô formula to prove that the solution of Eq. (1) exists 
globally and is positive. Define

The result that discusses the existing analysis of the problem is given by the following theorem.

Theorem 2.2 Let (s(0),  i(0),  r(0), w(0)) be the initial classes and assumed to be in R4
+ , then the solution 

(s(t), i(t), r(t), w(t)) of the model (1) is unique as well as remains in R4
+ almost surely (a.s) i.e.,

Proof We use the procedure as adopted  in25 and so in the light of this the local Lipschitz continuity property 
holds for system (1), therefore the solution symbolized by (s, i, r, w) of the proposed problem in [0, τe) subject to 
initial conditions in R4

+ is unique and local for the explosion time τe . Moreover, we investigate that τe = ∞ a.s 
as to show the solution globalization. It is assumed that κ0 ≥ 0 is sufficiently large and 1

κ0
< N(0) < κ0 , where 

N(0) = (s(0), a(0), c(0), r(0)) . We define the stopping time for every κ ≥ κ0 as:

Further, let φ is empty set and inf φ = ∞ . Since τk depend on k and whenever k increasing τk also increasing as 
k increases without bound i.e., tend to ∞ . Making use of lim = τ∞ if t → ∞ with taking τ∞ = ∞ a.s gives that 
(s(t), i(t), r(t),w(t)) ∈ R

4
+ , ∀ t ≥ 0 a.s. We now only need to show that τe = ∞ . For this, we use the assumption 

that for any two constants, T > 0 and ε ∈ (0, 1) , we have

So k1 ≥ k0 is an integer that

Let H is twice continuously differentiable function i.e., H ∈ C2 and H : R4
+ → R+ by

Clearly, H ≥ 0 , so for 0 ≤ T and k0 ≤ k , and by the application of the Itô formula leads to the assertion

In Eq. (10), LH is defined as

Simplifying and re-writing the above equation may lead to the following inequality

It could be noted from the fact that s + i + r + w ≤ 1 , so the last inequality gives

Plugging Eq. (13) in Eq. (10) we may arrive

The integration of both sides reveals that

dXk(t) = ak(t)dt + bk(t)dB(t), Xk(0) ∈ R.

dF(X(t)) =

n
∑

k=1

∂F

∂xk
(X(t))dXk(t)+

n
∑

k,l=1

1

2

∂2F

∂xkxl
(X(t))d �Xk(t),Xl(t)� ,

(5)D =
{

(s, i, r,w) ∈ R
4
+ : s and r > 0, i,w ≥ 0, s + i + r + w ≤ 1

}

.

p{(s, i, r,w) ∈ D, ∀ t ≥ 0} = 1.

(6)τk = inf

{

t ∈ [0, τe) : min(s(t), i(t), r(t),w(t)) ≤
1

k
or max(s(t), i(t), r(t),w(t))

}

.

(7)P{τ∞ ≤ T} > ε.

(8)P{τk ≤ T} ≥ ε, for every k ≥ k1.

(9)H(s, i, r,w) = s − 1− log(s)+ i − 1− log(i)+ r − 1− log(r)+ w − 1− log(w).

(10)dH = LHdt + (s − 1)η1dB1 + (i − 1)η2dB2 + (r − 1)η3dB3 + (w − 1)η4dB4.

(11)

LH = (1− 1/s)(�− β1si − β2sw − (µ+ v)s)+
1

2
η21 + (1− 1/i)(β1si

+ β2sw − (µ+ d1 + σ)i)+
1

2
η22 + (1− 1/r)(vs + σ i − µr)+

1

2
η23 + (1− 1/w)

× (αi − ηw)+
1

2
η24.

(12)LH ≤ �+ (β1 + α)i + β2w + vs + 3µ+ v + d1 + σ + η.

