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Abstract

Transcription factors (TFs) bind DNA by recognizing specific sequence motifs, typically of length
6-12bp. A motif can occur many thousands of times in the human genome, but only a subset of
those sites are actually bound. Here we present a machine learning framework leveraging existing
convolutional neural network architectures and model interpretation techniques to identify and
interpret sequence context features most important for predicting whether a particular motif
instance will be bound. We apply our framework to predict binding at motifs for 38 TFs in a
lymphoblastoid cell line, score the importance of context sequences at base-pair resolution, and
characterize context features most predictive of binding. We find that the choice of training data
heavily influences classification accuracy and the relative importance of features such as open
chromatin. Overall, our framework enables novel insights into features predictive of TF binding
and is likely to inform future deep learning applications to interpret non-coding genetic variants.

Introduction

Binding of transcription factors (TFs) to DNA is one of the major transcriptional regulation
mechanisms. TFs typically recognize short motifs of 6-12bp?. However, there is often only
partial overlap between sequences matching the motif for a particular TF in the genome and
experimentally determined binding sites?. For example, we found that <1% of
approximately 3.6 million SP1 motifs across the human genome are actually bound in a
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human lymphoblastoid cell line (GM12878). Whether a particular motif instance is bound
depends on multiple factors, including chromatin accessibility2, nucleosome positioning?,
cooperative and competitive binding with other factors*, local GC content®, local DNA
tertiary structures®’, and inter-position dependencies within motifs’. Many of these features
are related to sequence context in the immediate vicinity of the TF motif itself8, implying
that TF binding may be predicted directly from sequence information.

Several machine learning methods®-16 have proven successful in predicting TF binding from
sequence. Many of these methods, such as DeepSEAL6 and DanQ13, rely on convolutional
neural networks (CNNs), which infer important sequence context features and learn
combinations and orientations of these features that are predictive of binding. However,
these frameworks face several limitations. First, they focus on open chromatin regions that
are active in at least one cell type of interest, but do not consider regions inactive in all cell
types as controls. Thus, they do not learn general features that distinguish bound vs.
unbound genomic regions. Second, while these models have shown excellent prediction
accuracy for a variety of marks and cell types, interpreting CNNs to derive meaningful
biological insights remains challenging.

Here, we expand on existing CNN models to develop a framework for predicting whether a
particular instance of a TF motif will be bound and interpreting the specific nucleotides with
the strongest influence on binding status. By conditioning on sequences that contain the core
TF motif in both the positive and negative samples, our framework specifically learns
context features in the vicinity of the core motif. Next, we apply Grad-CAM7, a post-
analytical method for neural networks, to compute importance scores for each nucleotide in
the context regions and characterize sequence features predictive of TF binding. We find that
TF binding is largely predicted by open chromatin, and to a lesser extent by TF-specific
sequence features. The relative importance of these features depends heavily on how positive
and negative training sets are chosen. Overall, our framework enables novel insights into
sequence features predictive of TF binding.

Predicting binding status of TF motif occurrences

We focused on 38 TFs active in GM12878 with ChlP-sequencing datasets available from
ENCODE!8 and motifs available from JASPARL® (Supplementary Tables 1-2). For each TF,
we scanned the human reference genome (hg19) to identify all instances of its motif, which
we refer to as the core motif. We extracted 1kb genomic sequences centered on each core
motif instance and labeled each sequence as bound (positive) vs. unbound (negative) based
on overlap with binding sites identified by ChlP-sequencing (Online Methods, Fig. 1a). On
average for each TF, we obtained 18,892 sequences as input for our baseline model.

Our model framework, AgentBind, consists of (1) pre-training CNNs using ChiIP-
sequencing and DNasel-sequencing profiles collected from ENCODE?8 and the
Epigenomics Roadmap Project?0 across dozens of cell types and (2) fine-tuning an
individual model for each TF to identify bound vs. unbound sequences as described above.
This framework is compatible with theoretically any CNN-based architecture. As examples,
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we evaluated its performance using two popular architectures, DeepSEA® and DanQ13
(Online Methods). We evaluated performance using area under the receiver operating
characteristic curve (auROC) and the precision recall curve (auPRC), and partial auROC
(PAUC) with false positive rate less than 0.121. Full results are reported in Supplementary
Tables 3-4. Average performance across all TFs is high (auROC=0.941 for DanQ and 0.928
for DeepSEA), suggesting that binding is largely predictable by local sequence features
within a few hundred base pairs of the core motif. In both evaluation experiments, pre-
training noticeably improves the performance compared with models trained from scratch
(Fig. 1b), especially for TFs with low sample sizes such as FOS. This improvement is
expected, since pre-trained DanQ and DeepSEA are models optimized for large datasets.
Fine-tuned TF-specific models consistently outperform multi-class models for this
classification task, with an average auROC increase of 0.033 (range from 0.002 [NFYA] to
0.123 [NRSF]) for DanQ. Because of its consistently higher performance, subsequent results
are reported for DanQ unless otherwise specified.

