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patients diagnosed or suspected with COVID-19.
Materials and methods: This is a retrospective cohort study of patients diagnosed or under investigation for
COVID-19. A machine learning algorithm was trained to predict future presence of intubation based on prior vi-
Purpose: The purpose of this study is to develop amachine learning algorithm to predict future intubation among

tals, laboratory, and demographic data. Model performance was compared to ROX index, a validated prognostic
tool for prediction of mechanical ventilation.
Results: 4087 patients admitted to five hospitals between February 2020 and April 2020were included. 11.03% of
patients were intubated. The machine learning model outperformed the ROX-index, demonstrating an area
under the receiver characteristic curve (AUC) of 0.84 and 0.64, and area under the precision-recall curve
(AUPRC) of 0.30 and 0.13, respectively. In the Kaplan-Meier analysis, patients alerted by the model were more
likely to require intubation during their admission (p < 0.0001).
Conclusion: In patients diagnosed or under investigation for COVID-19, machine learning can be used to predict
future risk of intubation based on clinical data which are routinely collected and available in clinical setting.
Such an approach may facilitate identification of high-risk patients to assist in clinical care.

© 2020 Published by Elsevier Inc.
1. Introduction

The novel coronavirus disease 2019 (COVID-19), also known as se-
vere acute respiratory syndrome coronavirus 2 (SARS-COV-2) as de-
fined by the World Health Organization (WHO), is an infectious
disease that has spread quickly around the globe since the first case
was reported in December 2019. It has become a pandemic of unprece-
dented proportions in modern times that have caught many countries
and their healthcare systems woefully unprepared. Although there are
numerous ongoing clinical trials, there is no curative therapeutic nor
vaccine available against COVID-19 to-date. This has left the medical
community to largely rely on supportive care, especially ventilator sup-
port, leading to a significant shortage of intensive care unit (ICU)
availability.

In February and March 2020, New York City, its surrounding bor-
oughs, and the tristate area quickly became the epicenter of the SARS-
COV-2 pandemic. As ofMay 12, 2020, there have been 184,319 reported
cases, 48,939 hospitalized patients, and a staggering 20,237 deaths. This
rapid rise in the number of positive cases has generatedmassive data of
COVID-19 patients, which can be analyzed with machine learning
8, New York, NY 10029, United
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algorithms to provide useful insights. Researchers, in a very short time
frame, have analyzed publicly available clinical datasets using natural
language processing, convolutional neural networks [1,2], and dense
neural nets [3-5] to improve diagnostic speed and accuracy, develop
and analyze the effects of therapeutic approaches [6], and identify
those susceptible patients based on personalized genetics [7], demo-
graphics, laboratory values, comorbidities, and imaging.

In response to this crisis, the medical and academic centers in New
York City issued a call to action to artificial intelligence researchers to le-
verage their electronic medical record (EMR) data to better understand
SARS-COV-2 patients. Due to the scarcity of ventilators and a reported
need for a quick an accuratemethod of triaging patients at risk for respi-
ratory failure, our purposewas to develop amachine learning algorithm
for frontline physicians in the emergency department and the inpatient
floors to better risk-assess patients and predictwhowould require intu-
bation and mechanical ventilation.
2. Methods

2.1. Study design and setting

This study is a retrospective cohort study for the development and
validation of a machine learning model to predict intubation among
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patients diagnosed or suspected of COVID-19. The studywas performed
at an academic healthcare system in an urban setting.

2.2. Ethical approval and patient consent

All ethical regulations and concerns for patients' privacy were
followed during this study. The Institutional Review Board approved
the present study and granted waiver for consent of patient data
owing to the retrospective nature of the study.

2.3. Participants and data sources

Demographic, vitals, and laboratory data were retrospectively que-
ried from electronic health records of 4087 patients admitted to five
hospitals within an academic healthcare system between February
2020 and April 2020. Given the novelty of COVID-19, all patient data
was used to maximize sample size and available training data for the
model. Patients ≥18 years of age who were either COVID-19+ by poly-
merase chain reaction (PCR) testing or deemed a patient under investi-
gation for COVID-19 were included.