(13)LH ≤ �+ β1 + β2 + α + 2v + 3µ+ d1 + σ + η := K .

dH ≤ Kdt + (s − 1)η1dB1 + (i − 1)η2dB2 + (r − 1)η3dB3 + (w − 1)η4dB4.
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The expectation of both sides provides

which implies that

Setting a notion of �k = T ≥ τk for all k ≥ k1 . The use of Eq. (7) gives that P(�k) ≥ ǫ . Noted that there is at least 
one s(ω, τk) or i(ω, τk) or r(ω, τk) or w(ω, τk) equal 1/k or k for all ω ∈ �k . Since 1k + log k − 1 or − log k + k − 1 . 
Hence

So Eqs. (7) and (15) gives

implies that

where 1�k(ω) is a function known indicator function for �k(ω) . Let k → ∞ we ultimately obtain 
∞ > H

(

N(0)
)

+ KT = ∞ , which contradicts, therefore ∞ = τ∞ a.s.   �

Remark 1 The uniqueness as well as the existence reveals that for any initial compartments (N(0)) ∈ R
4
+ , the 

unique solution with global axiom (s, i, r,w) ∈ R
4
+ almost surly (a.s) exists for the proposed problem under 

consideration as reported by Eq. (1). The previous result can be also proved by the next theorem.

Theorem 2.3 Let (s, i, r, w) be the solutions of the stochastic differential equations of our model as stated by Eq. 
(1). The solutions (s, i, r, w)

Proof We  follow26 to discuss the solutions of Eq. (1) which becomes

where

Here k = 4 , m = 4 , �kj = �kj , γkj = 0 (for k, j = 1, 2, 3, 4 ) and

(14)

∫ τk∧T

0
dH ≤

∫ τkk∧T

0
Kdt +

∫ τk∧T

0
(s − 1)η1dB1 +

∫ τk∧T

0
(i − 1)η2dB2

+

∫ τk∧T

0
(r − 1)η3dB3 +

∫ τk∧T

0
(w − 1)η4dB4.

E

[

H(s(τk ∧ T), i(τk ∧ T), r(τk ∧ T),w(τk ∧ T))

]

≤ H(s(0), i(0), r(0),w(0))

+ E

[ ∫ τk∧T

0
Kdt

]

,

(15)E

[

H(s(τk ∧ T), i(τk ∧ T), r(τk ∧ T),w(τk ∧ T))

]

≤ H(s(0), i(0), r(0),w(0))+ TK .

(16)
(

s(τk ,ω), i(τk ,ω), r(τk ,ω),w(τk ,ω)
)

≥

(

1

k
− 1+ log k

)

∧
(

− log k − 1+ k
)

.

H(N(0))+ TK ≥ E

[

1�k(ω)H
(

s(τk ∧ T), i(τk ∧ T), r(τk ∧ T),w(τk ∧ T)
)

]

,

= E

[

1�k(ω)H
(

s(τk ,T), i(τk ,T), r(τk ,T),w(τk ,T)
)

]

≥ E

[

1�k(ω)

(

log k − 1+
1

k

)

∧ (− log k − 1+ k
)

]

=

(

log k − 1+
1

k

)

∧ (− log k − 1+ k
)

E
[

1�k(ω)

]

,

H(N(0))+ TK ≥ ǫ

(

log k +
1

k
− 1

)

∧ (− log k + k − 1),

(17)

Xk(t) =ζk(t)



Xk(0)+

� t

0
[αk(u)−

m
�

j=1

θkj(u)γkj(u)�
2
kj]ζ

−1
k (u)du

+

m
�

j=1

� t

0
γkj(t)�kjζ

−1(u)dWj(u)



.

(18)ζk(t) = exp





� t

0



ak(u)−
1

2

m
�

j=1

b2kj(u)



du+

m
�

j=1

� t

0
bkj(u)dWj(u)



.
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The Eqs. (17) and (18) show clearly that the solution of our model (1) exists and it is unique and positive if we 
impose the positivity of the deterministic integral. This ends the proof.   �

Extinction and persistence. In this section, the extinction and persistence analysis of the stochastic 
model (1) are discussed. We derive the various conditions in the form of some expressions to show permanence 
and extinction. These expressions containing the model parameters and intensities of noises. Before the formal 
analysis we define that

Now it could be described that the persistence of novel coronavirus SARS-CoV-2 is subjected to lim
(

inf
〈

i(t)
〉)

 
and lim

(

inf
〈

w(t)
〉)

 whenever are positive as t increases without bound i.e., to ∞ . Moreover, the stochastic 
reproductive number of corona dynamical system represented by Eq. (1) is symbolized by RS

0 and define as 
RS
0 = RS

1 + RS
2 , where

Similarly, if

and

holds, the epidemic problem represented by Eq. (1) states that the disease will persist. Thus for the extinction 
analysis of the proposed problem we state the following subsequent result.