We tested whether our classification performance could be driven by differences either in
core motif sequences or nucleotide content not directly relevant to the context features we
aimed to identify. We first repeated our analyses with the central core motifs masked. In
most cases performance is only slightly reduced after masking (average auROC decrease
0.015; Supplementary Table 5). CTCF is a notable exception (auROC=0.945 and 0.798
before and after blocking, respectively), suggesting its bound vs. unbound regions have key
differences within core motifs despite being similarly scored by position weight matrices
(PWMs). We further observed that model performance is correlated with the difference in
GC content between bound vs. unbound regions (Pearson r=0.58; two-sided £=0.00012;
n=38, Extended Data Fig. 1a—b). To ensure that our models focus on more specific sequence
features, we retrained models using negative and positive datasets with matched GC
percentages (Online Methods, Supplementary Tables 6-7). These models, which we refer to
as GC-controlled, have only slightly lower performance (mean decrease in auROC=0.013).

We hypothesized that our models are learning a combination of general sequence features
characteristic of active regulatory regions in open chromatin and more specific sequence
features required for each TF. To determine the extent to which our predictions are driven by
features of open chromatin, we re-trained GC-controlled models restricting all sequences to
be within DNasel hypersensitive sites in GM12878 (Online Methods). As expected, overall
performance for these models, which we refer to as DNasel-controlled, decreases (mean
decrease in auROC=0.133 compared to the GC-controlled model, Supplementary Table 7),
suggesting open chromatin features make a major contribution to classification accuracy for
most TFs. Notably, controlling for DNasel results in greatly reduced sample sizes (mean
decrease 50%) which may in part drive this trend (Supplementary Table 6; Extended Data
Fig. 1c—d). Even after controlling for DNasel, auROC values are above 0.7 for 32/38 TFs,
indicating that while open chromatin is a major predictor, it does not completely determine
binding.

To additionally investigate the predictive power of chromatin accessibility alone, we
predicted binding of each TF using GM12878 DNasel-seq output of pre-trained DanQ
models (Supplementary Table 8). For baseline and GC-controlled datasets, DNasel alone is
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highly predictive of binding (mean auROC=0.882 and 0.841), although fine-tuned TF-
specific models outperform DNasel alone (mean auROC=0.941 and 0.928 for baseline and
GC-controlled datasets). On the other hand, for DNasel-controlled data, DNasel alone is a
relatively poor predictor as expected (mean auROC=0.634, compared to 0.795 for TF-
specific models).

To further determine whether our models identify context features specific to each TF, we
performed a pairwise comparison in which we used models for each TF to predict binding at
motifs for all other TFs. For GC-controlled models, binding for most TFs could be predicted
well using models for most other TFs (Extended Data Fig. 1e—f). Still, most (33/38) are
predicted best by their own model (median gain in auROC=0.017 compared to the next best
model). For the 5 TFs predicted better by other models, the performance difference is
negligible (median difference in auROC=0.0060). For DNasel-controlled models, TF-
specific models tend to show higher performance compared to the next best model
(Extended Data Fig. 1g—h). Taken together, these results suggest as expected that GC-
controlled models largely learn features indicative of open chromatin but capture some TF-
specific features, whereas DNasel-controlled models better capture features specific to each
TF.

We compared our results with two alternative methods, KSM? and IMPACT?22, which are not
based on deep learning. KSM represents TF motifs as a set of aligned k-mers that are
overrepresented at TF binding sites and more accurately predicts /77 vivo binding sites than
PWM models. We identified KSM motifs for each TF using the same set of training and test
data as used for AgentBind (Online Methods). For GC-controlled models, AgentBind
outperforms KSM in predicting binding status for all TFs (Supplementary 9; median gain in
auROC=0.261). For DNasel-controlled models, AgentBind outperforms KSM for 33/38 TFs
(median gain in auROC=0.182). IMPACT tackles a similar classification task to Agentbind
but uses a broad range of experimentally determined epigenomic features including ChlP-
sequencing, ATAC-sequencing, and DNasel-sequencing profiles. While IMPACT has a
variety of applications such as prioritizing causal variants for gene expression and complex
traits, we only evaluate the application of binding site prediction here. We benchmarked
each method on four TFs active in CD4+ T cells and applied the same training scheme as the
IMPACT study (Online Methods). AgentBind demonstrated higher auROC than IMPACT in
all four cases (Fig. 1c, Supplementary Table 10). This suggests that the majority of
determinants of binding for these TFs can be learned directly from local sequence features.
For FOXP3 and STATS3, performance was comparable to IMPACT even with core motifs
blocked, meaning classification decisions were largely based on context sequence rather
than differences in the core motifs themselves.

Identifying the context-specific determinants of TF binding

Although deep neural networks achieve high classification accuracy, compared to simpler
linear models they are not trivially interpretable. Several techniques, including in silico
mutagenesis'116, DeepLIFT23, and saliency maps24, have previously been applied to
interpret CNN results on DNA sequences. Grad-CAM?/, an advanced version of saliency
maps, has been shown to outperform vanilla saliency maps in many computer vison
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applications. We adapted a previously published evaluation scheme?3 and designed a
simulation experiment to benchmark the ability of these model interpretation methods to
score important context nucleotides. We applied five metrics to evaluate the performance of
each interpretation method (Online Methods, Supplementary Table 11).

Our results demonstrate that each interpretation method has unique strengths and
weaknesses. For example, /in7 silico mutagenesis generally shows superior classification of
individual bases but its run time is two orders of magnitude higher than the other methods.
DeepLIFT identifies more embedded motif instances whereas Grad-CAM better pinpoints
specific important bases (Fig. 2a). Due to its fast run time, high classification accuracy at
base pair resolution, and applicability to the better performing DanQ architecture, we chose
Grad-CAM for downstream analyses.