2.4. Variable pre-processing

Within the EMR, there were several instances of the same variable
recorded using separate identifiers (e.g. point-of-care-testing vs. rou-
tine labs, or unique identifiers based on facility). This led to increased
sparsity as data were distributed over several identifiers. To ensure
our model was not specific to features within a specific patient cohort
and setting, we employed the following strategies to improve model
generalizability. Unique identifiers for variableswere groupedmanually
with input from a board-certified physician (J.S·K) ensuring that lab
units and detection limits were comparable allowing us to merge 31
variables into 15. For multiple lab or vital measurements that were re-
corded at the same time within the same group, we used the mean of
the simultaneous measurements. Using these strategies we reduced
our variable set from 31 to 15. The following time-series variables
were used: Time from Admission, Diastolic BP, Systolic BP, Pulse, Respi-
ratory Rate, Temperature, pH, HCO3, Oxygen saturation, Arterial CO2,
Arterial O2, Platelet Count, WBC Count, Creatinine, C-Reactive Protein,
D-Dimer. Comorbidities were imputed from ICD-10 diagnostic codes
Elixhauser comorbidity measures [8]. The following comorbidities
were used: Hypertension With Complications, Hypertension, Liver Dis-
ease, Renal Disease, Diabetes, DiabetesWith Complications, Chronic Ob-
structive Pulmonary Disease.

2.5. Labeling of future intubation

For each visit, time offirst intubation and time of last extubationwas
extracted from electronic health records. A positive label was assigned if
a patientwas or remained intubated 72-h from the end of the 24-h sam-
pling window (Fig. S1). A negative label was assigned if a patient was
not intubated 72-h from the end of the 24-h sampling window, such
as if they were never intubated or if they were extubated. For patients
intubated and deceased within 72-h from the end of the sampling win-
dow, their label remained positive (Supplemental Figure 1 and
Supplemental Figure 2).

2.6. Time-series data imputation and missing data

Laboratory and vitals informationwere imputed using an indefinite-
feed forward method based on the assumption that previous values
remained constant until a valuewas updated. Of note, laboratory and vi-
tals data were updated with varying frequencies often due to differ-
ences in patient acuity. To ensure models were not learning to predict
future-intubation status based on updated frequency rate of specific
laboratory values or vitals, rather than underlying physiologic patterns,
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we normalized sampling frequency using an upsampling-interpolation
method where values were carried forward (x1, x1, x2, x2, xN, xN) to a
frequency of a value every ~30-minwithin each 24-h samplingwindow.
In instances where feature values from all previous timepoints were
completely missing for a patient, the respective population mean for
the value from the training set was substituted. These mean values
were saved and substituted for missing values in the testing dataset as
well to prevent bias.

2.7. Supervised learning of intubation prediction

Wedefined a supervised binary prediction classification using a slid-
ing-window approach to predict the presence of intubation 72-h from
the end of the 24-h sampling window. Model development reporting
criteria followed the Transparent Reporting of a Multivariable Predic-
tion Model for Individual Prognosis or Diagnosis (TRIPOD) [9]. We de-
fined a prediction task to be performed every 12-h after the first 24-h
from the time of admission. Comorbidity and time-series data were
used to fit a random-forest classifier (RandomForestClassifier, version
scikit-learn 0.23.0). Class weight balancing was employed to correct
for class imbalancing, and tree depth was optimized based on training/
validation cohort.

To test our model we employed a randomized split, where patients
were randomly allocated into a training and validation cohort (70%)
and the remainder into a hold-out testing cohort (30%). The same fea-
ture data processing protocol was applied to both cohorts. Following
optimization of the model on the training/ validation cohort, model
weights were frozen and evaluated in a blinded-fashion on the testing
cohort.Model classificationswere defined as follows: true positive- pos-
itive alert prior to intubation, false positive - positive alert with no intu-
bation, true negative - no alert with no intubation, false negative - no
alert with intubation, or initial alert after intubation.

2.8. Statistical methods

Performance of themodel was evaluated using AUC and AUPRC per-
formance metrics refer to evaluation of the model on the hold-out test
set as described in the previous section. Performance metrics (AUC,
AUPRC, AVG precision) are reported based on performance of the
model evaluated on the holdout cohort, which was blinded from the
model during model optimization and training.

Survival statistics were conducted using the presence of intubation
during the course of hospital stay as the outcome event, to compare in-
tubation-free event rate between patients alerted and not-alerted by
the model. Kaplan-Meier curves were generated with computed 95%
confidence intervals. Significance was tested using the log-rank test.

