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ABSTRACT Multiparental populations (MPPs) are experimental populations in which the genome of every individual is a mosaic of
known founder haplotypes. These populations are useful for detecting quantitative trait loci (QTL) because tests of association can
leverage inferred founder haplotype descent. It is difficult, however, to determine how haplotypes at a locus group into distinct
functional alleles, termed the allelic series. The allelic series is important because it provides information about the number of causal
variants at a QTL and their combined effects. In this study, we introduce a fully Bayesian model selection framework for inferring the
allelic series. This framework accounts for sources of uncertainty found in typical MPPs, including the number and composition of
functional alleles. Our prior distribution for the allelic series is based on the Chinese restaurant process, a relative of the Dirichlet
process, and we leverage its connection to the coalescent to introduce additional prior information about haplotype relatedness via a
phylogenetic tree. We evaluate our approach via simulation and apply it to QTL from two MPPs: the Collaborative Cross (CC) and the
Drosophila Synthetic Population Resource (DSPR). We find that, although posterior inference of the exact allelic series is often un-
certain, we are able to distinguish biallelic QTL from more complex multiallelic cases. Additionally, our allele-based approach improves
haplotype effect estimation when the true number of functional alleles is small. Our method, Tree-Based Inference of Multiallelism via
Bayesian Regression (TIMBR), provides new insight into the genetic architecture of QTL in MPPs.

KEYWORDS multiparental population; MPP; multi-parent advanced generation inter-cross; MAGIC; haplotype association; Bayesian nonparametric

statistics; Ewens's sampling formula

ULTIPARENTAL POPULATIONS (MPPs) are experi-

mental populations of model organisms generated by
breeding a small but genetically diverse set of inbred parents
to produce individual offspring whose genomes are mosaics
of the original founder haplotypes (Churchill et al. 2004;
Cavanagh et al. 2008; King et al. 2012). Because these hap-
lotype mosaics succinctly describe the genetic differences be-
tween individuals, the standard approach for interrogating
the genetic basis of quantitative traits in MPPs is haplotype-
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based association (Mott et al. 2000; Valdar et al. 2006; Aylor
et al. 2011; Collaborative Cross Consortium 2012; Huang
et al. 2015; Broman et al. 2019).

The typical protocol for haplotype-based association is as
follows. First, haplotypes are inferred along the genome for
each individual by comparing its genotypes with those of the
founders (Mott et al. 2000; Zheng et al. 2015; Broman et al.
2019). Then, quantitative trait locus (QTL) mapping pro-
ceeds by testing at each genomic locus the association of
the trait with inferred founder haplotype state. For example,
a linear model for the additive effect of J founder haplotypes
at a genomic locus on a quantitative trait is given by

Yi = X1iBhap,1 + X2iPhap,2 T - - - + XjiBhap,s + &i ;

where y; is the quantitative trait measurement of individual i,
X;; is the number of copies of the founder j haplotype, with
x; € {0, 1,2} if haplotypes are known and x;; € [0, 2] if counts
are estimated as imputed dosages, Bhap; is the additive effect
of the founder j haplotype, and ¢; is normally distributed error.
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Haplotypes provide a richer source of information than
observed variants (Haley and Knott 1992; Martinez and
Curnow 1992). Whereas observed variant approaches such
as single nucleotide polymorphism (SNP) association typi-
cally assume biallelic effects, haplotype-based association
(technically a type of linkage disequilibrium mapping) tests
the combined effects of all variants within the genomic in-
terval, including any local epistastic interactions or variants
that are unobserved or undiscovered (Zhang et al. 2014).
This permits detection of complex genetic signals that may
not be revealed by single-variant approaches, an advantage
that has contributed to the widespread development of
MPPs across a variety of biomedically (Churchill et al.
2004; Collaborative Cross Consortium 2012; Macdonald
and Long 2007; King et al. 2012; Kover et al. 2009) and
agriculturally (Huang et al. 2015) important model organ-
isms and species.

Nonetheless, the results of haplotype-based association do
not translate directly into knowledge about causal variants.
This is because the standard model used for haplotype-based
association assumes that all haplotypes are functionally dis-
tinct and that their effects are independent. This latter as-
sumption is biologically unlikely: it is more reasonable to
expect that there are only a few causal variants at a locus,
and that combinations of these variants will often be shared
across haplotypes. More specifically, we expect that sets of
shared causal variants partition the haplotypes into a poten-
tially smaller number of functionally distinct alleles, with this
assignment of haplotypes to functional alleles termed the
allelic series.

An allelic series is easily superimposed onto the standard
haplotype model by merging haplotypes into groups (Yalcin
et al. 2005; Mosedale et al. 2019). For example, a linear
model in the case of J = 5 haplotypes grouped into K =
3 functional alleles might be given by

Yi = (%1i +X4i)Bale,1 + (X2i +X3i)Balte 2 + X5iBalle 3 1 & 5

where haplotypes are functionally identical for founders 1 and
4, and for founders 2 and 3. In this case, the J-vector of
haplotype effects B, = (Bhap.1: - - - s Bhap, " is collapsed into
a K-vector of allele effects B, = (Bae1s- - 7Balle,K)T‘ This
relationship is described in matrix notation by Bhap = MBiie,
where M is a J X K indicator matrix that encodes the allelic
series (Jannink and Wu 2003). Doing this, however, requires
knowing the allelic series in advance, information that is not
typically available.

Knowledge of the allelic series, and in particular, whether it
is biallelic (K = 2) or multiallelic (K > 2), is critical for in-
ference about the number of causal variants at a locus. This
allelic perspective also suggests that the haplotype-based as-
sociation approach is inefficient because it estimates redun-
dant parameters when some haplotypes may be functionally
equivalent (K = J). Thus, an allele-based association ap-
proach would provide valuable insights into the number of
causal variants while potentially improving effect estimation.
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In this study, we introduce a method for QTL analysis that
explicitly models an allelic series of haplotypes. Our method
treats the allelic series as an unknown quantity that must be
inferred from the data. In the context of the previous linear
model, this means inferring the indicator matrix M while K is
also unknown. This is a challenging problem because the
number of possible allelic configurations is large even when
the number of haplotypes is small.

There are currently no established methods for inferring
the allelic series in MPPs, with QTL methods focused instead
on, for example, accommodating uncertainty due to haplo-
type reconstruction (Mott et al. 2000; Kover et al. 2009;
Durrant and Mott 2010; Zhang et al. 2014), or incorporating
multiple QTL or terms for polygenic population structure
(Valdar et al. 2009; Yuan et al. 2011; Gatti et al. 2014; Wei
and Xu 2016). A recent study explored the relationship be-
tween the allelic series and QTL mapping power, but this was
in the context of a haplotype-based association approach
(Keele et al. 2019).

Inference of the allelic series in practice is often subjective,
combining patterns in haplotype effect estimates with some
intuition about the number of functional alleles (Aylor et al.
2011; Kelada et al. 2012). Yalcin et al. (2005) developed a
method called merge analysis that compares biallelic con-
trasts of merged haplotypes, as suggested by SNPs present
in available sequence data, with the full haplotype model to
see which most parsimoniously fits the data. This was trivially
extended to multiallelic variants in Mosedale et al. (2019). In
our framework, those approaches treat M and K as known
and assume that they are implied by a single observed vari-
ant. King et al. (2014) also generalized merge analysis to
interrogate multiallelic contrasts. Their approach implies a
uniform prior distribution over the allelic series, p(M)o1.
Their procedure, however, was ad hoc and not embedded
within a broader statistical framework that could account
for prior information about the allelic series.

The approach most closely resembling ours is Jannink and
Wu (2003), used to infer the allelic series in doubled haploid
lines. Their method places either a uniform or Poisson distri-
bution on K, with the conditional allelic series then distrib-
uted uniformly, p(M|K)oc1. They found that an allele-based
model improves haplotype effect estimation but that infer-
ence of the allelic series itself was generally uncertain. Nota-
bly, their approach did not incorporate prior information
about the relatedness of the haplotypes, which they identi-
fied as a key limitation. It is reasonable to expect that closely
related haplotypes are more likely to be functionally identical
than distantly related haplotypes, and, consequently, that in-
cluding this information would improve allelic series infer-
ence. Accounting for haplotype relatedness in an allele-based
association framework is the primary innovation of our
research.

Our approach frames inference of the allelic series as a
Bayesian model selection problem. As suggested above, this
requires specifying a prior distribution over the space of allelic
configurations, p(M). Since this space is often much larger



than the number of observations, information about the alle-
lic series will typically be low. This makes the prior distribu-
tion critical, as it provides the basis for setting expectations
about the number of functional alleles and their haplotype
composition.

Our prior for p(M) is based on the Chinese restaurant
process (CRP), which is the distribution over partitions that
underlies the popular Dirichlet process mixture model
(Escobar and West 1995; Miiller et al. 2015). In this frame-
work, the haplotypes are partitioned into a potentially
smaller set of functional alleles, with the alleles having in-
dependent effects. The CRP allows for control over the prior
number of alleles via its concentration parameter, but it im-
plicitly assumes equal relatedness between individual haplo-
types. We generalize the CRP prior to allow for unequal
relatedness between the haplotypes by leveraging a particu-
lar property, namely, that the CRP can be described as the
distribution of partitions induced by functional mutations on
random coalescent trees, a representation known as Ewens’s
sampling formula (Ewens 1972; Kingman 2006) (example in
Figure 1).

Ewens’s sampling formula provides an intuitive mecha-
nism for introducing prior information about haplotype
relatedness: assuming that the phylogenetic tree of the
haplotypes is known rather than random. This defines a prior
distribution over the allelic series that is informed by a tree,
p(M|T). In this way, our approach is similar to other models
that include phylogenetic information; for example, by mod-
eling distributional “changepoints” on a tree (Ansari and
Didelot 2016), or by using phylogenetic distance as an input
for a distance-dependent CRP (Cybis et al. 2018), among
others (Zhang et al. 2012; Thompson and Kubatko 2013;
Behr et al. 2020; Selle et al. 2020). In particular, Ansari and
Didelot (2016) specify a prior distribution over the allelic
series by defining the prior probability that each branch of
a tree is functionally mutated with respect to a phenotype (in
their case, a categorical trait). This is also how we define
p(M|T), and we highlight that this is embedded within the
broader population genetics framework of Ewens’s sampling
formula (Ewens 1972; Kingman 2006), with its connections
to both the CRP and the coalescent (Berestycki 2009).

In the remainder, we introduce a fully Bayesian frame-
work for inferring the allelic series and additive allele effects
in MPPs. This places the allelic series on a continuum that
encompasses both single-variant and haplotype-based ap-
proaches. Our approach accounts for multiple sources of un-
certainty found in typical MPPs, including uncertainty due to
haplotype reconstruction, the number of functional alleles
(Escobar and West 1995; Miiller et al. 2015), and the mag-
nitude of their effects (Gelman 2006). We outline a strategy
for posterior inference using a partially collapsed Gibbs sam-
pler (Neal 2000; van Dyk and Park 2008; Park and Van Dyk
2009) and use posterior samples and Rao-Blackwellization
to calculate the marginal likelihood (Blackwell 2007; Chib
1995), which is useful for comparing competing model
assumptions (Kass and Raftery 1995). We then evaluate

various properties of the allelic series approach via simulation
and highlight several key findings. We conclude by present-
ing a series of illustrative real-data examples, from incipient
lines of the Collaborative Cross (PreCC) (Kelada et al. 2012,
2014) and the Drosophila Synthetic Population Resource
(DSPR) (King et al. 2014), that showcase the inferences fa-
cilitated by our allele-based approach.