We applied Grad-CAM to interpret the GC-controlled models for the 38 TFs and computed
importance scores for each base in input sequences. As expected, aggregating scores across
all input sequences for each TF shows that sequences closest to the core motif tend to have
the highest impact (Fig. 2d). However, aggregate score profiles differ noticeably for different
TFs. For example, whereas the important bases for predicting CTCF binding are highly
concentrated directly adjacent to the motif, important bases for YY1 are spread across the
entire 1 kb region (Fig. 2e). In concordance with our results above, differences in core motifs
themselves receive high importance scores for some TFs (e.g., PU1, CTCF) but not others
(e.g., MEF2A, SP1, Fig. 2e). Context scores for bound (positive) sequences show far more
distinct patterns than for unbound (negative) sequences (Extended Data Fig. 2). Therefore,
we focus on scores for bound sequences for downstream analyses.

Grad-CAM scores give insight into features of TF binding

We next sought to use Grad-CAM score profiles to identify context sequence features with
strongest impact on binding status for each motif. We extracted 5-mers from positive
sequences accounting for the strand of the core motif, and tested whether each unique 5-mer
is enriched among 5-mers with highest average Grad-CAM scores for each TF (Online
Methods). Our results using the baseline models recapitulate multiple known trends (Fig.
3a). First, the top scoring sequences for a TF often closely match the core motif of the TF
itself, consistent with previous literature showing homotypic clusters of TF motifs can
promote binding?®. For example, 5-mers from the NRF1 (5’-TGCGCATGCGCA-3’) and
ZEB1 (5’-CAGGTG-3’) motifs score highly for NRF1 (Fisher’s exact test one-sided
P<107200: OR=14.1 for ATGCG) and ZEB1 (P<107200: OR=18.2 for CAGGT), respectively.
In some cases, these enrichments are strand-specific. For instance, the ZEB1 motif is
consistently enriched in important context bases for ZEB1, whereas its reverse complement
is not. Similar trends are observed for other factors such as YY1 and ZNF143. Second, top
5-mers capture known co-binding relationships. For example, the NFY motif scores highly
among known co-binders SP126 and RFX527. Additionally, the motif for AP-1 (5’-TGA G/C
TCA-3’), bound by of a dimerization of JUN and FOS28, scores highly for known co-
binders CEBPB2? and IRF430, These trends are also observed using GC-controlled and
DNasel-controlled models (Fig. 3b—c).
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While our three different models (baseline, GC-controlled, and DNasel-controlled) capture
many similar trends, they also each highlight orthogonal context features relevant to TF
binding. Baseline models identify many key elements of promoter regions (Fig. 3a), which
comprise approximately 56% of ChlIP-seq peaks analyzed. For example, top-scoring 5-mers
include the NFY and ETS motifs, both of which have previously been shown to act as
cardinal elements of certain promoter regions31. Both baseline and GC-controlled models
identify clusters of TFs with highest scoring context 5-mers corresponding to known pioneer
factors (e.g., NFY27, RUNX32/AP-128, and interferon regulatory factors [IRFs]33) which
open chromatin and enable additional TFs to bind. These pioneer factors motifs are far more
strongly enriched in our fine-tuned models compared to pre-trained DanQ models not
trained on negative sequences (Extended Data Fig. 3).

In DNasel-controlled models, which only consider sequences already in open chromatin,
motifs for pioneer factors such as AP-1, RUNX, and IRF are less prevalent in top-scoring 5-
mers for many TFs (Fig. 3c), suggesting the pioneer factors do not directly co-bind with
those TFs. On the other hand, pioneer motifs remain enriched for TFs known to physically
co-bind (e.g. AP-1 motif for IRF4 and CEBPB). We hypothesize these DNasel-controlled
models instead identify 5-mers that represent cooperative relationships between TFs or
sequence elements near the core motif required for binding. For some TFs, top 5-mers in
DNasel-controlled models are distinct from those in the other models. For example, in the
baseline model for NRSF, 5-mers corresponding to the pioneer IRF and promoter ETS
motifs are most significant, whereas the GATA motif (5’-GATAA-3") is only moderately
enriched (one-sided P=0.000045, OR=1.7). However, in the DNasel-controlled model, the
GATA motif is highly significant (one-sided P=1.2x10724%, OR=11.5) for NRSF, suggesting
a potential role for this sequence in promoting nearby NRSF binding after the surrounding
region is made accessible by pioneer factors.

We hypothesized that the sequence context features which promote binding of a particular
TF to its core motif might differ between motifs in promoter (+/- 3kb from transcription
start sites [TSS], denoted as “proximal” vs. enhancer regions (>3kb from the nearest TSS,
denoted as “distal”). We repeated our analysis of top 5-mers separately for proximal and
distal binding sites (Extended Data Fig. 4). In some cases, such as for SP1, the highest
scoring 5-mers differ dramatically between proximal and distal sites. Overall, NFY and
NFY-like motifs score highly for proximal binding sites, but have less influence on distal
sites. On the other hand, RUNX, AP-1, and IRF motifs show stronger scores for distal sites.
These results suggest that many features influencing binding are orthogonal at promoter vs.
enhancer regions and these sites are likely governed by separate sets of pioneer and other
factors.