Theorem 2.4 The SARS-CoV-2 virus will die out exponentially whenever the stochastic reproductive number param-
eter ( RS

0 ) is less then unity i.e.,

Also

Proof To prove the result, we integrate the system (1) on both sides which lead to

implies that

X1 = s, α1 = �, a1 = −β1i(t)− β2w(t)− (µ+ v), b1j = η1�1j ,

X2 = i, α2 = β2w(t)s(t), a2 = β1s(t)− (σ + µ+ d1), b2j = η2�2j ,

X3 = r, α3 = vs(t)+ σ i(t), a3 = −µ, b3j = η3�3j ,

X4 = w, α4 = αi(t), a4 = −η, b4j = η4�4j .

(19)
〈

g(t)
〉

=
1

t

∫ t

0
g(x)dx.

(20)
RS
1 =

�β1

p1

(

p2 +
η22
2

) , RS
2 =

�β2

p1

(

p2 +
η22
2

) .

(21)lim
t→∞

inf

∫ t

0
i(x)dx > 0, a.s.,

(22)lim
t→∞

inf

∫ t

0
w(x)dx > 0, a.s,

lim
t→∞

sup
log i(t)

t
≤

(

p1 +
1

2
ξ 22

)

(RS
0 − 1) < 0 a.s.

(23)lim
t→∞

s(t) =
�

p1
, lim

t→∞
r(t) =

v�

dp1
, lim

t→∞
w(t) = lim

t→∞
i(t) = 0, a.s.

(24)

∫ t

0
ds(x) = �t −

∫ t

0

(

β1i(x)+ β2w(x)+ p1
)

s(x)dx +

∫ t

0
η1s(x)dB1(x),

∫ t

0
di(x) =

∫ t

0

(

β1s(x)+ β2w(x)− σ − µ− µ1

)

i(x)dx +

∫ t

0
η2i(x)dB2(x),

∫ t

0
dr(x) =

∫ t

0
(vs(x)+ σ i(x)− µr(x))dx +

∫ t

0
η3r(x)dB3(x),

∫ t

0
dw(x) =

∫ t

0
(αi(x)− ηw(x))dx +

∫ t

0
η4w(x)dB4(x),
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The addition of the first two equations of the above system i.e., s(t)−s(0)
t +

i(t)−i(0)
t  may be written as

For the sake of simplicity, the notion �(t) will be used in Eq. (26) with some basic algebra we arrive at

where

It could be noted from the last result that the limiting value of �(t) is zero whenever t approaches ∞ i.e.,

The virtue of the Itô formula to the reported epidemic problem (1) gives

The integration of d log i(t) yields

It is very much clear from Eq. (5) that s + i + r + w ≤ 1 , thus we noted that 
〈

s(t)w(t)
i(t)

〉

≤
〈

s(t)w(t)
〉

≤
〈

s(t)
〉

 

therefore the above assertion leads to the inequality given by

Using the value of 
〈

s(t)
〉

 with some algebraic manipulation and following the well-known strong law of large 
number27 i.e., lim sup ξ2B2

t = 0 a.s as t → ∞ we obtain

implies that whenever the condition RS
0 < 1 holds, then lim i(t) = 0 and so lim

〈

i(t)
〉

= 0 a.s., as t → ∞ . Moreo-
ver, the last equation of system (25) implies that

Since the limiting value of i(t) is zero then w(t) = 0 whenever t → ∞ , thus the first equation of the system (25) 
looks like

gives that if t → ∞ , lim s(t) = �/p1 . We conclude that the novel disease extinct continuously depends on the 
value of RS