Materials and Methods
Overview

At a quantitative trait locus (QTL), a trait y = (y1,. . ., yN)T
measured in N individualsi = 1, ..., N is associated with ge-
netic variation at a particular location in the genome. In a
diploid multiparental population with J = 2 founder strains
j=1,...,J, this genetic variation is encoded by the pair of
founder haplotypes, or the diplotype, at the locus, denoted
for each individual by the indicator vector d; with length
J+ (2) This length corresponds to the number of possible
founder haplotype pairs, of which J are homozygous and (; )
are heterozygous. The diplotype states of all individuals are
given by the indicator matrix D = (di, ..., dy)" with dimen-
sion N x (J+(i )) We are interested in understanding the re-
lationship between y and D.

For now, assume that the diplotype states are known, and
that the phenotype is completely explained by the additive
effects of the haplotypes and normally distributed individual
error, i.e., there are no other covariates, replicate observa-
tions, or population structure. Under these conditions, a lin-
ear model for y and D is

YD, Brap: & ~ N(DAByp, o*Iv), &

where By, = (B1,-- -, )" is a J-vector of haplotype effects,
Ais a (J + (;)) X J matrix that maps diplotypes state to

haplotype frequency such that DA is an N X J design matrix
of additive haplotype half-counts for each individual (i.e., the
jith element is half the number of founder j haplotypes at the
locus for individual i), and o2 scales the residual variance.

A standard Bayesian analysis of this linear model assumes
that the haplotype effects are a priori distributed as

ﬁhap|/"‘” g, ¢ ~ N(/J']-y 02¢21J)7

where u is an intercept and ¢ controls the size of the hap-
lotype effects relative to individual error (Servin and
Stephens 2007). This fits an independent effect for each of
the J founder haplotypes, implicitly assuming that, with re-
spect to the phenotype, each founder haplotype is function-
ally distinct. This assumption, however, is rarely expected in
practice. It is more realistic to assume that haplotypes group
are grouped into K = J functional alleles, with the assign-
ment of haplotypes to functional alleles termed the allelic
series.

Inferring Allelic Series 959
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Our approach extends the standard additive model to
explicitly account for the allelic series, as in Jannink and
Wu (2003). This decomposes the haplotype effects into the
product of the allelic series matrix and a vector of allele
effects:

ﬂhap = MBjie; 2)

where B = (B1,...,Bx)" is a length K vector of allele ef-
fects, M = (my, ... ,mJ)T is aJ X K matrix denoting the alle-
lic series, and m,; is a length K indicator vector denoting the
allele assignment of strain j. For example, if there J = 3 hap-
lotypes (labeled A, B, and C), and haplotypes A and C share
one of K = 2 functional alleles, then the corresponding allelic
series matrix is

The haplotype effects B,y are not independent and function-
ally distinct, but instead are comprised of repeated values of a
smaller set of allele effects B.j.. More generally, the allelic
series matrix M partitions the J haplotypes into K functional
alleles, which also determines the number of allele effects in
Baue. If the allelic series is known and K < J, this approach
will estimate By,, more efficiently than the standard haplo-
type-based approach because it fits only K allele effects,
rather than J redundant haplotype effects.

The allelic series is rarely known a priori, but it may be
inferred from the data. From a Bayesian perspective, we are
interested in the allelic series’ posterior distribution,

p(Mly) = p(y|M)p(M),

which requires specifying a prior distribution over the space of
possible partitions encoded by M. Specifying a prior distribu-
tion over this space involves simultaneously defining expec-
tations about the number of functional alleles and which
combinations of haplotypes are more or less likely to be func-
tionally distinct. This is particularly challenging when there
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Figure 1 Allelic series induced by functional muta-

tions on coalescent trees of haplotypes. Alleles are

denoted by circle color (yellow, blue, green) and

e functional mutations are denoted by purple hashes.

(A) One functional mutation on a tree partitions

four haplotypes into two functional alleles: {4, D}

| {B, C}. (B) Additional mutations on the same tree

partition the haplotypes into three functional al-

e leles: {A, D} | {B} | {C}. The second mutation does

not affect {A, D}. (C) Two functional mutations on a

D different tree partition the haplotypes into the same

allelic series: {A, D} | {B} | {C}. Note that the allelic

series from the first example, {A, D} | {B, G}, is im-
possible given this tree.

are many founder haplotypes, as the space of allelic series
partitions becomes exceedingly large.

Partition problems are common in Bayesian nonparametric
statistics, and our approach is closely related to the popular
Dirichlet process (DP) with a normal base distribution, i.e.,

Braplit. o, ¢, a ~ DP(a, N(u,0°¢?)),

where « is the concentration parameter (Escobar and West
1995). Under the DP, the corresponding prior distributions
on M and B, are

M|a ~ CRP(a),

Baeln, o, ¢ ~ N(rl, 0?¢%I).

In the CRP, the concentration parameter « controls the prior
distribution of the number of functional alleles, and the dis-
tribution over particular allelic configurations is implied by
the process itself. Specifically, the CRP assigns a haplotype to
an allele conditionally, in proportion to the number of haplo-
types already assigned to that allele, without considering
which particular haplotypes comprise the allele. In this way,
the CRP is uninformative with respect to the relationship be-
tween individual haplotypes. We use the CRP as a starting
point for directly modeling the allelic series, eventually mod-
ifying it in order to introduce additional prior information
about haplotype relatedness.

The remainder of the methods first describes the likelihood
function in more detail, using sum-to-zero contrasts and
conjugate prior distributions to simplify the likelihood. Then,
it focuses on the CRP, using Ewens’s sampling formula to
show how the CRP can be interpreted as a distribution over
random coalescent trees with the haplotypes at the leaves.
Next, this connection to the coalescent is used to define an
informative prior distribution for the allelic series that reflects
information about haplotype relatedness, as encoded by a
phylogenetic tree. Prior distributions are then specified for
the remaining model parameters, along with elicitation of
prior hyperparameters. A graphical summary of the fully
specified model is shown in Figure 2. Next, we describe pos-
terior inference via a partially collapsed Gibbs sampler and
how the output of this sampler can be used to estimate the
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Figure 2 Graphical summary of the allele-based association approach. Shaded nodes are data, open nodes are variables, and double circle nodes are
hyperparameters. Selected nodes are annotated to aid interpretation. Note that B is annotated as “allele effects” for brevity, but we actually depict the
K — 1 independent effect vector, not Baje. We also omit the subscripts on the hyperparameters a, and b,. Arrows indicate dependencies between
nodes. Dashed arrows are probabilistic dependencies, and labels denote the probability distributions linking the nodes. For distributions with multiple
parameters, the star (*) indicates the parameter of the parent node, and the dot (.) is a placeholder for the other parameter. The notation f(T, ) is
shorthand for the unnamed distribution p(b|T, «) given in the text. Solid arrows are deterministic dependencies, and labels denote the operation linking
the nodes. The partial shading of the T node denotes that the tree can either be specified as data or treated as a variable with a coalescent prior
distribution, which is parameterless. When T is a variable with a coalescent prior, T and b can be integrated from the model. Integration removes these
nodes from the graph, leaving only the probabilistic dependency of M on «, given by the gray dotted arrow.

marginal likelihood. The section ends by describing the sim-
ulations and real data examples presented in the results.

Likelihood function

The likelihood function defines the relationship between the
phenotype and the diplotype states. Substituting Equation 2
into Equation 1 gives the likelihood function

y|D, M, Baje, o ~ N(DAMB,y, o).

We make one additional substitution, reformulating the allele
effects in terms of an intercept and a set of effects that are
constrained to sum to zero,

B alle

where Cis a K X (K — 1) matrix of orthogonal sum-to-zero
contrasts (Crowley et al. 2014) and B is a K — 1 vector of

pl +CB,

independent effects with mean zero. This substitution yields
the likelihood

y|D, M, u, B, o ~ N(ul+DAMCB, o’ly),

which now includes the intercept. In the expression DAMCf,
note that A and C are fixed, whereas D, M, and B are variables
inferred by the model.

Our approach requires evaluating the likelihood over many
settings of M with varying dimension. This motivates the use
of conjugate priors for the allele effects, which allow us to
simplify the likelihood by integrating, or collapsing, the allele
effects out of the expression (Servin and Stephens 2007).
Thus, we use the conjugate normal-gamma prior distribution
for the precision, intercept, and independent effects:

o 2 ~ Ga(0.5k,0.51),
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/.L‘O' ~ N(O, 027'2),
Blo, ¢ ~ N(0, *¢*Ix1),

where k, A are shape and rate hyperparameters that control
prior precision, and 7 is a hyperparameter that controls the
informativeness of the prior intercept. Marginally, each allele
effect is distributed according to

Bk M, O, d’ ~ N(/"Lv 02¢2)7

which is similar to the DP described earlier, but jointly, B is
constrained to sum to w.
The likelihood can be rewritten as

Y|D7 M7 M, B7 g ~ 1\I<)(07 O'ZIN),

where X is the N X K design matrix, X =[1 DAMC], and 7
is alength K vector containing the intercept and independent
effects,#” = [ BT | The intercept and independent effects
are jointly distributed according to

Olo, o ~ N(O7 0'2V)7

where V is a K X K diagonal matrix of the scaled prior
covariance

2
0
v=|" .
[ 0 ¢’k }
Conjugacy yields a closed form for a simplified, t-distributed
likelihood function:

y|D, M, ¢ ~ (0, A[Iy + XVX']).

This simplified likelihood depends only on the diplotype
states, allelic series configuration, and relative variance of
the allele effects—this is useful during posterior inference. It
is straightforward to generalize the likelihood to account for
covariates and replicate observations (Appendix A).

Prior distribution of the allelic series

Chinese restaurant process: Specifying a prior distribution
over the allelic series involves defining expectations about the
number of functional alleles and likely allelic configurations.
This is challenging because the space of possible allelic series
is large even when the number of haplotypes is small. For
example, the Collaborative Cross (CC) has J = 8 founder
haplotypes and 4140 possible allelic series; the DSPR has
J = 15 and over 1.3 billion possibilities (Rota 1964). Encod-
ing specific prior intuitions about such a space is difficult. It is
tempting to consider a uniform prior over the allelic series
[p(M)ec1] that allows the likelihood to drive posterior infer-
ence about the allelic series. However, in most cases, the
number of observations will be much smaller than the num-
ber of possible allelic configurations, and this low-data sce-
nario is precisely when prior information is most important.
Instead of posterior inference being dominated by the
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likelihood, it will be subject to the properties of the uniform
distribution, which include a strong prior belief in an inter-
mediate number of functional alleles and a lack of flexibility
to calibrate this belief.

Partition problems occur frequently in Bayesian nonpara-
metric statistics, and a common and more flexible prior
distribution is the CRP,

M|a ~ CRP(w),

with probability density function

K
p(Mla) = T(@)T(a +J) ' [ TW),
k=1

where « is a concentration parameter that controls the
expected number of functional alleles, and Jy. is the number
of haplotypes assigned to allele k (Escobar and West 1995).
The CRP is widely used in partition problems because it is
exchangeable, making it amenable to posterior sampling. Ex-
changeability means that the density function of the CRP can
be factored into conditional distributions that describe the
allele assignment of a particular haplotype given the allelic
configuration of all the other haplotypes. It also means that
this conditional density can be applied iteratively (and in any
order), beginning with all haplotypes unassigned, to con-
struct the unconditional density of M|a (Welling 2006).