To investigate the ability of our framework to capture cell-type specific regulatory features,
we trained separate GC-controlled models to predict STAT3 binding using ChlP-sequencing
data from GM12878, CD4+ Th17, and HeLa cells and used each model to predict binding in
all three cell types. As expected, STAT3 binding in each cell type was best predicted by a
model trained on that cell type. We computed Grad-CAM scores for each bound sequence
and repeated the analysis of top scoring 5-mers as described above. Our analysis reveals that
some enriched 5-mers are shared across multiple cell types whereas others are highly cell-
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type specific (Fig. 4). For example, RUNX and IRF motifs are enriched only in GM12878
whereas FOX and T-box motifs are enriched only in Th17. AP-1 and BATF motifs are
enriched in both HeLa and GM12878, and ETS motifs are enriched in both Th17 and
GM12878. Overall these results are consistent with a model whereby STAT3 binds to
regions made accessible by different combinations of pioneer factors in each cell type.

Finally, we investigated whether top-scoring SNPs are enriched for properties characteristic
of causal variants. We find that SNPs with top-scoring Grad-CAM scores (top 0.5%) show
significantly higher signals of negative selection based on observed allele frequencies
compared to other SNPs in context regions (Online Methods; two proportion z-test one-
sided P=3.3x1078; Extended Data Fig. 5). Further, we compared Grad-CAM scores to
effects of SNPs on expression measured through massively parallel reporter assays
(MPRA)34 in LCLs and find that Grad-CAM scores are significantly higher for SNPs that
induce expression changes in MPRA (Mann-Whitney two-sided £=0.013; Online Methods),
although still are only moderately predictive of causal variants for gene expression
(Supplementary Discussion). Overall, these results suggest that context bases most
influential for TF binding identified by our framework may be helpful in prioritizing variants
relevant to human traits.

Discussion

Here we present AgentBind, a machine learning framework to predict whether particular
instances of TF motifs in the genome are bound vs. unbound in a given cell type and to
identify the most influential context bases. While we focused on TFs in GM12878 using the
DanQ architecture, this framework can similarly be applied to a flexible range of CNN
model architectures for any TF and cell type of interest for which ChlP-sequencing data is
available.

Our results support the hypothesis that a variety of context features work together to
determine whether a motif instance will be bound. The large decrease in auROC values after
controlling for DNasel (mean=0.133) suggests the most important binding determinant for
most TFs is whether its motif falls in a region of active chromatin previously opened by a
pioneer factor. However, in all of our model settings a TF is usually predicted best by its
own model. This suggests that even after a region is open, for some TFs additional context
sequence features, such as additional copies of its own motif or those of co-binding TFs, are
important for determining whether the core motif is bound.

We generated three different models for each TF, each of which identifies distinct sequence
features most predictive of TF binding. These different settings highlight how the choice of
negative vs. positive sequences for training models has a major impact on the features
learned. In the baseline and GC-controlled models, we fine-tune existing DanQ models with
negative training samples from regions of the genome that are inactive in most cell types.
Accordingly, the most prominent features learned correspond to known motifs for pioneer
factors, which predict whether a region is open or closed. DNasel-controlled models, which
only consider both positive and negative sequences in open chromatin, give decreased
importance to pioneer factors and likely highlight sequence features most directly related to
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TF binding. Importantly, the appropriate model may depend on the application of interest.
For example, baseline models may be most appropriate for predicting the impact of a
medically relevant variant, where it is simply desirable to have the highest prediction
accuracy. On the other hand, for the application of learning sequence features that directly
interact with the TF of interest, DNasel-controlled models are best.

Our study faced several limitations: (i) modifications to the training process, such as varying
the lengths of context sequences or training separate models for distal vs. proximal regions,
are likely to improve performance. (ii) Further, we rely on PWMs to identify motif
instances. PWMs suffer from known limitations, including an inability to capture
dependencies between positions, which may trivially distinguish bound vs. unbound
sequences in some cases. (iii) Model interpretation techniques can be further improved to
extract more complex rules for TF binding such as motif spacing, orientation, and
combinations. Visualization techniques such as DeepResolve3® may reveal additional
patterns such as interactions between important sequence features learned by CNNs. (iv) TF
binding does not necessarily imply regulatory function and thus a high-scoring Grad-CAM
site may ultimately not affect gene regulation of downstream phenotypes (Supplementary
Discussion). Other methods based on a combination of deep-learning and k-mer based
approaches have been developed to specifically predict expression from sequence
content1%:36_ In future work, our scores could be integrated into similar frameworks to
improve prioritization of disease-associated variants. (v) Finally, we mainly focused on the
GM12878 cell type. While our results for STAT3 on multiple cell types indicate that
important context bases are highly cell-type specific, future work is needed to further
investigate other cell types.

Altogether, our study provides a valuable machine-learning framework for helping decode
the rules by which TFs bind their target sites and identifying specific non-coding nucleotides
with the strongest effects on binding. To facilitate future applications, Grad-CAM scores for
all TF models studied here and code for running AgentBind on additional datasets are
available at https://github.com/Pandaman-Ryan/AgentBind.