0 , and ultimately whenever RS
0 < 1 , it will extinct.   �

(25)

s(t)− s(0)

t
= �− β1

〈

i(t)s(t)
〉

− β2
〈

w(t)s(t)
〉

− p1
〈

s(t)
〉

+
η1

t

∫ t

0
s(x)dB1(x),

i(t)− i(0)

t
= β1

〈

i(t)s(t)
〉

+ β2
〈

w(t)s(t)
〉

− p2
〈

i(t)
〉

+
η2

t

∫ t

0
i(x)dB2(x),

r(t)− r(0)

t
= σ

〈

i(t)
〉

+ v
〈

s(t)
〉

− µ
〈

r(t)
〉

+
η3

t

∫ t

0
r(x)dB3(x),

w(t)− w(0)

t
= −η

〈

w(t)
〉

+ α
〈

i(t)
〉

+
η4

t

∫ t

0
w(x)dB4(x).

(26)

s(t)− s(0)

t
+

i(t)− i(0)

t
= �− p1

〈

s(t)
〉

− p2
〈

i(t)
〉

+
η1

t

∫ t

0
sdB1(x)

+
η2

t

∫ t

0
i(x)dB2(x).

(27)
〈

s(t)
〉

=
�

p1
−

p2

p1

〈

i(t)
〉

+�(t),

�(t) = −
1

p1

[

i(t)− i(0)

t
+

s(t)− s(0)

t

]

+
η1

t

∫ t

0
s(x)dB1(x)+

η2

t

∫ t

0
i(x)dB2(x).

(28)lim
t→∞

�(t) = 0 a.s.

(29)d log i(t) = β1s(t)+ β2
s(t)w(t)

i(t)
− p2 −

η22

2
+ η2dB2(t).

(30)
1

t
[log i(t)]t0 = β1

〈

s(t)
〉

+ β2

〈

s(t)w(t)

i(t)

〉

− p2 −
η22

2
+

η2B2(t)

t
.

(31)1

t
[log i(t)]t0 ≤ (β1 + β2)

〈

s(t)
〉

− p2 −
η22

2
+

η2B2(t)

t
.

(32)lim
t→∞

sup
log i(t)

t
≤

(

p2 +
η22

2

)

(RS
0 − 1) < 0 a.s.,

(33)
〈

w(t)
〉

=
1

η

{

α
〈

i(t)
〉

+
η4

t

∫ t

0
w(x)dB4(x)−

w(t)− w(0)

t

}

.

(34)
〈

s(t)
〉

=
1

p1

{

�+
η1

t

∫ t

0
s(x)dB1(x)−

s(t)− s(0)

t

}

,
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We have seen from the previous theorem that the virus will die out exponentially if RS
0 < 1 . The next theorem 

discusses the case when the stochastic reproductive number parameter RS
0 > 1 is greater than one.

Theorem 2.5 If RS
0 > 1 and (s0, i0, r0,w0) are any initial population sizes in D , then whenever t approaches ∞ , so 

system (1) holds the conditions given below

where

Proof We noted from Eq. (31) that

The application of lim as t approaches ∞ with sup property to the above equation gives

We can also write the following assertion from Eq. (31) that

implies

Now the last equation of system (25) can be re-written as

Taking lim as t → ∞ and sup of both sides we get

On the other hand lim as t → ∞ with the application of inf  property Eq. (40) takes the following form

Thus from Eqs. (37)–(42) it could be noted that i2 ≤ lim inf
〈

i(t)
〉

≤ lim sup
〈

i(t)
〉

≤ i2 and 
w2 ≤ lim inf

〈

w(t)
〉

≤ lim sup
〈

w(t)
〉

≤ w2 whenever t tend to ∞ .   �

Numerical simulation
In this section we present the numerical simulation to verify the analytical work. Let us give a short overview to 
simulate the stochastic differential equations. Let

Producing a sample X(t) around t with the utilization of the solution of the above equation, we will find X(t) over 
a continuous period of time. Making use of the notation X̃k , Bk and X̃(k�t) for simplicity instead of B(k�t) . We 
discretize the Eq. (43) gives

In the above equation, N symbolizes the time steps and �t = T/N  . It could be noted that the application of 
Itô-Taylor expansion leads to the stochastic Euler Maruyama (SEM) method to simulate the problem under 
consideration. To retrieve the discretized trajectory of X(t) from the Eq. (43), we may use the algorithm of Euler 
Maruyama: 