The conditional probability density function of the CRP is
given by

where M; is the allele assignment of haplotype j, and M is
the allelic configuration of the other J — 1 haplotypes. The
probability that haplotype j is assigned to allele k is propor-
tional to the number of haplotypes already assigned to that
allele, and the probability that haplotype j is assigned to a
new allele is proportional to the concentration parameter a.
This proportionality induces a “rich-get-richer” property that
favors imbalanced allelic configurations (e.g., for J = 8, a
biallelic contrast of 7 haplotypes vs. 1 haplotype for J = 8,
“7v1”) over balanced configurations (e.g., an even biallelic
contrast, “4v4”) (Wallach et al. 2008). Note that the condi-
tional probability that a haplotype is assigned to an existing
functional allele does not depend on which particular haplo-
types have already been assigned to that allele, only the
number that have been assigned. In this way, the CRP is un-
informative with respect to the relationship between individ-
ual haplotypes.

The CRP does, however, allow for control over the prior
number of functional alleles via the concentration parameter.
When a— «, all of the haplotypes will be assigned to a
unique functional allele (M = I), which is identical to the
standard haplotype approach that assumes that all J haplotypes
are functionally distinct. When a — 0, all of the haplotypes will



be assigned to a single functional allele (M = 1), which is equiv-
alent to a null model with no genetic effect.

To allow for additional flexibility, we place a prior distri-
bution over the concentration parameter:

a ~ Ga(aq, ba), ©))

where a,, and b,, are hyperparameters that control the shape
and rate of the concentration parameter. We discuss prior
elicitation for these hyperparameters in a later subsection.

Ewens’s sampling formula and the CRP: The CRP is equiv-
alently given by Ewens’s sampling formula as the distribution
over partitions induced by functional mutations on random
coalescent trees with the founder haplotypes at the leaves
(Ewens 1972; Kingman 2006). The intuition for this interpre-
tation is as follows. At a QTL, there is a tree that describes the
relatedness of the founder haplotypes. At various points dur-
ing the evolution of this locus, functional mutations that al-
tered the phenotype occurred at a constant rate on the
branches of the tree. These functional mutations were trans-
mitted to the founder haplotypes at the leaves of the tree,
partitioning the haplotypes into groups that carry the same
set of functional mutations. This partition is the allelic series.
Examples of allelic series induced by functional mutations on
coalescent trees of haplotypes are given in Figure 1. If we
assume that the tree relating the founder haplotypes is un-
known, but that it is distributed according to the coalescent
process, then the resulting distribution over partitions is the
CRP (Berestycki 2009).

More formally, Ewens’s sampling formula describes the
allelic series as a function of a tree and which branches of
that tree are functionally mutated. The conditional probabil-
ity density function of the allelic series given a tree and
branch mutations is

P(M|Ta b) = 1{Tﬁ b=M}s

where T denotes a tree with J leaves and 2J — 2 branches,
b= (by,... 7b2]72)T is a length 2J — 2 vector of indicators
that denote if a branch is mutated, and 17 - is an indica-
tor function that takes value 1 when T and b imply M and
0 otherwise.

The tree T is an unknown random graph that is distributed
according to the coalescent process with J leaves:

T ~ Coalescent(J).

Coalescent trees are defined by sequential coalescent events
that join lineages of the tree in random order, beginning with
the leaves, as well as the times at which these coalescent
events occur, which are exponentially distributed and depend
on the number of lineages remaining prior to each coalescence
(Kingman 1982). For our purposes, it is sufficient to note that
there is a probability distribution over trees, p(T), and that
this distribution assumes equal relatedness of the haplotypes
via the random order of coalescent events. We also note that

each branch of the tree has a corresponding length, which is
contained in the length 2J — 2 vector ¢ and described in co-
alescent units.

The mutation status of the branches b is an unknown
vector of indicators. Assume that functional mutations occur
on the branches of the tree as a Poisson process with constant
rate 0.5a. Then the number of mutations on each branch is
Poisson distributed with rate proportional to branch length,
and the probability density function for b, which indicates
whether or not each branch is mutated is

2]—

H 70 Saly

p(b|T,a) P (1 05atmPr

This is similar to Ansari and Didelot (2016), but with branch
lengths scaled by 0.5 and in coalescent units. The concentra-
tion parameter o controls the functional mutation rate per
half-unit of coalescent branch length. Note that moving for-
ward, we will refer to « interchangeably as the concentration
parameter (of the CRP) or the functional mutation rate (on
the tree), depending on context. When a — «, the probabil-
ity that each branch is mutated approaches 1, the tree is
saturated with functional mutations, and all of the founder
haplotypes are functionally distinct (M = I). When o — 0, the
probability that each branch is mutated approaches 0, there
are no functional mutations on the tree, and all of the foun-
ders are functionally identical (M = 1).

The probability density function for the allelic series is thus

p(Mla) / {Zp MIT, b)p(b[T, a)} (T) dT,

T

which involves identifying the allelic series implied by each
combination of mutated branches on a tree, weighing by the
probability of that combination, summing over all possible
combinations, and then integrating over all possible coales-
cent trees. Remarkably, this is identical to the probability
density function of the CRP described previously (Berestycki
2009). In this framework, the “rich-get-richer” property of
the CRP is induced by integrating over coalescent tree struc-
tures (e.g., all trees with J = 8 haplotypes have a branch that
permits a specific 7v1 contrast, whereas only a subset of these
trees have a branch that permits a specific 4v4 contrast; see
Figure 1 for an illustration).

Tree-informed CRP: The CRP described above permits prior
control of the number of functional alleles, but, by integrating
over all possible coalescent trees from random coalescent
lineages, assumes that haplotypes are equally related. Spec-
ifying unequal relatedness in this framework is straightfor-
ward, however, if haplotype relationships can be specified as a
tree. Conditional on a tree, the distribution over the allelic
series reflects the relationships defined by the structure of the
tree and the lengths of its branches. The tree topology reduces
the space of possible partitions because many settings of M
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violate the relationships defined by T, making this informa-
tion highly informative. The branch lengths of T also provide
information about the allelic series, as long branches are
more likely to be functionally mutated than short branches.
Consequently, haplotypes separated by longer branches are
more likely to be functionally distinct than haplotypes sepa-
rated by shorter branches. The functional mutation rate still
controls the prior number of functional alleles, now in com-
bination with the tree structure and branch lengths.

If the tree is known, the conditional probability density
function of the allelic series is given by

p(M|T,@) =) p(M|T,b)p(b|T,a),
b

which does not involve integrating over coalescent trees, but
does involve (weighted) summation over all 22/ ~ 2 possible
configurations of b. This is computationally intractable when
the number of haplotypes is large, but provided J is small
(e.g., J = 8, the case for many MPPs, but not J = 15, the case
for the DSPR), it is possible to compute p(M|T,«) directly. We
focus on this approach and consider alternatives in the discussion.

Recall that the functional mutation rate (concentration
parameter) « is an unknown variable with a prior distribu-
tion. To avoid calculating p(M|T,«) for many settings of «
during posterior inference, we marginalize over this variable
and compute p(M|T) directly. The conditional probability
density function is given by

pMIT) =)

p(MIT,b) / p(b[T, a)p(a) dar
b

(o3

In Appendix B, we show that the integral over « can be com-
puted exactly when « has a gamma prior distribution.

Lastly, to this point, we have assumed that the tree is
known, but it may be unknown and inferred with uncertainty
from a sequence alignment (Drummond et al. 2012). In this
case, we are interested in the allelic series prior distribution
conditional on the sequence alignment S,

p(MJS) = / p(M|T)p(T|S)dT
T

This can be approximated by averaging p(M|T) over a sample
of trees from p(T|S).
Prior distribution of diplotype states

The diplotype state of each individual is an unobserved latent

variable that is probabilistically inferred via haplotype re-

construction. To account for this uncertainty, the diplotype

state of each individual is given a categorical prior distribution
d; ~ Cat(p;),

where p;isaJ + (;) length vector of prior diplotype prob-

abilities for each individual.
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Prior distribution of effect size

The variable ¢ controls the size of the allele effects relative to
individual error and controls the degree to which model com-
plexity is penalized in Bayesian regression. We place a half-t
prior distribution on the scaled standard deviation of the
allele effects:

¢ ~ Half-t,,

where v is degrees of freedom of the half-t distribution. The
half-t is a preferred prior choice for variance components in
normally distributed models due to its behavior at the bound-
ary (¢ = 0) and its convenient representation as the product
of two conditionally conjugate latent variables (Gelman
2006).

Prior elicitation

This section describes the selection of hyperparameters for the
priors describe above and discusses relevant considerations
that may influence this selection.

Individual error and intercept: We use uninformative prior
distributions for the size of the individual error and the in-
tercept of the data. Specifically, we assume the limiting form of
the prior distributions for o as k, ¢ — 0 and u as 7— . These
prior distributions are improper, but posterior inference is
still proper when these quantities are informed by the data
(Servin and Stephens 2007).

Concentration parameter/functional mutation rate: The
shape and rate parameters a,, and b, control the prior dis-
tribution of the concentration parameter (functional mu-
tation rate), which, in turn, controls the prior distribution
over the number of functional alleles. An uninformative
prior distribution for the concentration parameter is given
by a,, b, — 0 (Escobar and West 1995). Posterior learning
about the concentration parameter, however, depends only
on the number of founder haplotypes J and the number of
functional alleles K. For this reason, even if M is known,
the concentration parameter is poorly informed when J is
small. This necessitates a prior distribution that reflects
reasonable prior expectations about the number of func-
tional alleles.

We focus on one particular prior distribution for the con-
centration parameter: an exponential distribution that places
50% of the prior probability on the null model, given by
a, = 1and b, ~ 2.33 whenJ = 8. This prior distribution favors
small numbers of functional alleles with low variance. In the
Supplement, we consider two alternative prior distributions
that favor higher numbers of alleles with varying degrees of
certainty. There are many ways to calibrate prior expectations
about the number of alleles, for example, by considering the
frequency of biallelic contrasts, or the expected number of
functional mutations on a tree, as in Ansari and Didelot
(2016). We emphasize that the reasonableness of a prior is



specific to the number of founder haplotypes, the nature of
the analysis (pre- or post-QTL detection), and other popula-
tion- or trait-specific prior beliefs.

Coalescent tree: Specifying a prior tree for the haplotypes is
highly informative with respect to the allelic series. Our
framework assumes that the phylogenetic tree is coalescent
(with branches in coalescent units), satisfying assumptions of
no recombination, selection or population structure. In the
context of QTL mapping, the exact location of the causal
sequence is often uncertain, making it difficult to satisfy the
assumption of no recombination in particular. We discuss
inferring trees in recombinant organisms in more detail in
the discussion section, and we evaluate the consequences of
tree misspecification in our simulations. By default, we rec-
ommend using the CRP, which assumes an unknown coales-
cent tree.

Diplotype states: It is assumed that the prior diplotype state
probabilities of each individual p; have been previously
inferred from genotype or sequence data using established
methods for haplotype reconstruction (Mott et al. 2000;
Zheng et al. 2015; Broman et al. 2019).

Relative allele effect size: The half-t prior distribution on ¢,
the scaled standard deviation of allele effect size, is con-
trolled by degrees of freedom v. We set v = 2, which is
the minimum value of v that yields a monotonically decreas-
ing prior distribution for the proportion of variance ex-
plained by the QTL, given by h%TL = ¢?(p> + 1) . Larger
values of v reflect a stronger prior belief in “small” effect
sizes and increase the degree of shrinkage in the allele
effects.

Posterior inference

Posterior samples are obtained using a partially collapsed
Gibbs sampler (van Dyk and Park 2008; Park and Van Dyk
2009). This involves four general steps:

1. updating the allelic series with the effects and scale of the
error integrated, or collapsed, from the model,

2. jointly sampling the error scale and effects,

3. updating the relative size of the allelic effects, and

4. jointly updating the diplotype states.