Online Methods

ChlIP-sequencing datasets and preprocessing

We used FIMO37 v4.12.0 to identify all instances of the motif for each TF across the human
reference genome (hg19). FIMO takes the reference genome and target motifs for each TF
as input and returns all occurrences of the target motif (using the default p-value threshold
p<10~%). Motifs for each TF were obtained from JASPAR (Supplementary Table 1). We
intersected motif instances with binding sites as identified by ChlP-sequencing available for
each TF in GM12878 from the ENCODE Project!® (peak file accessions given in
Supplementary Table 1) using a custom script. ENCODE ChIP-sequencing experiments for
each TF were performed in duplicate and peaks were scored against an appropriate control
designated by the ENCODE Analysis Working Group. Motif instances (core motifs) were
labeled as positive if they were fully within ChlP-sequencing peaks for the TF. All other
instances were labeled as negative. We extended each core motif region to include 1 kb
centered at the motif. For each sequence, we included it and its reverse complement
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sequence for the training procedure described below. In the experiments that required core
motifs to be blocked, we substituted the motif region with a string of “N”*s of the same
length as the JASPAR motif.

The binary datasets we acquired above were highly imbalanced: on average we identified
433 times more negative than positive sequences (Supplementary Table 2). In order to
balance the dataset ratio while alleviating effects of differences within the core motif, we
chose an identical number of negative and positive sequences for each TF while requiring
the distribution of motif match p-values to be similar. To obtain p-value matched sets, we
binned -log1g P-values of motif matches into bins of size 0.1. For baseline models, we
randomly selected the same number of positive and negative sequences from each P-value
bin. For GC-controlled models, within each P-value bin, we further binned sequences based
on their GC contents to ensure the selected sequences shared the same distribution of GC
contents in positive and negative datasets. For the DNasel-controlled models, we only
considered both positive and negative sequences whose core motifs fall within DNasel
hotspots in GM12878 (ENCODE accession ENCFF491BOT). We then followed the same
procedures as in the GC-controlled models to match motif A-values and GC content between
positive and negative sequences.

CNN model architecture and training

We implemented DeepSEA and DanQ architectures using TensorFlow38 v1.9.0. The well-
trained models and their associated code are available in our Github repository (https://
github.com/Pandaman-Ryan/AgentBind). DeepSEA consists of three convolutional layers
and two fully connected layers, and DanQ consists of one convolutional layer, one bi-
directional recursive neural network layer and two fully connected layers. We applied
sigmoid cross entropy as the loss function for both models.

The sizes of input datasets vary widely, from 182 to 107,539 total sequences per TF
(Supplementary Table 2). To enable our framework to accommodate smaller datasets, we
applied a two-step transfer learning scheme, including a pre-training step and a fine-tuning
step. Transfer learning has been shown to dramatically reduce the amount of training needed
for related classification tasks and improves the overall predictive performance compared to
training from scratch39. For pre-training, we downloaded a dataset consisting of 4,863,024
1kb sequences annotated with a total of 919 ChIP-seq and DNase-seq profiles available on
the DeepSEA website. We left out sequences on chromosome 8 for cross validation and
sequences on chromosome 9 for testing. We applied one-hot encoding to convert nucleotide
sequences into 4-element vectors as has been done in previous studies?16, “N”s were
converted into vectors with entries of 0.25 for each of the four nucleotides. During training,
we initialized all model parameters with random Gaussian noise with mean 0 and standard
deviation le-2, and trained this model on the DeepSEA compendium dataset until the loss
function converged. In the fine-tuning step, we used the same architectures as in the pre-
training step, and we built an independent model for each TF of interest using the labeled
dataset described in the previous section. Same as the pre-training step, we left out
sequences on chromosome 8 and 9 for cross validation and testing respectively. From the
pre-trained model, we transferred its convolutional layers and RNN layer into the new
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models, but initialized the fully connected layers again with random Gaussian noise. These
new models were further fine-tuned on our TF binary datasets until convergence.

Benchmarking experiment against KSM

In the KSM experiment, to identify KSMs for each TF, we used the same set of training and
test data as we used in the GC-controlled and DNasel-controlled models and kept the central
61bp in each sequence. KMAC is a de novo motif discovery method for KSM’. We applied
KMAC to identify KSM motifs with k_win set as 61, k_min as 5, k_max as 13, and k_top as
10. Finally, we applied KSM to predict the TF binding status of our test data with motifs
identified by KMAC as input. We quantified the performance evaluation using auROC,
partial auROC, and auPRC (Supplementary Table 9).

Benchmarking experiment against IMPACT

The IMPACT study focused on TFs active in T cells and created their own binary (bound vs.
unbound) datasets for TFs including FOXP3 (Treg), GATA3 (Th2), STAT3 (Th17) and T-
BET (Th1). The coordinates of motif instances for these four TFs were published on the
IMPACT Github repository (https://github.com/immunogenomics/IMPACT). In our
benchmarking experiment, we used an identical set of motif instances, extending them into 1
kb sequences to train our model.

We applied an identical training scheme as was used by IMPACT: we randomly selected
80% of the sequences in the input dataset for training and tested on the remaining samples.
We evaluated our method in four situations using different architectures and core motif
treatments (DeepSEA or DanQ architecture, with core motif blocked or unblocked), and for
each situation we conducted 10 parallel trials with different selections of the test set
(Supplementary Table 10).

Model interpretation simulation experiments

We simulated a binary dataset consisting of 50,000 sequences for training, 1,000 for cross
validation and 1,000 for testing for evaluating interpretation methods. Labels were assigned
evenly with same number of positives and negatives. All sequences were length 1kb and
contained the GATAL motif (http://compbio.mit.edu/encode-motifs/) in the center. Context
bases were generated by sampling the nucleotides A, C, G, and T at each position with
probabilities 0.3, 0.2, 0.2 and 0.3 respectively. The number of TAL1 motifs (http://
compbio.mit.edu/encode-motifs/) embedded in positive sequences followed a Poisson
distribution but truncated after 3. No TAL1 motifs were embedded in negative sequences.
These simulated sequences were fed into our AgentBind framework and annotated at
nucleotide resolution using the model interpretation methods described below.