2.9. Data availability

2.9.1. Analysis platform
All analyses were performed on secure computer clusters within the

institution. Code was written in Python3 using numpy, pandas, and
scikit-learn libraries. Data collected for this study are not publicly avail-
able because they contain patient health information however relevant
code in addition to the trained random forest model can be found at
https://github.com/varvind17/covid-intubation-prediction. Derived ag-
gregate data or findings are available from the corresponding author on
request.

3. Results

We retrospectively collected data from 4087 COVID-19+patients or
patients under investigation (PUI) for COVID-19, from February 2020 to
April 2020 admitted to a large academic healthcare system in an urban
setting. 4087 patients were included in this study with a mean age of
58.6±21.90 years old. 65.4% of patientswere female. 11.03% of patients

https://github.com/varvind17/covid-intubation-prediction


Fig. 1. Time course of a subset of laboratory and vitals data for a patient from time of
admission. Example data displayed include partial pressure of arterial oxygen (PAO2),
partial pressure of arterial CO2 (PACO2), oxygen saturation (O2 SAT), Creatinine,
Platelet count, white blood cell count (WBC), Temperature, Pulse, respiratory rate (RR),
systolic blood pressure (Systolic), and Diastolic blood pressure (diastolic). Model
predicted risk (blue, increased risk with increasing value), and ROX-index (green, in-
creased risk with decreasing value), are displayed. Red line indicates the time of
intubation.
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were intubated, and 24.9% of patients died. Among patients intubated
during their admission, 35.29% were extubated.

A detailed description of data pre-processing can be found in
Methods. In brief, 16 continuous vitals and laboratory variables and 7
static, comorbidity variables were consistently measured and aggre-
gated. Data were upsampled to a ~30 min-resolution using feed-for-
ward imputation. Intubation state during the course of admission was
annotated by extracting intubation and extubation times from elec-
tronic health records (EHR). In total, 451 (11.03%) patients were
intubated with a mean length of say (LOS) of 6.7 ± 8.4 days for non-
intubated patients and 11.9 ± 11.3 days for intubated patients.
Among patients who were intubated, intubation occurred on average
3.1 days from admission, and lasted 5.0 days on average (Table S1).

Using a 24-h sampling window, we aimed to predict intubation sta-
tus 72-h from the end of the sampling window (Figs. 1, S1). Continuous
risk predictions were made every 12-h from the onset of admission
(Fig. 1). In total, 27,226 and 18,371 time-intervals were generated for
the training and testing datasets, respectively. Among the time-inter-
vals, 6.8% in the training set and 6.5% in the testing set were labeled as
positive. Among time-intervals corresponding with a negative label,
89.3% of windows were associated with patients never intubated,
while the remaining 10.7% were associated with patients who were
intubated at some point during their admission. Prior to feed-forward
filling, among time-series variables, on average 36% of values were
missing. When stratified by type of feature, 56% of laboratory values
were missing (range: 2.7–74.4%) and 1.0% of vitals sign value were
missing (range: 0.9–1.2%). For each variable, model weights were ex-
tracted and standardized to assess the relative importance of each fea-
ture. Among comorbidities, complicated hypertension was highly
weighted while diabetes was not. Decision criteria learned by the
model closely match normal-abnormal boundary thresholds for vitals
and laboratory values (Figs. S2a, S3). Respiratory rate was the most
heavily weighted continuous variable (Fig. S2b).

Model performancewas compared to the ROX score, a validated tool
which uses oxygen saturation, respiratory rate, and fraction of inspired
oxygen to predict progression to intubation [10,11]. ROX scores were
calculated using the last observed measurement from the end of the
sampling window. The area under the receiver operating characteristic
curve (AUC) for the ROX index was 0.64, similar to what has been re-
ported [10,11]. The AUC for the model was 0.84 (Table 1). In class-im-
balanced prediction problems with rare events, predictive tools that
maintain good PPVwithout sacrificing sensitivity are challenging to de-
velop. To evaluate this, areas under the precision-recall curves
(AUPRCs) were generated. The AUPRC for the ROX index and the
model were 0.13 (mean precision: 0.10) and 0.30 (mean precision:
0.22), respectively (Fig. 2). In all subsequent analysis an optimal thresh-
old was identified using Youden's index, which yielded a recall of 79.2%
[12]. Patients with a predicted risk greater than the optimal threshold
(alerted) were more likely to require intubation during their admission
(Fig. 3).