The effects and scale of the error are integrated from the
model during the first step in order to avoid mismatching
the dimension of B and the dimension of M when updating
the allelic series. After updating the allelic series, the effects
and scale of the error are reintroduced into the model in
order to take advantage of a convenient latent variable sam-
pling scheme for the relative size of the allele effects and to
facilitate a joint update of the diplotype states. These steps
are discussed in more detail below.

Updating the allelic series with the CRP: We update the
allele assignment of each haplotype individually, conditional

on the allele assignment of the other haplotypes. In the case of
the CRP, we must also update the concentration parameter.
The conditional posteriors of the allelic series and the con-
centration parameter under the CRP are given by

p(Mjly,D, M_;, ¢,a) = p(y|D, M, $)p(M;|M_;, ),

p(aly,D,M, ¢) = p(M|a)p(a).

The first equation is the product of the t-distributed likelihood
and the categorical, exchangeable, conditional prior distribu-
tion of the CRP. The conditional posterior is calculated directly
by evaluating the likelihood at all possible (conditional)
settings of the allelic series (Neal 2000). The conditional
posterior of the concentration parameter depends only on
the number of alleles in the allelic series, and there is a con-
venient, well-established latent variable approach for sam-
pling from this posterior distribution (Escobar and West
1995; Miiller et al. 2015).

Updating the allelic series with a tree: In the case of the
tree-informed prior distribution, the concentration parameter
has already been integrated from the allelic series prior. Thus,
the conditional posterior of the allelic series under the tree-
informed prior is given by

p(Mjly,D,M_;,¢,T) = p(y|D,M, $)p(M;|M_;, T)

The conditional prior distribution of the allelic series
given the tree, p(M;/M_;,T), is not exchangeable and is
not easy to calculate. Thus, we assume that the condi-
tional prior distribution is proportional to the marginal
prior distribution

P(Mj|M.-j, T) = p(M|T),

treating this distribution as if it were exchangeable. At each
iteration of the sampler, we randomize the order in which the
haplotype assignments are updated. This avoids bias intro-
duced by ordered updates of nonexchangeable variables, as
described by Wallach et al. (2008) in the context of a uniform
process. We have not observed issues with mixing using this
approach, suggesting that this violation of exchangeability is
mild. We outline an alternative, exchangeable approach for
this step in Appendix C.

Sampling the error scale and effects: The conditional pos-
terior of the intercept, allele effects, and error scale is given by

p(0, oly, D, M, ¢, [a V T]) < p(y|D, M, 0, o)p(0|a, ¢)p(0),

which is the product of the normally distributed likelihood and
a conjugate normal-gamma prior distribution, yielding a nor-
mal-gamma conditional posterior distribution, as in Servin
and Stephens (2007). The notation [« V T] denotes that the
distribution is conditional on either « or T, depending on
which allelic series prior distribution is used.
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QTL Effect Size: 0.5

Figure 3 0-1 accuracy of posterior allelic series in-
ference with four different levels of tree informa-
tion, for varying numbers of true functional alleles,

across two effect sizes. CRP assumes no tree infor-
mation, Tree assumes perfect tree information, Mis-
specified assumes a partially misspecified tree, and
Incorrect assumes a completely misspecified tree.
Points are connected for clarity. Shading denotes
95% confidence intervals. In the low power sce-
nario (A), accuracy for the CRP is high when the
QTL has two or fewer alleles but low when it is
multiallelic. In the high power scenario (B), accuracy
for the CRP is high for an intermediate number of
alleles but low when there are many alleles. Across
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Updating the relative size of the allele effects: The condi-
tional posterior of the relative size of the allele effects is given
by

p(¢ly, D, M, 0, o, [a V T]) < p(Blo, $)p(¢b),

which is the product of a normal distribution and a half-t prior
distribution for the scaled standard deviation, which is not
conjugate. The half-t prior distribution, however, can be
re-expressed as the product of two latent variables: the square
root of an inverse-gamma-distributed variable and the abso-
lute value of a normally distributed variable. Respectively,
these variables are conditionally conjugate to the prior distri-
bution of B8 and the likelihood function, allowing for straight-
forward sampling of these latent variables (Gelman 2006).

Updating the diplotype states: The conditional posterior of
the diplotype states is given by

p(Dly, M, 0, 0, ¢, [a v T]) = p(y|D, M, 0, o0)p(D),

which is the product of the normally distributed likelihood and
categorical prior distributions. The diplotype states are con-
ditionally independent of each other, and the joint conditional
posterior is computed by evaluating the likelihood of each
individual observation over all possible diplotype states.

Marginal likelihood

The marginal likelihood is useful for comparing different
hypotheses about the data. For example, two competing
hypothesis can be evaluated by calculating their Bayes factor
(BF), which is the ratio of the marginal likelihoods under each
hypothesis (Kass and Raftery 1995). In Appendix D, we out-
line an approach for estimating the marginal likelihood using
the output of the Gibbs sampler (Chib 1995). We use this
estimate to compute BFs in favor of the allele-based approach
vs. the haplotype-based approach. There is precedent for the
use of BFs in statistical genetics (Servin and Stephens 2007),
but we note that BFs are not without criticism (Robert 2016).
The marginal likelihood can also be used to weigh posterior
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both scenarios, Tree information provides a modest
increase in accuracy relative to the CRP, even when
that information is Misspecified. Incorrect tree in-
formation decreases allelic series accuracy.

5 6 7 8
Number of Alleles

samples from different hypotheses in order to average them
(Kamary et al. 2014; Robert 2016), but we have not done that
here.

Simulation procedure

We use simulation to evaluate our approach with respect to
accuracy in allelic series inference and error in haplotype
effect estimation. In particular, we focus on performance in
the absence of additional phylogenetic information, and the
utility of including that additional prior information, with
varying levels of accuracy, as a coalescent tree. In the Sup-
plement, we also consider prior selection for the allelic series
and concentration parameter.

We iteratively simulate single-locus QTL for a MPP with
J = 8 founder haplotypes, and at each locus we assume
known but varied coalescent phylogeny of the haplotypes.
We use a fixed experiment size of N = 400 individuals, bal-
anced with respect to haplotypes, and with known homozy-
gous diplotype states, D. Rather than vary experiment size,
we instead vary QTL effect size, as measured by the propor-
tion of total phenotype variance explained by the QTL, héTL.
We anticipate that the results of these simulations depend
primarily on power (a function of experiment size, haplotype
balance, and QTL effect size), and thus hold both experiment
size and haplotype balance fixed for simplicity. We also as-
sume that the population does not have structure in genetic
background, and without replicate observations, any vari-
ance attributable to strain effects is indistinguishable from
individual-level error and can be ignored. We consider only
additive QTL effects because the diplotypes are assumed to
be homozygous in this simulation, and dominance effects
would not be revealed.

Subject to these assumptions, the simulation procedure is
as follows:

e Sample a coalescent tree T to describe the local phyloge-
netic relationship of the eight founder haplotypes:

T ~ Coalescent(J = 8),



QTL Effect Size: 0.5

Figure 4 Posterior certainty of the correct allelic
series with four different levels of tree information,
for varying numbers of true functional alleles,

across two effect sizes. CRP assumes no tree infor-
mation, Tree assumes perfect tree information, Mis-
specified assumes a partially misspecified tree, and
Incorrect assumes a completely misspecified tree.
Points are connected for clarity. Shading denotes
95% confidence intervals. In the low power sce-
nario (A), posterior certainty for the CRP is high
when the QTL has two or fewer alleles but low
when it is multiallelic. In the high power scenario
(B), posterior certainty is high for an intermediate
number of alleles but low when there are many
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e For a given functional mutation rate «, calculate the dis-
tribution of allelic series implied by the tree:

p(M|T, @) =) p(M|T, b)p(b|T, @),
b

e For a given number of functional alleles K, sample an al-
lelic series, conditional on T, that satisfies K:

P(M|T,a,K) = p(K|T,a,M)p(M|T, ),

e For a given QTL effect size hj;;, zero-center and scale K
equally spaced allele effects B, to satisfy mean

(Balle) =0and Var(ﬁalle) = héTL

e Sample a vector of N individual errors from
e ~ N(0, 1),

and zero-center and scale to satisfy mean(e) =0 and
var(e) = 1 —h}y,
e Compute the simulated phenotypes:

y = DAMB,jc + €.

Rather than sample normally distributed allele effects, we
use uniformly spaced effects, as in King et al. (2014). As the
number of functional alleles increases, if the allele effects are
normally distributed, the minimum distance between any
two allele effects becomes increasingly small, making it
harder to distinguish these effects. Uniformly spacing the
effects eliminates the possibility of arbitrarily small and un-
detectable differences between alleles.

For each simulated experiment, we consider five possible
scenarios, representing different levels of prior information
about the allelic series and the underlying phylogeny:

e both the allelic series and coalescent tree are unknown
(termed “CRP”),

o the allelic series is unknown and the coalescent tree is
known (“Tree”),

T
4

Number of Alleles

alleles. Across both scenarios, Tree information in-
creases posterior certainty relative to the CRP, even
when that information is Misspecified. Incorrect
tree information has similar accuracy to the CRP
on average.

o the allelic series is unknown and the coalescent tree is
partially misspecified using the procedure defined in
Ansari and Didelot (2016) (“Misspecified”),

o the allelic series is unknown and the coalescent tree is
completely misspecified as an unrelated coalescent tree
(“Incorrect”), and

e an oracle approach where the allelic series is known
(“Known”).

These are also compared with the standard haplotype-based
approach, which assumes that all haplotypes are functionally
distinct (“Full”).

The above scenarios are evaluated with respect to their
accuracy in identifying the allelic series and their error in
estimating haplotype effects. Specifically considered are:

e whether or not the MAP allelic series is the correct allelic
series (“O-1 Accuracy”),

o the posterior mass on the correct allelic series (“Posterior
Certainty”), and

o the mean squared error of the posterior haplotype effects
relative to the true effects, averaged over posterior sam-
ples (“MSE”).

We perform 1000 simulations for each combination of the
following parameter settings:

e Number of functional alleles K: [1-8],
e QTL effect size h; : [10%, 50%],
e Concentration parameter a: [1].

In all cases, results are stratified by the true number of
functional alleles K. For this reason, our results are relatively
insensitive to «, but we note that the relative benefit of tree
information (conditional on K) is increased with higher « and
decreased with lower a.

We do not directly compare our approach with other
methods due to their considerable differences. Yalcin et al.
(2005) consider only biallelic series and single variants.
Mosedale et al. (2019) consider multiallelic series but only
in the context of single variants. King et al. (2014) consider
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QTL Effect Size: 0.5

Figure 5 Mean squared error (MSE) of haplotype

effect estimates with four different levels of tree
information, for varying numbers of true functional
alleles, across two effect sizes. CRP assumes no tree
information, Tree assumes perfect tree information,
Misspecified assumes a partially misspecified tree,
and Incorrect assumes a completely misspecified
tree. Full is the haplotype-based approach where
all haplotypes are functionally distinct, and Known
is an oracle prior in which the correct allelic series is
known. Points are connected for clarity. Shading
denotes 95% confidence intervals. In the low
power scenario (A), CRP has lower MSE than Full
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5 & 7 &8 when the QTL has two or fewer alleles. In the high

power scenario (B), CRP has lower MSE than Full for
an intermediate number of alleles. Across both sce-

narios, Tree information improves MSE relative to CRP, even when it is Misspecified, and it outperforms Full for an intermediate number of alleles.
Incorrect tree information increases MSE relative to CRP, but it still outperforms Full for an intermediate number of alleles.

multiallelic series but only a subset of all possibilities.
Jannink and Wu (2003) consider all multiallelic series but
do not include prior information about haplotype related-
ness. Ansari and Didelot (2016) include prior information
about haplotype relatedness but consider categorical rather
than quantitative traits. Given these differences, we discuss
our findings in the context of these other methods rather than
attempt a direct comparison.