Model interpretation methods

We implemented four separate model interpretation techniques using the simulated data
described above. Each of these methods computes individual scores for each nucleotide of
the input sequence indicating its importance in determining the model’s prediction.
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For in silico mutagenesis, we performed computational mutations to assess the importance
of every base of the input sequences. More specifically, we substituted each base with its
three possible nucleotide substitutions and recorded the changes made by them in terms of
the output prediction scores. The greatest score change was used to represent the importance
of this base.

For vanilla saliency maps, the importance of each base was quantified using the gradient of
the output prediction score with respect to this base. This step was accomplished using a
TensorFlow built-in function “gradients”.

In our implementation of Grad-CAM, we chose the first convolutional layer as the layer of
interest. This layer contains distribution maps for various sequence features. Following the
weighting method proposed by the Grad-CAM authors’, we quantified the importance of
these sequence features and computed a weighted summation of all the distribution maps. In
comparison with vanilla saliency map which evaluates the importance of each base
individually, this aggregated map highlights the regions that are important to the binding
activities. To combine the best aspects of these two maps, we then merged the aggregated
distribution map with the vanilla saliency map through element-wise multiplication.

For DeepLIFT, we used version v0.6.10.0-alpha together with Keras v2.3.1 and applied its
“revealcancel_fc, rescale_conv” mode for model interpretation. Since DeepLIFT is only
compatible with Keras, we first constructed a DeepSEA architecture in Keras matching our
TensorFlow implementation and then imported our pre-trained DeepSEA model parameters
into this Keras model. The training procedures of fine-tuning were the same as our
TensorFlow implementation.

Interpretation methods were evaluated using five metrics: (1) run time. All timing
experiments were tested in a Linux environment running Centos 7.4.1708 on a server with
28 cores (Intel® Xeon® CPU E5-2660 v4 @ 2.00 GHz), NVIDIA® Tesla® K40c GPU, and
125GB RAM. Only a single core was used for timing. (2) the percentage of the top 5%
scoring bases that overlap embedded motifs (accuracy). (3) the percentage of embedded
motifs for which at least half of the motif bases are in the top 5% scoring bases (recall). (4)
auROC when we move the threshold of top scoring bases from 100% to 0% in (3). (5)
signal-to-noise ratios computed as the ratio of scores in embedded motifs to scores in
background regions. We evaluated all interpretation methods with a DeepSEA architecture,
and all except DeepLIFT with a DanQ architecture (Fig. 2a, Supplementary Table 11) since
DeepLIFT doesn’t currently support hybridized architectures containing RNNS.

K-mer enrichment analysis

In this analysis, we first segmented all the input sequences into 5-bp subsequences using a
sliding window and removed subsequences overlapping core motifs in the center. Next, for
each subsequence, we quantified its importance by averaging the Grad-CAM scores of each
base. For each factor, we ranked all the subsequences based on their Grad-CAM scores and
marked the top 1% as top 5-mers. We used a Fisher’s Exact test to determine whether each
5-mer was enriched among top 5-mers for each TF. Fisher’s Exact tests were performed
using the fisher_exact function in the stats module of the Python scipy*° library v1.3.1. 5-
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mers were matched to published motifs in the Hocomoco*! database based on manual
inspection. For Fig. 3 and Extended Data Figs. 3—4 we obtained the top 50-mers ranked by
the maximum odds ratio across all TFs separately in each of the three models (baseline, GC-
controlled, and DNasel-controlled). We merged this set for a total of 77 unique 5-mers and
clustered matrices of odds ratios for each 5-mer in each TF. For clustering, all insignificant
odds ratios (nominal £=0.01) were set to 0. To make heatmaps visually comparable, we used
the ordering of 5-mers and TFs based on clustering results from the baseline models in each
5-mer heatmap. For the comparison of proximal and distal sites, proximal sites were defined
as sequences for which the core motif is within +/- 3kb from the nearest transcription start
site (TSS) and distal sites were defined as sequences for which the core motif is >3kb from
the nearest TSS. Transcription start sites were annotated based on GENCODE v19.

Cross cell-type comparison of STAT3 models

GC-controlled models for STAT3 in three cell types were trained using the procedure
described above. Samples were labeled as positive vs. negative based on overlap with STAT3
peaks in GM12878 (Supplementary Table 1), HeLa (ENCODE data obtained from http://
hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/wgEncodeAwgTfbsUniform/
wgEncodeAwgTfhsSydhHelas3Stat3lggrabUniPk.narrowPeak.gz) and CD4+ Th17 cells
(GEO accession GSM2545819). Input datasets consisted of 2,648, 792, and 7,652 sequences
for GM12878, CD4+ Th17, and HelLa, respectively, with equal numbers of positive and
negative sequences.