(35)i2 ≤ lim inf
〈

i(t)
〉

≤ sup
〈

i(t)
〉

≤ i1 and w2 ≤ lim inf
〈

w(t)
〉

≤ sup
〈

w(t)
〉

≤ w1,

(36)
i1 =

p1

p2(β1 + β2)

[{

p2 +
η22

2

}

(

RS
0 − 1

)

]

, i2 =
p1

β1p2

[{

p2 +
η22

2

}

(

RS
1 − 1

)

]

,

w1 =
αp1

ηp2(β1 + β2)

[{

p2 +
η22

2

}

(

RS
0 − 1

)

]

, w2 =
αp1

ηβ1p2

[{

p2 +
η22

2

}

(

RS
0 − 1

)

]

.

〈

i(t)
〉

≤
p1

p2(β1 + β2)

[{

p2 +
η22

2

}

(

RS
0 − 1

)

]

+ (β1 + β2)�(t)+
η2B2(t)

t
−

1

t
[log i(t)]t0.

(37)lim
t→∞

sup
〈

i(t)
〉

≤
p1

p2(β1 + β2)

[{

p2 +
η22

2

}

(

RS
0 − 1

)

]

= i1.

(38)1

t
[log i(t)]t0 ≥ β1

〈

s(t)
〉

− p2 −
η22

2
+

η2B2(t)

t
,

(39)lim
t→∞

inf
〈

i(t)
〉

≥
p1

β1p2

[{

p2 +
η22

2

}

(

RS
1 − 1

)

]

= i2.

(40)
〈

w(t)
〉

=
1

η

[

α
〈

i(t)
〉

+
η4

t

∫ t

0
w(x)dB4(x)−

w(t)− w(0)

t

]

.

(41)lim
t→∞

sup
〈

w(t)
〉

≤
αp1

ηp2(β1 + β2)

[{

p2 +
η22

2

}

(

RS
0 − 1

)

]

= w1.

(42)lim
t→∞

inf
〈

w(t)
〉

≥
αp1

ηβ1p2

[{

p2 +
η22

2

}

(

RS
1 − 1

)

]

= w2.

(43)dX(t) = α(t,X(t))dt + b(t,X(t))dB(t), X(0) = X0.

(44)X̃�t , X̃�t , . . . , X̃N�t .
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a. Simulate �Bk as a normal distributed random variable N(0,�t).
b. Putting X̃0 := X0 and applying X̃k+1 by following the formula given below 

 for �Bk = Bk+1 − Bk and k = 0, . . . ,N − 1.
The stochastic Euler Maruyama technique will be applied for the numerical simulation of the system reported 
by Eq. (1) which takes the form

which implies that

Using Matlab software and coding the above algorithm to solve the proposed system. To run our model for large-
scale numerical findings we use feasible parameters value with time units of 0 to 400 days. Once we execute the 
algorithm the following graphs are generated as given by Figs. 6, 7, 8, 9, 10, 10, 11, 12 and 13. This may verify our 
analytical findings. Moreover, Figs. 6, 7, 8 and 9 demonstrate the temporal dynamics of the susceptible, infected, 
recovered, and the reservoir respectively, which theoretically investigate that there will be always susceptible 
and recovered population while the SARS-CoV-2 virus infected population and reservoir will vanishes. This 
may verify the results of our extinction analysis. Since the disease extinct continuously depends on the basic 
reproductive parameter and whenever RS

0 < 1 the disease could be easily eliminated. So from the biological point 
of view, it is very important to keep this quantity low as much as possible to eliminate the disease. On the other 
hand Figs. 10, 11, 12 and 13 visualize the persistence analysis of the proposed problem. We noted that in this the 
trajectories of susceptible s(t), SARS-CoV-2 virus infected (i(t)), recovered (r(t)) and reservoir (w(t)) reveals 
that the the disease will persist and all these compartments reach to their endemic stage whenever the value of 
RS
0 > 1 . So special attention is required to make a control mechanism. Since the sensitivity analysis reveals that 

the disease transmission co-efficient has the highest sensitivity index and a great influence on the threshold 
parameter therefore minimization of this parameter would significantly decrease the value of the threshold 
parameter. It could be also noted from the sensitivity index of the vaccination parameter that vaccination has 
also a strong influence and so increasing the vaccination would strongly decrease the value of basic reproductive 
number. Finally, we also noted a relationship between the noise intensity with disease extinction and persistence 