Data

We apply our allele-based association approach to three
real-data examples, each of which highlights a key point
about our approach for allelic series inference. The first
example, an analysis of a QTL for a red blood cell phenotype
detected in the PreCC by Kelada et al. (2012), introduces
allelic series inference and demonstrates how it is improved
by information on the local phylogeny. The second example,
an analysis of whole lung cis-eQTL detected in the PreCC by
Kelada et al. (2014), summarizes the distribution of allelic
series over many QTL and identifies QTL that appear highly
multiallelic. These separate studies used many of the same
mice but analyzed different phenotypes. The third example,
an analysis of two whole head cis-eQTL detected in the DSPR
by King et al. (2014), shows that our allele-based approach
(without tree information) is applicable even when there are
many founder haplotypes (J = 15 instead of J = 8). These
examples are detailed below.

Phenotypes: Our first example uses data from Kelada et al.
(2012), a study of blood parametersin N = 131 PreCC mice.
This study identified a large-effect QTL for mean red blood
cell volume (MCV) on chromosome 7 and a candidate causal
gene, Hbb-bs, for the QTL.

Our second example uses data from Kelada et al. (2014), a
study of whole-lung gene expression in N = 138 PreCC
mice. Gene expression was measured by microarray and
rank-normalized prior to eQTL mapping. For our analyses,
we focused on 4509 genes with cis-eQTL (within 10 Mb of
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the gene), and we ignored eQTL for which array probes con-
tained SNPs segregating between the founder strains, as
these bias the microarray and are a potential source of false
positive QTL (Alberts et al. 2007).

Our third example uses data from King et al. (2014), a
study of whole-head gene expression in N = 596 crosses
of DSPR fly lines. Gene expression was measured by micro-
array and rank-normalized prior to eQTL mapping. The au-
thors highlighted two examples, CG4086 and CG10245, as
examples of biallelic and multiallelic eQTL, respectively. We
focus on these two examples for our analyses.

Diplotypes: The PreCCstudies did not report the full diplotype
state probabilities that are required for our approach, only
additive haplotype dosages. We therefore performed another
haplotype reconstruction using the published genotype in-
formation, also using HAPPY (Mott et al. 2000) and assuming
a genotyping error rate of 0.01 as in Aylor et al. (2011). The
studies averaged haplotype dosages from adjacent loci if
there was no evidence of recombination across them in the
PreCC population. To remain consistent with the published
results, we averaged the diplotype state probabilities from
our new haplotype reconstruction over the same regions.
The DSPR is comprised of two separateJ = 8 populations
with one shared founder, for a total of J = 15 founder hap-
lotypes. The data we analyze are crosses of lines from the two
separate populations. King et al. (2012) report full 36-state
(homozygous and heterozygous) diplotype probabilities for
all lines in the two separate J = 8 populations. To compute
diplotype state probabilities for crosses of lines, we enumer-
ated all possible combinations of diplotype states in the cross-
ing lines, calculated the probability of possible haplotype
combinations in the resulting cross, and weighed these com-
binations by the diplotype state probabilities of the lines. We
assumed that maternal and paternal copies of the shared
founder haplotype were identical. This results in full diplo-
type state probabilities for all crosses of lines and accounts for
possible heterozygosity in both the lines and the crosses.



Figure 6 Mean cell volume (MCV) in the PreCC by
founder haplotype at the QTL, and posterior distri-
bution of haplotype effects using the Full and CRP
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Phylogeny: For the MCV QTL analysis, we assumed that
Hbb-bs is causal and inferred the phylogenetic tree of the
founder haplotypes at this genomic region. First, we identi-
fied the location of Hbb-bs (Chr7: 103,826,523-103,827,928
in GRCm38/mm10), as reported by Mouse Genome Infor-
matics (Bult et al. 2019). Next, we identified a larger 23
kb nonrecombinant region surrounding the gene (Chr7:
103,807,679 103,831,178) by applying the four-gamete test
(Hudson and Kaplan 1985) to high-quality SNPs from Sanger
Mouse Genomes Project (Keane et al. 2011). Then, we con-
structed a sequence alignment for the founder haplotypes us-
ing high quality SNPs and indels from the same source. Next,
we used BEAST 1.8.3 (Drummond et al. 2012) to infer a co-
alescent phylogeny for this sequence alignment, assuming a
constant mutation rate, constant population size and the HKY
substitution model (Hasegawa et al. 1985). We generated
1 million Markov chain Monte Carlo (MCMC) samples from
the posterior of coalescent trees, thinning every 1000 samples,
yielding a total of 1000 posterior samples of the tree. These trees
are visualized using Densitree (Bouckaert and Heled 2014).
Lastly, we computed the allelic series prior distribution for each
sample of the tree and averaged the results in order to arrive at a
final tree-informed allelic series prior distribution for this QTL.

For both sets of eQTL analyses, we assumed that phyloge-
netic information for each QTL was unknown and used the
CRP prior distribution for the allelic series, which implicitly
integrates over all coalescent phylogenies.

Computation

Posterior sampling proceeded by drawing 100,000 samples
from a single MCMC chain for each analysis, with results
reported based on the entire chain. The only exceptions were
the DSPR CRP analyses, where we drew 1,000,000 samples
due to the larger space of possible allelic series in the DSPR.
We note that stable results were obtained for most analyses
using 1/10 the number of samples, and we expect that fewer
samples will be sufficient for many applications.

lotypes. This is evident for haplotype F, which has its
effect distribution pulled toward an allele effect
that is shared with haplotypes A, C, G, and H.

The MCV and DSPR analyses were run in Microsoft R
Open 3.5.3 on an ASUS G10AJ-US010S desktop computer
with Intel Core i7-4790 (3.6GHz) processor and 16GB of RAM.
Computation time for these analyses is in Table S1. The other
analyses were run in parallel using a distributed computing cluster
(https://its.unc.edu/research-computing/longleaf-cluster/), and
their computation time is not reported due to varying hardware.

Data availability

The authors state that all data necessary for confirming the
conclusions presented in the article are represented fully
within the article. These methods are implemented in the
Tree-Based Inference of Multiallelism via Bayesian Regression
'TIMBR’ R package, available on GitHub at https://github.
com/wesleycrouse/TIMBR. Supplemental materials are avail-
able at figshare: https://doi.org/10.25386/genetics.13105511.

Results

Simulation: allelic series accuracy and haplotype
effect estimation

Based on our simulations, the accuracy of allelic series in-
ference depends on three factors: (1) the true number of
functional alleles, (2) the QTL effect size, and (3) the level
of prior information about the phylogenetic tree. Accuracy is
defined here in the 0-1 sense, as whether the allelic series
with the greatest posterior probability (the MAP) is correct.
This is shown in Figure 3 for different levels of tree informa-
tion, numbers of true functional alleles, and effect sizes. In
the high power scenario (Figure 3B), allelic series inference
without tree information is accurate for as many as K = 5 al-
leles. In the low power scenario (Figure 3A), however, it is
possible to accurately identify biallelic but not multiallelic
series. Across both scenarios, additional tree information pro-
vides a modest increase in accuracy, even when that informa-
tion is partially misspecified. Including completely misspecified
tree information substantially decreases allelic series accuracy.
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Table 1 Top 10 posterior allelic series for the MCV QTL in the PreCC
using the CRP approach

Allelic series Number of alleles Posterior probability

1 0,1,0,1,1,0,0,0 2 0.5568
2 0,1,0,1,1,2,0,0 3 0.0801
3 0,1,2,1,1,2,0,0 3 0.0644
4 0,1,0,1,1,0,2,2 3 0.0278
5 0,1,0,1,1,0,2,0 3 0.0204
6 0,1,0,2,1,0,0,0 3 0.0189
7 0,1,2,1,1,0,0,0 3 0.0181
8 0,1,0,1,2,0,0,0 3 0.0178
9 0,1,0,2,2,0,0,0 3 0.0160
10 0,1,0,1,1,0,0,2 3 0.0132

Related to, but distinct from, accuracy, is posterior cer-
tainty, or the posterior probability of the correct allelic series
(Figure 4). This may be low even when accuracy is high. In
the high power scenario (Figure 4B), allelic series inference
without tree information is highly certain when there are
K = 4orfewer alleles, but the posterior mass is <50% when
there are more alleles. In the low power scenario (Figure 4A),
all multiallelic series are uncertain. Tree information in-
creases certainty even when partially misspecified. Notably,
posterior certainty when the tree is completely misspecified is
similar to posterior certainty with no tree information, de-
spite reducing 0-1 accuracy. This suggests that, on average,
incorrect tree information increases certainty on incorrect
allelic series, rather than reducing certainty on the correct
allelic series (although the latter must also occur, when the
incorrect tree does not permit the correct allelic series).

In the Supplement, we show that there is a general ten-
dency to underestimate the number of alleles when the true
number of alleles is high. This is consistent with simulation
results in both Ansari and Didelot (2016) and King et al.
(2014).

Despite uncertainty in the allelic series, the allele-based
association approach can improve haplotype effect estima-
tion. Figure 5 shows the MSE of haplotype effect estimates. In
the high power scenario (Figure 5B), the tree-naive allele-
based approach has lower MSE than the haplotype-based
approach, provided there are fewer than K = 5 functional
alleles at the QTL. Including prior tree information improves
MSE relative to the tree-naive case, even when the tree is
partially misspecified. Including completely misspecified tree
information increases MSE relative to the tree-naive case,
although it still outperforms the haplotype-based approach
when there are an intermediate number of alleles. Results for
the low power scenario (Figure 5A) are similar, though the
allele-based approaches are generally less beneficial when
QTL are multiallelic.

To summarize, these results suggest that, in practice, there
will often be considerable uncertainty in allelic series infer-
ence, especially when effect sizes are small and QTL are
multiallelic. Nonetheless, accounting for the allelic series
can still improve haplotype effect estimation relative to the
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Figure 7 Posterior distribution of number of alleles for the MCV QTL in
the PreCC using the CRP and Tree approaches. CRP assumes no tree
information, and Tree assumes tree information averaged over 1000 tree
samples. Connected points denote the corresponding prior distributions.
The prior distributions favor smaller numbers of alleles. The posterior
probability of a biallelic QTL is high using CRP, and it is further increased
by Tree.

standard haplotype-based approach. These finding are con-
sistent with simulation results in Jannink and Wu (2003). In
the Supplement, we present additional simulations that
guide prior specification and provide further insight into al-
lelic series inference.

Example one: allelic series inference with
tree information

We analyzed the MCV QTL previously identified in the PreCC
study of Kelada et al. (2012). Figure 6A shows the MCV phe-
notype for the 94 of 131 mice with prior maximum diplotype
states that are homozygous at the QTL, plotted by that hap-
lotype. Heterozygous mice are omitted to simplify the figure,
but they are included (with diplotype uncertainty for all
mice) in subsequent analyses. Based on the figure, the phe-
notype clearly depends on the haplotype at the QTL, but,
intuitively, the number of functional alleles is not obvious.
The top 10 posterior allelic series inferred using the CRP
approach are shown in Table 1. The top allelic series is bial-
lelic and comprises 55.7% of the posterior probability, but
there are several other multiallelic series with reasonable
support (11 with =1%, together accounting for another
30.1% of the posterior). These multiallelic series preserve
the biallelic contrast identified by the top allelic series, in-
dicating that this is a high-confidence feature of the haplo-
type effects. The posterior distribution of the number of
alleles is given in Figure 7, and the posterior expected
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number of alleles is 2.59. Overall, these results provide evi-
dence in favor of a biallelic QTL, but allelic series inference is
still uncertain.