We evaluated the model among patients of different ages, gender,
and high and low body-mass-index, an emerging risk modifier for
COVID-19 prognosis [13,14] to ensure good generalizability. The
model had a consistent AUC across all ages except patients less than
40 years of age. There was a noticeable difference in model AUPRC
and average precision between patients aged 40–60 and 60–80
(Fig. 4a). There were no significant differences in AUC among men
and women. There was an increase in AUPRC and average precision of
the model when evaluated on women when compared to men. The
model performedwith greater AUPRC and average precision among pa-
tients with a BMI ≥ 35. The model performed similarly with respect to
AUC on patients with confirmed COVID-19, and patients with suspected
but unconfirmed COVID19 (i.e. PUI). Among confirmed cases in the
hold-out dataset, the model performed with an AUC, AUPRC, and aver-
age precision of 0.82, 0.29, and 0.23, respectively. Among suspected but
not confirmed cases the model performed with an AUC, AUPRC, and
27



Table 1
Performancemetrics AUC, AUPRC, and average-precision for the
machine learning model and ROX-index to predict presence of
intubation in 72 h.

Model (mean) ROX (mean)

AUC 0.84 0.64
AUPR 0.30 0.13
AVG PPV 0.22 0.10

Fig. 3. Kaplan-Meier plot showing the cumulative probability of remaining free of
intubation from time of admission among patients alerted and not-alerted by the model.
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average precision of 0.81, 0.08, and 0.04, respectively. Additionally,
when we stratified patients by hospital to assess if there were biases
in model performance based on facility. There were no differences in
AUC however there were differences in AUPRC and average precision
across hospitals (Fig. 4b).
P-value indicates the result of a log-rank test.
4. Discussion

As SARS-COV-2 continues towreak havoc on theworld's population,
there has been an insurmountable surge of effort from themedical com-
munity at large in an effort to characterize, understand, and predict the
nature of the covid-19. With the availability of large databases and col-
laboration between researchers on an international scale, there has
been significant progress on the AI front. To this end, we have defined
a supervised binary prediction classification using a sliding-window ap-
proach to predict the presence of intubation 72-h from the end of the
24-h sampling window. We defined a prediction task to be performed
every 12-h from the time of admission. Ourmachine learning algorithm
performed with an AUC of 0.83 and AUPRC of 0.32, significantly
outperforming the ROX index for intubation risk. We demonstrate a
valid machine learning algorithm for frontline physicians in the emer-
gency department and the inpatient floors to better risk-assess patients
and predict those patients who require intubation and mechanical
ventilation.

To our knowledge, while some studies have assessed the risk of pro-
gression to ARDS and mortality, no recent studies have modeled an al-
gorithm to predict intubation in COVID-19 positive patients. In a large
report, 49% of 2087 critically ill patientswith COVID-19 died. Single cen-
ter studies showed a 62% and 67% mortality rate of ICU patients in
Wuhan, China and Washington State, respectively [15-17]. While the
decision to intubate is often based on the discretion of the treating phy-
sician, there are empirical guidelines released by the Chinese Society of
Anaesthesiology that recommended intubation in a timely fashion [15].
They note that in severe cases, the disease progresses rapidly and de-
velops to acute respiratory distress syndrome, septic shock, metabolic
Fig. 2. Receiver operating characteristic (ROC) and precision-recall curves for themachine learn
dom chance.
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acidosis and coagulopathy. A more recent study by Meng et al. pub-
lished criteria for intubation to include a SpO2 less than 93% in room
air, a PaO2 to FiO2 ratio less than 300 mmHg, respiratory rate > 30
breaths/min, cardiopulmonary arrest, and/or a lost or jeopardized air-
way [18]. Although there is currently not enough evidence to show
that early intubation reduces mortality, based on the work by Shoe-
maker et al., there is an association between accumulated oxygen debt
and survival in patients undergoing high risk surgery and ICU admission
[18,19]. The high mortality in intubated patients, the empirical guide-
lines that promote vigilant care and early, albeit not premature, intuba-
tion, and the possibility of reduced mortality in patients who do not
accumulate oxygen debt emphasize the importance of this study and
the algorithm that can predict intubation risk in covid positive patients.