(45)X̃k+1 = b(k�t, X̃)�Bk + α(k�t, X̃k)�t + X̃k ,

(46)

sk+1 − sk =
[

�− β1skik − β2skwk − p1sk
]

�t + η1sk�B1k ,

ik+1 − ik =
[

β1skik + β2skik − p2ik
]

�t + η2ik�B2k ,

rk+1 − rk = [σ ik + νsk − µrk]�t + η3rk�B3k ,

wk+1 − wk = [αik − ηwk]�t + η4rk�B4k ,

(47)

sk+1 = sk +
[

�− β1skik − β2skwk − p1sk
]

�t + η1sk�B1k ,

ik+1 = ik +
[

β1skik + β2skik − p2ik
]

�t + η2ik�B2k ,

rk+1 = rk + [σ ik + νsk − µrk]�t + η3rk�B3k ,

wk+1 = wk + [αik − ηwk]�t + η4rk�B4k .

Figure 6.  The graph visualizes the temporal dynamics of the epidemic problem described by the model (1) on a 
large scale for the class of susceptible individuals (s(t)) in case of extinction. The parameters value used are taken 
from S1 while (0.5, 0.3, 0.2, 0.1) are assumed to be the initial size of population.
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i.e., there is a direct relation between the intensity of white noise and extinction while inverse relation between 
the intensity of white noise and persistence.

Conclusion
We developed a correlated stochastic epidemic model to discuss the temporal dynamics of the SARS-CoV-2 
virus keeping in view the various source of randomness and vaccination of susceptible individuals. We proved 
the existence and positivity of the solutions which guarantees the well-posedness of the model. In addition, 
conditions of SARS-CoV-2 extinction analysis and persistence were obtained. A detailed sensitivity analysis 
has been performed and showed that the disease transmission coefficient and vaccination parameters are the 
highest sensitive parameters to disease transmission and control. This suggests that the vaccination has a major 
impact on the dynamics of the SARS-CoV-2. We observed that a rise in this parameter’s value would significantly 
increase disease extinction. Conversely, the disease persistence reduction is subjected to speedy vaccination, and 
therefore there is a need for a fast vaccination immunization. Numerical findings were conducted and support 
the analytical results. Results of this study permit supplementary discussion, such as increasing the impact of 
the noise. We would encourage researchers to investigate adding jumps to our model.

Figure 7.  The graph visualizes the time dynamics of the model (1) in case of extinction for the class of 
infected population (i(t)) against parametric values taken from S1 and (0.5, 0.3, 0.2, 0.1) are the initial sizes for 
compartmental population.

Figure 8.  The graph visualizes the temporal dynamics of the model under consideration (1) in the long run for 
the recovered class (r(t)) against the parametric value taken from S1 and initial classes (0.5, 0.3, 0.2, 0.1).
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Figure 9.  The graph visualizes the time dynamics of the reported model (1) in case of extinction for the 
reservoir (w(t)) subject to the parametric values of S1 and (0.5, 0.3, 0.2, 0.1) initial populations.

Figure 10.  The graph visualizes the dynamics of the epidemic problem described by the model (1) in the 
case of persistence for the susceptible class (s(t)) against the values of the parameters taken from S2 and 
(0.5, 0.3, 0.2, 0.1) are the initial sizes of population.
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Figure 11.  The graph visualizes the persistence of the epidemic problem framed by model (1) for the infected 
class (i(t)) against parameters value taken from S2 and various sizes of initial population (0.5, 0.3, 0.2, 0.1).

Figure 12.  The graph visualizes the time dynamics of the model (1) on large scale for recovered population 
(r(t)) against the parametric value of S2 and (0.5, 0.3, 0.2, 0.1) initial population.
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