Allele frequency analysis

To quantify selection for a set of genomic positions, we assessed whether those positions are
depleted of common genetic variation compared to nearby positions. We focused on single
nucleotide polymorphisms (SNPs) present in gnomAD?*2 overlapping sites that were scored
by Grad-CAM using GC-controlled models for each TF, and computed the percentage of
SNPs for which the alternate allele is observed only once (termed singletons). This “percent
singleton” metric has previously been used as a proxy for deleteriousness of a set of SNPs*3,

For each TF, we overlapped bound sequences scored by Grad-CAM with SNPs in the
control samples reported in the gnomAD v2 dataset*2. For positions overlapping gnomAD
SNPs, we recorded observed counts of minor alleles. We then labeled sites where the minor
allele counts were 1 as singletons. We only included samples annotated in gnomAD as
healthy controls (n=5,442 individuals) in our analysis and required a minimum total allele
count of 1000. Sites not overlapping a gnomAD SNP (7.e. minor allele count of 0) were
excluded from singleton analysis. The singleton ratio of a group of sites is then simply
defined as the percentage of SNPs in that category that are singletons.

Comparison to MPRA

We obtained MPRA results for expression quantitative trait loci (eQTLS) tested in two
lymphoblastoid cell lines from Table S1 of Tewhey, et a/.34. We converted SNP rsids to hg19
coordinates based on dbSNP*4 build 147 and retained only SNP variants which overlapped
positions scored by Grad-CAM in at least one TF of interest in DNasel-controlled models.
We further filtered SNPs for which the regulatory effect was not scored in the Tewhey et a/.
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dataset (C.Skew.fdr column set to NA) indicating one or both alleles of the SNP did not
drive expression of the reporter in the MPRA experiment. We treated variants with FDR<5%
in the MPRA data (based on the column C.Skew.fdr) as true positives and FDR>=5% as true
negatives. A total of 116 true positive and 226 true negative SNPs were included in the
analysis. We then set the Grad-CAM score for each variant as the maximum value recorded
across all TFs considered at the locus.

Data availability

Variant annotation scores for each TF analyzed can be found at https://github.com/
Pandaman-Ryan/AgentBind.

Peak files for ENCODE ChlP-sequencing datasets can be found at http://
hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/wgEncodeAwgTfbsUniform.

Peak files for STAT3 in CD4+ T cells were obtained from the Gene Expression Omnibus
(GEO accession GSM2545819).

Code availability

Code used for training models and performing analyses are available in our Github
repository https://github.com/Pandaman-Ryan/AgentBind (doi:10.5281/zenod0.4281456).
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Extended Data Fig. 1. Model performance related to GC content and open chromatin.
(a-b) GC content differences correlated with model performance. The x-axis shows the

absolute value of the difference in mean GC content for positive vs. negative sequences with
the motif for each TF. The y-axis shows auROCSs. Each dot represents one TF. Results in a-b
are for baseline models with motifs blocked (a) or unblocked (b). (c) Comparison of
training data size and change in model performance. The x-axis (logyq scale) shows the
number of training samples. Orange points show the difference in auROC (y-axis) for
baseline vs. GC-controlled models. Green points show GC-controlled vs. DNasel-controlled
models. Each dot represents one TF. (d) Model performance for each TF. The y-axis gives
the auROC obtained for different models for each TF. Gray=baseline; orange=GC-
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controlled; green=DNasel-controlled. TFs are ranked by the change in auROC between the
DNasel and GC-controlled models. (e) Comparison of cross-TF model performance.
Heatmaps show the auROC using a GC-controlled model trained on one TF (rows) and
tested on another TF (columns). Red squares denote the model with highest auROC for each
TF. () Distribution of the difference in auROC between top models and TF-specific
models. For TFs where the TF-specific model was best, we computed the difference
between the TF-specific model and the next best model (red). For all other TFs, we
compared performance of the best model to the TF-specific model (blue). (g-h) are the same
as in e-f but based on DNasel-controlled models.
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Extended Data Fig. 2. Aggregate Grad-CAM score profiles for each TF.
For each TF, we computed the average absolute value of the Grad-CAM score per position

in positive sequences using either models with the core motif unblocked (left) or blocked
(right). Values shown are Z-normalized across rows. (a) shows aggregate scores for
sequences labeled as positive (bound) and is reproduced from Fig. 2d. (b) shows aggregate
scores for sequences labeled as negative (unbound).
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Enrichment (odds ratio) in top Grad-CAM positions
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Extended Data Fig. 3. Comparing key context sequence features identified in pre-trained vs. fine-
tuned models.
The heatmap shows the enrichment of each 5-mer in regions with the highest Grad-CAM

scores for each TF using baseline models before (a) and after (b) fine-tuning. Rows and

columns are ordered the same as in Fig. 3. Colors denote odds ratios and the sizes of the
boxes denote statistical significance as in Fig. 3. Panel (b) is reproduced from Fig. 3a for
comparison
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Extended Data Fig. 4. Context sequence features specific to proximal vs. distal sites.
(a) Enrichment of 5-mers in high-scoring Grad-CAM regions for proximal (left) and

distal (right) binding sites. Proximal and distal TF binding sites are defined as described in
Online Methods. Rows and columns are ordered the same as in Fig. 3. (b-c) are the same as
in (a) but show data for GC-controlled (b) and DNasel-controlled (¢c) models. For (a-c),
colors denote odds ratios and the sizes of the boxes denote statistical significance as in Fig.
3. (d) Comparison of top scoring 5-mers in proximal vs. distal SP1 sites. Bars show the
odds ratio of enrichment of each sequence in top 5-mers for all (gray), proximal (red) and
distal (blue) SP1 sites. The top 20 5-mers ranked by the best odds ratio across all three SP1
models (all, proximal, and distal sites) are shown. Error bars show 95% confidence intervals
on odds ratios. (e-f) are the same as in (d) but show data for GC-controlled (e) and DNasel-
controlled (f) models.
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Extended Data Fig. 5. Singleton rate of context SNPs vs. core motif regions. (a) Singleton rate of

context SNPs.