Using a 24 h sampling window, a random forest classifier was
trained and tested on retrospective data sampled from a large, urban ac-
ademic healthcare system at the center of the COVID-19 outbreak. The
model was capable of predicting intubation status 72 h from the end
of the sample window with risk predictions made every 12 h from the
onset of admission. Risk assessments every 12 h were chosen as physi-
cian shifts are often 12 h, thus newly generated risk predictions would
serve to update risk assessment of COVID19 patients on the floor. Addi-
tionally, predictions every 12 h allows for measurement of new vitals
and laboratory values that would update risk scores. Interestingly, deci-
sion criteria learned by the model closely matched thresholds for clini-
cal guidelines (Fig. S2). We see that the values represented as mean ±
standard deviation (Fig. S2A) signify decision boundaries for patients
being intubated. A pH < 7.3 ± 0.1, CRP >199 ± 59 mg/L, heart rate
ingmodel (blue) and the ROX score (green). Dashed line for the ROC curve indicates ran-



Fig. 4. (A) Performance metrics AUC, AUPR, and average precision across various cohorts from the hold-out dataset. (B) Performance metrics stratified by sex, BMI ≥ 35, and hospital
location.
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126±17, respiratory rate>22±5breaths/min, temperature>100.0±
2.0F, O2 saturation < 96 ± 6%, PaO2 < 93 ± 25 mmHg, PaCo2 > 39 ±
11 mmHg, HCO3 < 25 ± 9, D-Dimer >6 ± 4 mg/L, Creatinine >3 ±
3 mg/dL, WBC >16.8 ± 11.6 (1000cells/mm3), Platelets <163 ± 105,
systolic pressure 116 ± 14 mmHg, and diastolic pressure 80 ±
17 mmHg closely match normal-abnormal laboratory and vital bound-
aries, suggesting the model learned physiologically relevant patterns.
Respiratory rate was heavily weighted time-series for prediction of in-
tubation, and has been shown to be a factor associated with poor survi-
vorship in COVID19 positive patients in prior studies [20] (Fig. S2b).
Zhou et al. described a 8.89 higher odds ratio for in-hospital mortality
in univariate analysis for patients with a respiratory rate > 24. Among
comorbidities, complicated hypertension was more heavily weighted
than diabetes. This finding was in concordance with risk factors associ-
ated with progression to acute respiratory distress syndrome (ARDS)
among COVID-19+ patients [21]. Recent studies have also shown that
coronary heart disease, diabetes, and hypertension to be significant
risk factors for in-hospital mortality.

Model performance was compared to ROX index- a validated tool
which uses oxygen saturation, respiratory rate, and fraction of inspired
oxygen to predict progression to intubation. The area under the receiver
operating characteristic curve (AUC) for the ROX indexwas 0.64, similar
towhat has been reported [10,11]. Themodel (AUC=0.84) significantly
outperformed the ROX index (AUC =0.64) (p = 0.005) (Table 1). Like
mostmachine learning problems involving clinical data, low prevalence
of positive cases lead to class-imbalance. Therefore, predictive tools that
maintain good PPVwithout sacrificing sensitivity are challenging to de-
velop. To evaluate this, areas under the precision-recall curves
(AUPRCs) were generated. The random forest model (AUPRC = 0.32)
significantly outperformed the ROX index (AUPRC = 0.13) (p =
0.022) (Fig. 2). With regards to generalizability across different demo-
graphics, we observed that the random forest model was generalizable
across gender and age. The model performed with a similar AUC across
all ages except for patients <40 years old, which we surmise is due to
the rarity of positive cases within this cohort for the model to train
from. Among patients less than 40 years of age, only 3.6% (13/358) of
patients were intubated while among patients older than 40, 8.6% of
29
patients were intubated (110/1275). When considering BMI, the
model performed with greater AUPRC and average precision among
obese patients (BMI ≥ 35). This is likely due to the increase in prevalence
of intubation among this cohort (15.6% for BMI ≥ 35 vs. 6.7% for
BMI < 35) (Fig. 4b). When we compared the performance of the
model on patients with documented versus suspected COVID19 we ob-
served similar AUC. Expectedly, with respect to AUPRC and average pre-
cision, themodel performedworse among suspected but not confirmed
patients possibly due to a decrease in prevalence of intubation among
these patients. In the holdout dataset 11.4% of patients were intubated.
Among patients suspected with COVID-19, 5.3% were intubated. It is
likely that some of these cases correspond to patients whowere initially
suspected for COVID-19 and proceeded to deteriorate and were clini-
cally diagnosed with COVID-19 without laboratory testing, therefore
not updating their status.