The posterior distribution of haplotype effects using
both the Full and CRP approaches is shown in Figure 6B.
As expected, the Full haplotype effect estimates are similar
to the observed phenotypes. Relative to the Full, the CRP
haplotype effects are more certain, with narrower 95% high-
est posterior density (HPD) intervals, as shown in Table S2.
This increased certainty is because the allelic series model
allows information about the effects to be shared across hap-
lotypes. This is particularly evident for haplotype F, which
has its effect distribution pulled toward an allele effect that
is shared with haplotypes A, C, G, and H. Nonetheless, the
haplotype effect distribution of F has a long tail, covering
much of the original range of the Full haplotype effect distri-
bution. Comparing the Full and CRP approaches more
broadly, the InBF in favor of the CRP is 1.17, indicating pos-
itive evidence in favor of allele-based effects.

Samples of phylogenetic trees that relate the founder
haplotypes at the causal locus are shown in Figure 8B. In
general, there are long branches separating haplotypes B,
D, and E from the other five haplotypes. Among the remain-
ing haplotypes, A, H, and C are also more closely related than
F and G. Relative to the coalescent, (Figure 8A), these trees
are highly structured, representing only 3 of 10,395 possible
tree topologies. This informs the prior distribution of the

Number of Alleles

allelic series in the Tree model (Figure 8, C and D and Table
S3). There are 720 allelic series with support using the Tree
approach, compared with the full space of 4140 using the
CRP. The allelic series favored by the Tree approach reflect
the relationships encoded by the causal trees; for example,
the top non-null allelic series is biallelic and contrasts haplo-
types B, D, and E against the others, and its prior probability is
increased over 150-fold relative to the CRP.

The top 10 posterior allelic series inferred using the Tree
approach are shown in Table 2. The top allelic series is un-
changed from the CRP results, but its posterior probability is
increased to 68.1%. There are fewer multiallelic series with
reasonable support (five with =1% posterior probability),
and they have been informed by the phylogenetic distance
between F, G, and the other haplotypes. The posterior distri-
bution of the number of alleles is given in Figure 7, and the
posterior expected number of alleles is 2.40.

The posterior distribution of Tree-informed haplotype ef-
fects are largely unchanged from the CRP haplotype effects
and are not shown for this reason. Overall, there is strong
positive evidence for the Tree approach relative to the CRP,
with a InBF of 4.81 in favor of the Tree.

In summary, this example demonstrates that our method
can be used to infer the allelic series at a QTL, that it can
improve haplotype effect estimation, and that including ad-
ditional phylogenetic information can increase the posterior
certainty of the allelic series.
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Table 2 Top 10 posterior allelic series for MCV QTL in the PreCC
using the Tree approach

Allelic series Number of alleles  Posterior probability
1 0,1,0,1,1,0,0,0 2 0.6808
2 0,1,0,1,1,2,0,0 3 0.1335
3 0,1,0,1,1,0,2,0 3 0.0865
4 0,1,0,1,1,2,3,0 4 0.0639
5 0,1,0,1,1,2,2,0 3 0.0122
6 0,1,2,1,1,0,0,0 3 0.0027
7 0,1,0,2,2,0,0,0 3 0.0027
8 0,1,2,1,1,3,0,0 4 0.0021
9 0,1,2,1,1,3,40 5 0.0019
10 0,1,0,1,1,0,0,2 3 0.0015

Example two: identifying multiallelic QTL

We analyzed the lung cis-eQTL previously identified in the
PreCC study of Kelada et al. (2014). Figure 9 shows the pos-
terior distribution of number of alleles, averaged over all cis-
eQTL. This suggests that many eQTL are multiallelic, with
35.7% and 21.8% posterior probability for K = 3 and
K = 4 alleles, respectively. Given that the CC founders are
comprised of three different subspecies of mice (Didion and
Pardo-Manuel de Villena 2013), this multiallelism is reason-
able. There is also substantial support for K = 2 biallelic
eQTL, which has 30.3% posterior probability. These QTL
were genome-wide significant when detected, so it is not
surprising that there is near-zero support for the null model
of K = 1 allele. There are also genes that appear highly
multiallelic. Table 3 highlights the most highly multiallelic
QTL in this dataset.

The most multiallelic cis-eQTL in our dataset was Glo1.
Figure 10A shows Glo1 expression for the 111 of 138 mice
with prior maximum diplotype states that are homozygous at
the QTL, plotted by that haplotype. As before, heterozygous
mice are omitted to simplify the figure, but they are included
during analysis. Our approach finds over 95% posterior sup-
port for six to eight alleles at this QTL (Figure 10B). Interest-
ingly, previous studies have found that mouse strains have a
complicated haplotype structure with many functional alleles
at Glo1, and that expression of this gene is associated with
anxiety-like behavior in mice (Williams et al. 2009). This
supports our finding that Glo1 is highly multiallelic.

We also note that several highly multiallelic cis-eQTL are
near the major histocompatibility complex on chromosome
17, which is consistent with high genetic diversity in this re-
gion (Lilue et al. 2019).

Example three: allelic series inference with many
founder haplotypes

We analyzed two whole-head eQTL previously identified in
the DSPR study of King et al. (2014). Figure 11A shows the
posterior distribution of number of alleles for the CG4086
eQTL using the CRP approach. Although the previous study
found that this eQTL was biallelic, we find a 61.7% posterior
probability that the QTL has three functional alleles. Table S4
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Figure 9 Posterior distribution of number of alleles, averaged over all cis-
eQTL identified in whole lung expression in the PreCC. Connected points
denote the corresponding prior distribution. The prior distribution favors
smaller numbers of alleles. The posterior distribution is concentrated be-
tween two and four alleles, with considerable support for multiallelic
series.

shows the top 10 posterior allelic series, which tend to con-
trast haplotypes A6, A7, and B2 against the others. This is
consistent with the Full posterior haplotype effects, shown in
Figure 11, B and C. Relative to the Full, the allele-based
haplotype effects of the CRP are more certain, with narrower
95% HPD intervals (Table S5). Notably, both the Full and
CRP approaches make haplotype effect predictions for Al,
A5, and B3, all of which are poorly represented at this QTL
and were omitted in the previous study. Overall, there is very
strong evidence in favor of the of the CRP relative to the Full
approach, with a InBF of 7.71.

The posterior distribution of number of alleles for the
CG10245 eQTL using the CRP approach is shown in Figure
12A. The previous study found that this eQTL was highly
multiallelic—a finding that we confirm—with an expected
posterior number of alleles of 8.95. The posterior distribution
of the allelic series, however, is highly uncertain (Table S6),
due to the large number of possible allelic series when there
areJ = 15 founder haplotypes and many alleles. Figure 12,
B and C shows the posterior distribution of haplotype effects
using the Full and CRP approaches. Interestingly, many of the
haplotype effect distributions for the CRP are multimodal,
and the 95% HPD intervals for the CRP are generally wider
than for the Full (Table S7). This is a consequence of the
highly uncertain posterior allelic series. The intervals for A4
and B2, both of which are poorly represented at this QTL, are
actually narrower, showing how the CRP can provide, in a
sense, additional shrinkage to the haplotype effects. Consistent



Table 3 Highly multiallelic cis-eQTL for lung expression in the
PreCC; top 20 by posterior expected number of alleles. Gene
positions from NCBI37/mm9

Probe Gene Chr Position Expected alleles
1 ILMN_2667352 Glo1 17 30,729,806 6.7549
2 ILMN_2418957 Tmem181b-ps 17 6,270,475 6.3900
3 ILMN_3023451 Zfp985 4 146,918,112 6.3694
4 ILMN_2880052 Xlrdb X 70,459,704 6.2664
5 ILMN_2499598 2310058D17Rik 11 58,777,283 6.1449
6 ILMN_3004949 Fam55d 9 47,970,198 5.8813
7 ILMN_2643495 Fez1 9 36,640,394 5.8658
8 ILMN_2685581 H2-K1 17 34,132,957 5.7066
9 ILMN_1221376 Cyp4f39 17 32,589,668 5.6539
10 ILMN_3153940 Unc45b 11 82,724,831 5.6496
11 ILMN_2634905 Fbp2 13 62,938,245 5.6022
12 ILMN_2998406 Zfp979 4 146,986,048 5.5955
13 ILMN_1213056 Fez1 9 36,640,394 5.5861
14 ILMN_1236008 Isoc2a 7 4,828,740 5.5309
15 ILMN_2776728 Zfp979 4 146,986,048 5.4501
16 ILMN_2735046 Cmi3 6 85,711,089 5.4235
17 ILMN_2527805 Wrfdc10 2 164,481,546 5.4121
18 ILMN_2665266 H2-T22 17 36,175,354 5.4084
19 ILMN_2894678 H2-T22 17 36,175,354 5.4022
20 ILMN_2584887 Atp5f1 3 105,745,781 5.3849

with extensive multiallelism, there is very strong evidence
against the CRP relative to the Full approach, with a InBF
of —11.15.

Discussion

In this study, we developed a fully Bayesian framework for
inferring the allelic series in MPPs. Qur approach partitions
haplotypes into a potentially smaller number of functionally
distinct alleles, and it accommodates prior information about
haplotype relatedness. The allelic series is useful for investi-
gating the genetic architecture of a QTL, and in particular, for
determining if there are multiple causal variants at a locus. In
this section, we summarize the findings of our study, suggest
interesting directions for future research, and discuss the
limitations of our approach.

Allelic series inference is uncertain but useful

Our simulations indicate that inference of the allelic series
(in the absence of tree information) is often uncertain, even
in situations that we expect would have high QTL mapping
power. This is especially true for multiallelic series. Posterior
certainty is higher in the biallelic case, when there are rela-
tively more observations to distinguish the allele effects. In
combination with a prior distribution that expects few func-
tional alleles, the posterior for biallelic series is decisive.
Posterior certainty decreases, however, as the true number
of functional alleles increases. This is because the space of
possible allelic series configurations is larger (for an interme-
diate number of alleles), and there are relatively fewer ob-
servations to distinguish the allele effects. For these reasons,
posterior certainty for multiallelic series is often quite low,

unless effect sizes are very large or additional prior informa-
tion can be reliably included.

In the Supplement, we considered a prior distribution that
places more weight on higher numbers of alleles. This prior
distribution had relatively better accuracy when the true
number of alleles is high, but at the expense of decisive
posterior certainty when the true number of alleles is low.
For this reason, we focused our analyses on a parsimonious
prior distribution that favors small numbers of functional
alleles, though there may be scenarios in which a more
permissive prior distribution is justified or desirable.

Taken together, these results suggest that, if multiallelism
is common in MPPs, researchers will frequently find them-
selves following-up QTL with highly uncertain allelic series. In
these cases, our allele-based association approach may be
more useful for evaluating whether a QTL is more likely to be
biallelic or multiallelic, rather than for identifying the allelic
series per se. When the allelic series is uncertain, we recom-
mend focusing on high-confidence features of the data rather
than one specific allelic configuration. For example, although
the posterior allelic series for the multiallelic QTL in the DSPR
is extremely uncertain (Figure 12C and Table S6), it is still
highly probable that haplotypes Al and A3 are different than
A2, even though they may not be the same. These inferences
are straightforward in the allele-based framework, and they
are often well-informed even when the allelic series is un-
certain. Our approach can also be used comparatively, to de-
termine the most multiallelic QTL in a dataset, as we did for
lung cis-eQTL identified by Kelada et al. (2014). Character-
izing highly multiallelic QTL is an interesting topic for future
investigation, and this comparative inference does not re-
quire high certainty in the allelic series posterior.