all context

The plot shows the percent of SNPs in each category that are singletons. Black

sites, orange

context sites with top 0.5%

context sites with top 5% Grad-CAM scores, red=

Grad-CAM scores. Error bars show +/- 1 s.e. (b) is the same as (a), but additionally shows
singleton rates for SNPs in core motif regions (blue). The number of SNPs in each category

for each TF is annotated above each plot.
Refer to Web version on PubMed Central for supplementary material.
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Figure 1: AgentBind Overview.
(a) Method schematic. AgentBind pre-trains a convolutional neural network on epigenomic

annotations from multiple cell types (top). It then fine-tunes on sequences containing a core
motif (purple box) for a target TF that are either bound (+) or unbound (=) to learn important
context features (middle). Grad-CAM is then used to score the contribution of each
nucleotide to binding predictions (bottom). (b) Pre-training improves TF binding
predictions. Receiver operator curves (ROC) are shown for the TF SP1 in GM12878 using
baseline models with a DanQ architecture. Dashed and solid lines show performance with
and without pre-training, respectively. (c) Comparison to IMPACT. We compared the
ability of AgentBind and IMPACT to distinguish bound vs. unbound motifs for four TFs in
CD4+ Th17 cells. Boxplots show distributions of auROC values for 10 rounds of randomly
selecting training (80%) vs. testing (20%) motif instances. Middle lines give medians and
boxes span from the 25th percentile (Q1) to the 75th percentile (Q3). Whiskers extend to
Q1-1.5*IQR (minima) and Q3+1.5*IQR (maxima), where IQR=Q3-Q1. Dots show the
auROC values for individual rounds. Gray=IMPACT. For (b) and (c), dark blue=AgentBind
without the core motif blocked, dark red=AgentBind with the core motif blocked.
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Figure 2: Interpreting context-specific determinants of TF binding.
(a) Comparison of model interpretation methods. ROC curves are shown comparing

performance of each method to distinguish simulated important vs. neutral context bases.
Dashed and solid lines denote DeepSEA and DanQ architectures respectively.
Green=saliency map (SMAP), cyan=saturated mutagenesis (MUT), red=Grad-CAM
(GCAM), orange=DeepLIFT. (b) Example importance scores for a simulated region. The
top shows an example simulated sequence, with a central GATA motif and two context
TAL1 motifs. Importance scores are shown for each method based on a DeepSEA
architecture. (c) Example Grad-CAM scores for a region (chr1:12289432-12290431 in
hg19) containing an SP1 motif. The y-axis shows the Grad-CAM score of each nucleotide
based on the GC-controlled model. Sequences are shown for the central SP1 motif and two
regions with high scores corresponding to NFY motifs. (d) Aggregate Grad-CAM score
profiles. For each TF, we computed the average absolute value of the Grad-CAM score per
position in positive sequences using GC-controlled models with the core motif unblocked
(left) or blocked (right). Values were Z-normalized across rows. The dendrogram is based on
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hierarchical clustering of the rows. () Example aggregate Grad-CAM profiles. For four
representative TFs, average Grad-CAM scores are shown for models with the core motif
blocked (dark blue) or unblocked (dark red).
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Figure 3: Identifying key context sequence features for TF binding in GM12878.
(a) Enrichment of 5-mers in the most influential context regions. The heatmap shows the

enrichment of each sequence in regions with the highest Grad-CAM scores for each TF
using baseline models (Online Methods). Heatmaps in (b-c) are the same as in (a) but show
data for GC-controlled (b) and DNasel-controlled (c) models. Only 5-mers corresponding to
top 50 5-mers in at least one of the three models are shown. Colors denote odds ratios and
the sizes of the boxes denote statistical significance based on one-sided AP-values computed
using Fisher’s exact tests. Adjusted P-values are based on a Bonferroni correction for the
number of 5-mers tested. The color scale is capped at 10. Odds ratios higher than 10 are all
colored the same. Boxed and annotated 5-mers correspond to known motifs. The order of
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TFs (y-axis) and 5-mers (x-axis) is the same for all plots and is based on hierarchical
clustering of the odds ratio matrix for the baseline model.
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Figure 4: Cell-type specific enrichment of 5-mers influential for STAT3 binding.
Enrichments were computed using Fisher’s exact tests as in Fig. 3 using GC-controlled

models trained separately in either GM12878, Hela, or CD4+ Th17 cells. (a) Comparison
of top-scoring 5-mers for GM12878 vs. CD4+ Th17 cells. (b) Comparison of top-scoring 5-
mers for GM12878 vs. HeL a cells. (c) Comparison of top-scoring 5-kmers for HeLa vs.
CDA4+ Th17 cells. The inset table shows the auROC obtained from training each model on
one cell type and using it to predict STAT3 binding status in another cell type. Dashed
horizontal and vertical lines denote an adjusted ~-value threshold of 0.05, based on a
Bonferroni correction for the number of 5-mers tested.
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