Our proposed model does have some limitations. It currently re-
quires a 24 h samplingwindow in order to generate a prediction. There-
fore, rapid risk assessments for patients without 24 h of data are not
possible. In future studies, it may be possible to reduce this sampling
window. Furthermore, since various laboratory and vital sign values
are updated at different times and at different frequencies, we
employed an indefinite feed-forward and upsampling interpolation
method to normalize feature sampling frequency. Since laboratory and
vital signswere updated at differing times, this led tomissing values fol-
lowing feature alignment to time. Laboratory values were missing to a
greater percentage compared to vital signs. This difference is explained
by the decreased frequency of measurement of laboratory values com-
pared to vital signs. While we did use upsampling to interpolate the
sampling frequency of vitals and labs to around every 30mins, It is pos-
sible that differences in laboratory and vital sign recording frequency at
different hospitals may lead to different results. Thus future studies
looking to validate the model are required.

Other interpolation methods may lead to improved model perfor-
mance and generalizability. In a study by Hyland et al., an adaptive im-
putation scheme was used to resample data to a ~5-min resolution to
predict circulatory failure among patients in the ICU [22]. Interestingly,
the study found that similar performance could be achieved using
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simpler imputation schemes such as an indefinite feed forwardmethod
when using decision tree models such as random forest. In this study,
patients were not exclusively included from the ICU therefore we de-
cided to upsample data to a resolution of ~30mins to accommodate in-
stances where features were not updated as frequently. Additionally,
we found that our random forest classifier was able to learnmeaningful
decision criteria to predict future intubation and was robust to our im-
putation scheme. Nevertheless, future studies should seek to investigate
handling of missing data and imputation schemes to optimize model
performance.

The use of supervised learningmodelsmay be subject to regional, in-
stitutional, or practice specific bias. In this study, the model was devel-
oped and tested on patients from a single health care system with
patients from a single region. While we stratified model performance
across different hospitals in the hold-out dataset, caution should be
taken when trying to assess external generalizability of the model. Ex-
ternal generalizability should only be appraised following evaluation
on patient data froma different healthcare system, as differences in hos-
pital intubation culture may arise. Therefore, future validation studies
should seek to test the model on diverse patient cohorts from different
hospital systems to assess the validity of the model. Machine learning
models by their nature learn patterns in data based on differences be-
tween positive and negative samples.While themodel learned decision
thresholds that resemble clinical guidelines and strongly weighted fac-
tors that are associated with poor outcomes among COVID19 positive
patients, the nature of machine learning models is a black box and it is
therefore impossible to dissect the rationale behind prediction strate-
gies. Among intubated patients that died, death occurred 152.27 h fol-
lowing intubation. While this suggests the model was required to
learn time intervals that were associated with future intubation, rather
than future deathwithin 72 h, future studies are required to understand
themodel's learned pattern recognition with validation to confirm pre-
diction of future intubation and not generalized deterioration. Lastly,
COVID-19 has been a moving target with ongoing changes in clinical
guidelines and even virus biology [23,24]. Therefore as new patient
data is generated, efforts to retrain machine learning models should
be undertaken to update models to changes in clinical practice and dis-
ease progression. All of these limitations point out that this is a prelim-
inary result that requires further work and validation before it can be
practically used. However, our findings also suggest that with larger
numbers and further refinement, machine learning has a potential to
quickly assess patients for intubation riskwith a high degree of accuracy
and hopefully reduce mortality.

5. Conclusion

As SARS-COV-2 continues to impact our lives in unprecedented
ways, we present a possible tool for frontline physicians in the emer-
gency department and the inpatient floors to better risk-assess patients
and predict those patients who will require intubation and mechanical
ventilation. Our machine learning algorithm with an AUC of 0.83 and
AUPRC of 0.32, which significantly outperforms the ROX index for
intubation risk.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.jcrc.2020.10.033.
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