Allelic series inference can improve effect estimation

Despite uncertainty in the allelic series, the allele-based ap-
proach improves haplotype effect estimation relative to the
haplotype-based approach, provided the locus has only a few
functional alleles. The allele-based approach allows the data
to be represented using fewer parameters, and this reduction
in parameters can still be beneficial even when the allelic
series is only partially known. This improvement in effect
estimation was particularly evident in the “biallelic” DSPR
example (Table S5). These results suggest that the allele-
based approach will be useful in the context of phenotype
prediction, or other applications that might benefit from im-
proved effect estimation.

When there are many functional alleles at a locus, though,
the allele-based approach increases error in haplotype effect
estimation relative to the full haplotype-based approach. This
is because our prior distribution favors small numbers of
alleles, and, in the Supplement, we show that our approach
tends to underestimate the number of alleles for highly multi-
allelic QTL. This biases haplotype effect estimates toward each
other, and it can increase credible intervals for these effects
(Table S7). In practice, it will useful to compare the fit of the
allele-based and haplotype-based approaches using their BF.
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If there is decisive evidence in favor of the haplotype-based
approach, it may be better to use the haplotype-based effect
estimates. Another option is to weigh the posteriors of the
haplotype-based and allele-based approaches using their mar-
ginal likelihoods, essentially placing a prior distribution over
them (Kamary et al. 2014; Robert 2016). This avoids making
a decision about which approach to use while still favoring
the one which better describes the data.

We note that our simulations assumed uniformly spaced
allele effects. This assumption eliminates the possibility of
arbitrarily small and undetectable differences between al-
leles, ensuring that alleles are “practically” distinct from
one another. In real data, however, small differences between
alleles may exist. If alleles effects were not uniformly spaced,
our simulation results for K = 1 and K = 2 would be un-
changed. For higher numbers of alleles, we expect that allelic
series accuracy would be reduced but that MSE would be
improved, as the model focuses on a smaller number of al-
leles that explain relatively more phenotypic variance. Char-
acterizing our allele-based association approach under
different genetic architectures is an interesting direction for
further research.

Local phylogeny improves allelic series inference,
although is itself uncertain

Accounting for founder haplotype relatedness in an allele-
based association framework is the primary innovation of our
research. Our simulations show that including prior informa-
tion about haplotype relatedness, in the form of a coalescent
tree, improves our allele-based association approach with
respect to allelic series inference and haplotype effect
estimation.

The local phylogenetic tree of the founder haplotypes is
necessarily unknown, however, and can only be observed
indirectly through genetic variation. Our framework is based
on the coalescent (Kingman 1982), which describes the phy-
logenetic relationship for a single nonrecombinant genomic
region. The assumption of no recombination is necessary be-
cause, in recombinant systems, phylogeny varies throughout
the genome due to incomplete lineage sorting (Degnan
and Rosenberg 2009), and, particularly, for the CC and DO
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founder strains, introgression (Yang et al. 2011; Didion and
Pardo-Manuel de Villena 2013). This means that neighboring
genomic regions can have distinct (but correlated) phyloge-
netic trees. The complex structure describing recombination
events and varied local phylogeny is the “ancestral recombi-
nation graph” (ARG), and inferring it is the subject of active
research (Rasmussen et al. 2014; Kelleher et al. 2019). If the
ARG were known exactly, variation in haplotype phylogeny
throughout the genome could be a useful source of informa-
tion for allelic series inference, and, perhaps, QTL mapping.
In practice, though, the ARG will be uncertain, with regions
that are poorly informed by mutations or biased due to errors.
Due to this uncertainty, the inferred ARG will be less useful
for QTL mapping than known local phylogeny, although it is
unclear to what extent.

Given uncertainty in the ARG, we recommend using our
CRP (i.e., tree-naive) approach by default when analyzing
QTL in MPPs. There are situations, though, when local phy-
logeny can be accurately inferred, and, in these cases, includ-
ing tree information improves allelic series inference and
haplotype effect estimation. We demonstrated this for the
MCV QTL, which has a known causal gene (Kelada et al.
2012). We anticipate our tree-informed approach will be use-
ful in haploid systems, as in Ansari and Didelot (2016) and
Cybis et al. (2018), because most haploids do not recombine,
and thus have a single phylogenetic history for their entire
genome.

Connecting the allelic series to causal variants

The allele-based association approach is useful for evaluating
whether a QTL is more likely to be biallelic or multiallelic. It
can be difficult, however, to connect information about the
allelic series to causal variants. Evaluating evidence in favor of
a single biallelic or multiallelic variant is straightforward, as
our framework encompasses a fully Bayesian implementation
of merge analysis (Yalcin et al. 2005; Mosedale et al. 2019).

Multiallelic series comprised of multiple causal variants are
more challenging. Our allele-based association approach only
considers haplotype effects for a single genomic interval (i.e.,
the diplotype state probabilities do not vary in this region).
Thus, it implicitly assumes that all causal variants are on the
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Figure 11 Posterior distribution of number of alleles and haplotype effects for the CG4086 cis-eQTL in the DSPR. (A) Posterior distribution of number of
alleles. Connected points denote the prior distribution, which favors smaller numbers of alleles. The posterior distribution has considerable support for
three alleles at this QTL. (B) Posterior distribution of haplotype effects using the Full approach. Full is the haplotype-based approach where all haplotypes
are functionally distinct. (C) Posterior distribution of haplotype effects using the CRP approach. CRP assumes no tree information. CRP haplotype effects
are more certain than Full because the allelic series allows information about effects to be shared across haplotypes. Both Full and CRP make effect
predictions for A1, A5, and B3, all of which are poorly represented at this QTL.

same genomic interval. For this reason, results from our al-
lele-based approach cannot strictly be used to evaluate com-
binations of variants from different (even adjacent) genomic
intervals.

An alternative approach assumes that the allelic series is at
least as complicated as a given biallelic variant. In this case, the
prior distribution of the allelic series is restricted to exclude
partitions that violate the functional distinctions given by a
causal variant. For example, forJ = 3 haplotypes and a causal
biallelic variant that contrasts haplotypes A and C with B, the
prior distribution for the allelic series is

p(M|m; # my, my # mg3) « p(m; # my, my # mz|M)p(M).

The first term on the right-hand side is an indicator variable
denoting whether the allelic series M satisfies the conditions
given by the biallelic variant, m; # my and m, # ms. The
second term is the prior distribution of the allelic series (mar-
ginalized over the concentration parameter). Using this, we
can compute a “variant-consistent” prior distribution that al-
lows for multiallelic effects, but only in combination with the
causal variant under consideration (and implicitly, only other
variants on the same genomic interval, in proportion to the
prior). This variant-consistent approach may be more useful
than single-variant merge analysis for identifying candidate
causal variants at multiallelic QTL. We implemented this var-
iant-consistent prior distribution for the allelic series in our R
package, and evaluating it would be an interesting topic for
future research.

Applying the allele-based approach in
other populations

Our allele-based association approach assumes that the un-
derlying haplotypes at a QTL are known and that individuals
can be probabilistically assigned to a diplotype (haplotype
pair) state. These conditions are satisfied in diploid MPPs,
where the founder haplotypes are known by construction,

and our approach is designed for use in these populations. Itis
straightforward to generalize our approach to haploid pop-
ulations or polyploid MPPs. This simply involves defining the
possible combinations of haplotypes (i.e., the number of col-
umns in the D matrix) and an additive mapping of those
combinations to haplotype frequency (the entries of a con-
formable A matrix). These generalizations can be imple-
mented out of the box using our software.

In principle, our allele-based approach could be applied to
any population, including human populations, provided that
the underlying haplotypes at a QTL are known. In practice,
haplotypes are typically unknown in nonexperimental pop-
ulations, and they must be defined empirically using combi-
nations of adjacent variants (Meuwissen et al. 2014) or
otherwise inferred as a reduced number of ancestral haplo-
types (Davies et al. 2016; Pook et al. 2019). It is possible to
define a fixed set of haplotypes and their probabilities a priori
using another method and to provide this as input for our
approach. Such a two-stage analysis would allow for allele-
based inference in nonexperimental populations, but it
would not fully account for uncertainty in haplotype compo-
sition. It would also still be subject to computational con-
straints on the number of haplotypes, and, in the case of
the tree-informed prior, to caveats about local phylogeny in
recombinant systems. Nonetheless, it would be interesting to
apply our allele-based inference approach to QTL in nonex-
perimental populations and to compare it with emerging hap-
lotype-based, phylogeny-informed association approaches
designed for these populations (Selle et al. 2020). This allelic
perspective may provide new insight into the genetic archi-
tecture of QTL that is not revealed by the variant-based ap-
proaches commonly used in nonexperimental populations.

Limitations of the allele-based approach

The allele-based association approach is limited by its com-
putational speed. Our fully Bayesian approach uses Gibbs
sampling for posterior inference, which requires drawing
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Figure 12 Posterior distribution of number of alleles and haplotype effects for the CG10245 cis-eQTL in the DSPR. (A) Posterior distribution of number
of alleles. Connected points denote the prior distribution, which favors smaller numbers of alleles. The posterior distribution indicates the QTL is highly
multiallelic. (B) Posterior distribution of haplotype effects using the Full approach. Full is the haplotype-based approach where all haplotypes are
functionally distinct. (C) Posterior distribution of haplotype effects using the CRP approach. CRP assumes no tree information. CRP haplotype effects
are multimodal due to the highly uncertain posterior allelic series. Both Full and CRP make effect predictions for A4 and B2, both of which are poorly

represented at this QTL.

many samples, at every locus, for every prior hypothesis. For
the examples considered here, computation time for each
analysis is on the order of minutes to hours. This limits the
practical usefulness of the allele-based approach for applica-
tions such as QTL mapping. An alternative approach for the
CRP may be approximate MAP inference (Raykovetal. 2016),
which returns a single high-probability configuration of hap-
lotypes. MAP avoids sampling and would be considerably
faster than full posterior inference, though presumably with
reduced performance.

Our method for calculating the tree-informed allelic
series prior distribution is also computationally expensive.
Thisisbecauseitinvolves computing the prior probability of
all 22/ ~ 2 possible configurations of branch mutations b on
a tree and recording the implied allelic series M for each.
This approach is feasible for J = 8 founder haplotypes,
the case for many MPPs, but not for J = 15, as in the
DSPR. When J is large, it may be preferable to include
the branch mutations b in the posterior sampling procedure,
as in Ansari and Didelot (2016), rather than integrating over
them to precompute the prior distribution. We outline this
approach in Appendix C. This requires mixing over the larger
space of branch mutations b, though, rather than the smaller
space of allelic series M, and the approach we outline only
updates a single branch at a time. A full joint posterior sample
of b is not tractable, but mixing could be improved by updating
multiple branch mutations together, especially if sets of highly
dependent branches could be identified.

There are other possible alternatives for tree-informed
allelic series inference. One such alternative is pseudomargi-
nal MCMC (Beaumont 2003; Andrieu and Roberts 2009). A
pseudomarginal approach would not sample the posterior
branch mutations directly, but rather use a collection of
branch mutation samples, weighed using importance sam-
pling, to approximate the tree-informed allelic series prior
distribution during posterior inference. Careful tuning of
the proposal distributions in this framework could lead to
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efficient posterior sampling of the allelic series, but we have
not explored this further. Another alternative is to disregard
the explicit tree structure and instead use patristic distances
between haplotypes as input for a distance dependent CRP
(Blei and Frazier 2009), as in Cybis et al. (2018). It would be
interesting to compare results from a distance dependent
CRP with the tree-informed CRP that we have defined here.
Yet another alternative is to identify a MAP set of branch
mutations b or some other high-confidence set of mutated
branches, as in Behr et al. (2020). This has the advantage of
avoiding both computational bottlenecks (computing the
tree-informed prior and sampling from the posterior), but
the method described in Behr et al. (2020) does not account
for the covariance between individuals induced by combina-
tions of haplotypes and additive effects.

Lastly, the allele-based association approach only considers
additive allele effects and unstructured error. As discussed in
Jannink and Wu (2003), it is possible to include effects for
allelic dominance in our model, though it would be desirable
to include these as an additional variance component, as in
Zhang et al. (2014). We did not consider error due to pop-
ulation structure in genetic background, which could also be
included as an additional variance component (Kang et al.
2008, 2010; Lippert et al. 2011; Zhou and Stephens 2012;
Zhang et al. 2014). Adding this additional model complexity
may be useful, but it would also increase the computational
burden of the allele-based association approach.
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Appendix A
Including covariates and replicate observations in the likelihood

In this appendix, we generalize the likelihood function to account for optional covariates and replicate observations. The
likelihood function is given by

yD. M, 1, 8, B, ¢ ~ N(ul+Z8 + DAMCB, o*W 1),

where Z isa N X P matrix of optional covariates, & is a length P vector of covariate effects, Wis a N X N diagonal matrix with the
number of replicates for each observation on the diagonal, and the other variables are as previously described. We place a
normal prior distribution on the covariate effects:

5|a’ ~ N(O7 0'27'21p>.

The likelihood can be rewritten as
y|D, M, p, B, 8, 0 ~ N(X8, s*W 1),

where X is the N X (K + P) design matrix, X=[1 Z DAMC], and 67 is a length K + P vector containing the intercept,
independent effects, and covariate effects, 87 = [ w &7 ﬁT] The intercept, independent effects, and covariate effects are
jointly distributed according to

0lo, ¢ ~ N(0, 0?V),

where Vis a (K + P) X (K + P) diagonal matrix of the scaled prior covariance,

2
I 0
V= T 1lp41 :|
{ 0 ¢’k

Conjugacy yields a closed form for a simplified, t-distributed likelihood function:
YD, M, ¢ ~ t(0,A[W !+ XVXT]).

Posterior inference and prior elicitation are as previously described.

Appendix B
Computing the prior distribution with the tree-informed CRP

In this appendix, we show that the prior density of the mutation status of the branches b can be marginalized over the
concentration parameter « if the concentration parameter has a gamma prior distribution. This is useful for computing the
tree-informed allelic series prior distribution. Our approach includes considerable bookkeeping of signs and coefficients, so we
demonstrate using a minimal example, b = (0,0, 1,1, 1, 0) forJ = 4.
We begin by expanding p(b|T, «):
272
p(b|T, 0() — H (670.501[,")1_17"1 (1_670.5a€m)bm’
m=1
_ e*O.Sa(ﬁe*O.Salz (1 _ e*O.SoMg) (1 _ e*O.Sa&) (1 _ 6704511[5)‘370.5(1[6’

_ e*O.Sa([l+[2+[6) (1 _ 670450((3) (1 _ 8*0'50(/4) (1 _ e*O.SaI5)7

— e—OASa((1+(72+(76) (1 _ 6—0501(5 _ e—OASaQ + e—O.Sa(€4+€5) _ e—O.Sa/3 + e—O.Sa(fg-HS) + e—0.501(€3+(4) _ e—O.Sa((3+(4+(5))

)

_ 670.5a((1+f2+F6) _ e*O.Sa(flJr(er(eres) _ e*O.Sa(€1+€2+€4+€6) + efo.Sa(el+ez+z4+€5+éﬁ) _ e*0<5a(€1+fz+€3+f6)+

e 0-5a(lHa s HsHs) | o= 0.5a (0o HaHatHs) _ o= 0.5a (6o HaHaHs +e)
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Each term is an exponentiated sum of branch lengths. All terms includes the branch lengths of the branches that are not mutated
({1, 2, 6}). The eight terms correspond to the eight possible subsets of the set of mutated branches ({2,3,4}), whose lengths are
either included or excluded from the sum. If the sum includes an even number of mutated branch lengths, the sign of the term is
positive, and if the sum includes an odd number, the sign is negative.

We are interested in

p(b[T) = / p(b|T, a)p(e) da

[¢3

From the previous expansion, we know that this is an integral of a sum, which allows us to evaluate the integral separately for
each term:

p(b|T) = / e 0-5a(ltlt) 5 (o) da — / e 0-5allitletlstle) x p(g) da — ...

o o

The prior distribution for the concentration parameter is
a ~ Ga(ay, by),

which has probability density function (omitting subscripts on the hyperparameters for clarity)
p(a) = bT(a) ot e b,

Focusing only on the first term of the expansion, we have

p(b[T) = / ¢ 05a(6+6) 5 () der — ..

_ /e*O.Sa(€1+€2+(5)baF(a)*laaflefba da— ...

_ bar(a)*l/aafle*(b+045[ll+52+l6])a do—

The quantity within the integral is the kernel of a gamma distribution with shape a and rate b + 0.5(¢; + ¢2 + ¢¢), and the integral
is equal to the inverse of its normalizing constant:

p(b|T) = b (@) 'I(a)(b + 0.5[1 + €2 +(6]) * — ...
=b%b+0.5[(1 +6+]) " — ...

b a
- (b+0.5(51 +t +e6))

The other terms in the expression are solved similarly. This provides a closed form expression for p(b|T), which in turn is used to
compute p(M|T).

Appendix C
Posterior sampling of branch mutations with the tree-informed CRP prior distribution

In this appendix, we outline an alternative approach for posterior inference of the allelic series, conditional on a tree T, that
involves directly sampling the mutation status of the branches b. In the main text, we described an approach for posterior
inference that has two steps: computing the marginal prior distribution of the allelic series M by integrating over all possible
combinations of mutated branches (Tree-Informed CRP; Appendix B), and then conditionally updating the allele assignment
of each haplotype, in proportional to the marginal prior distribution (Posterior Inference 1b). We use this approach because
posterior inference is similar to the CRP, and we use the marginal prior distribution to calculate the marginal likelihood.
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However, computing the prior distribution is computationally prohibitive unless the number of founder haplotypes J is small,
and this approach violates exchangeability during posterior inference. If either of these are a concern, it may be preferable to
directly sample the mutation status of the branches during posterior inference. This avoids integrating over all possible
combinations of mutated branches and does not violate exchangeability, but it does requires mixing over a larger state space,
is conditional on a single tree, and does not facilitate calculating the marginal likelihood. We have implemented this approach
but did not use it in our analyses.

The alternative approach for posterior inference of the allelic series is comprised of three steps: iteratively updating the
mutation status of each branch, b,,,, conditional on the other branches, b_,,,; sampling the latent number of mutations on each
branch, vy,,, conditional on mutation status; and updating the mutation rate or concentration parameter, «, conditional on the
total number of mutations. We now discuss each of these steps in detail.

Updating the mutation status of each branch: First, we update the mutation status of each branch. The allelic series is
completely determined by the tree and which branches are functionally mutated, M = f(T, b). Thus, the conditional posterior
of the mutation status of a branch is given by

p(bm|Y7 D: b—m7 ¢7 T7 Oé) KP(Y‘Dv b7 ¢7 T’ a)p(bm|T’ Oé),
MP(Y‘D7 M7 ¢)p(bm‘T7 a)'

This is the product of the t-distributed likelihood and the categorical prior distribution of the mutation status of a branch. The
conditional posterior is calculated directly for both settings of b,,,, and it reduces to the prior distribution of b,,, when the allelic
series is conditionally independent of the current branch, given the mutation status of the other branches: (ML by,) | b_p,.

Sampling the number of mutations on each branch: Next, we sample the latent number of mutations on each branch.
Functional mutations occur on the branches of the tree as a Poisson process with constant rate 0.5«. The prior number of
mutations on each branch is a Poisson distribution with rate proportional to branch length:

Ymla ~ Pois(0.5atn).

We used this relationship to construct the prior distribution of b,,,. By definition, if a branch is not functionally mutated, then
there are no mutations on the branch,

bn=0=1v,=0,

and if a branch is mutated, then the prior number of mutations on the branch is distributed as
Ymlbm =1, @ ~ Pois (0.5a6p),

where Pois ;. denotes the zero-truncated Poisson distribution. The conditional posterior number of mutations on all branches is
p(vly. D, b, ¢, T, a) = p(y|b, a),

which is the joint conditional prior distribution and is straightforward to sample.

Updating the concentration parameter: Finally, we update the concentration parameter (mutation rate), «, conditional on
the total number of mutations. The conditional posterior for the concentration parameter is
p(aly, D, b, ¢, T, v) *p(y|b, T, a)p(b|T, a)p(a),
“p(¥IT, a)p(a).

This is the product of a Poisson distribution for the number of functional mutations on the tree and the prior distribution for the
concentration parameter. The posterior is gamma-distributed when the concentration parameter has a conjugate gamma prior
distribution.
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Appendix D
Estimating the marginal likelihood

In this appendix, we describe an approach for estimating the marginal likelihood using the output of the Gibbs sampler (Chib
1995). Rearranging Bayes theorem, the log marginal likelihood can be expressed as

Inp(y) = Inp(y/D, M, 0, ) + Inp(D, M, 60, o) — Inp(D, M, 0, oly),

which is true at any point (D', M’, 8’, o). Optionally, these probabilities may also be conditional on a tree, T. Estimating the
marginal likelihood involves factoring the joint posterior into terms that can be either well-approximated from the output of
the Gibbs sampler or calculated directly.

Estimating the joint posterior: An estimate of the joint posterior is given by
Inp(D, M, 6, oy) = Inp(My) + Inp(6, oy, M) + Inp(D|y, M, 6, o).

The first term, Inp(M|y), is the marginal posterior density of the allelic series. An approximation of the marginal posterior is
given by the Gibbs sampler, and the density estimate at M’ is the proportion of posterior samples equal to this value. This
estimate is most accurate at the MAP allelic series, which we use to designate a point M'.

The second term of the estimate, Inp(@, o|y, M), is the joint conditional posterior of the coefficients and the scale of the error
variance. The joint posterior is conditional on the allelic series and must be evaluated at the point M’, but this distribution is not
given directly by the Gibbs output. To obtain an estimate of the joint conditional posterior distribution, we resume iterating the
Gibbs sampler after the initial posterior chain, but now with the allelic series fixed to M'. These conditional posterior samples
yield sufficient statistics that we use to obtain an accurate Rao-Blackwellized estimate of the joint conditional posterior density
(Blackwell 2007). We also use these sufficient statistics to designate 6’ and o’'.

The final term of our estimate, Inp(D|y,M, 0, 0), is the full conditional posterior of the diplotype states. This is calculated
directly, and we designate the marginal MAP of the diplotype states for D'.

Computing the joint prior: Factoring the joint prior is straightforward because most of the priors are independent by
construction. The joint prior distribution is given by

Inp(D, M, 6, o) = Inp(D) + Inp(M) + Inp(8|0’) + Inp(o).

Calculating Inp (M) involves integrating over «. This must be approximated when using the CRP, but it is already calculated
directly when conditioning on a tree. Calculating Inp(@#|o) involves integrating over ¢, which has a closed form involving a
confluent hypergeometric function (Abramowitz and Stegun 1972). Finally, the last two terms in the prior are equal to zero
when using an improper prior distribution for p and o, and they are only evaluated up to a constant. Despite this, BFs, which
are ratios of marginal likelihoods, are still valid provided that these constants cancel (Servin and Stephens 2007).
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