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Abstract 

Biological products, whether they are innovator products or biosimilars, can incite an immunogenic response ensuing 
in the development of anti-drug antibodies (ADA). The presence of ADA’s often affects the drug clearance, resulting in 
an increase in the variability of pharmacokinetic (PK) analysis and challenges in the design and analysis of PK similarity 
studies. Immunogenic response is a complex process which may be manifested by product and non-product-related 
factors. Potential imbalances in non-product-related factors between treatment groups may lead to differences in 
antibodies formation and thus in PK outcome. The current standard statistical approaches dismiss any associations 
between immunogenicity and PK outcomes. However, we consider PK and immunogenicity as the two correlated 
outcomes of the study treatment. In this research, we propose a factorization model for the simultaneous analysis 
of PK parameters (normal variable after taking log-transformation) and immunogenic response subgroup (binary 
variable). The central principle of the factorization model is to describe the likelihood function as the product of the 
marginal distribution of one outcome and the conditional distribution of the second outcome given the previous 
one. Factorization model captures the additional information contained in the correlation between the outcomes, it is 
more efficient than models that ignore potential dependencies between the outcomes. In our context, factorization 
model accounts for variability in PK data by considering the influence of immunogenicity. Based on our simulation 
studies, the factorization model provides more accurate and efficient estimates of the treatment effect in the PK data 
by taking into account the impact of immunogenicity. These findings are supported by two PK similarity clinical stud-
ies with a highly immunogenic biologic.
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Introduction
In pharmacokinetic (PK) similarity studies, the primary 
analysis to assess equivalence between Test (T) and 
Reference (R) products is based on the average equiva-
lence approach to compare PK parameters such as area 
under the curve (AUC) and peak concentration (Cmax) 

[1]. Analysis of variance (ANOVA) or analysis of covari-
ance (ANCOVA) is commonly used statistical method to 
assess the equivalence of T and R products. These models 
use log-transformed PK parameters as outcome variables 
and treatment group and relevant covariates as fixed 
effects. The average equivalence approach involves cal-
culating 90% confidence intervals (CIs) for the geometric 
mean ratio (GMR) of the PK parameters between T and 
R products. To establish PK similarity, the calculated 90% 
CIs should fall within an acceptable margin of [0.80, 1.25] 
for all primary PK parameters.
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Many biological products have a long half-life and elicit 
immunogenic response, therefore, parallel group designs 
are often used in PK similarity studies. The development 
of immunogenicity poses many challenges in the design 
and analysis of PK similarity studies:

•	 First, the development of anti-drug antibodies 
(ADA) may affect drug clearance and thus PK pro-
files [2]. For example, in adalimumab PK similarity 
studies, it is common for ADA-positive subjects to 
have lower PK exposure in terms of AUC​0-inf and 
AUC​0-last compared to ADA-negative subjects [3, 
4]. In Fig. 1, we present an example of the distribu-
tion of AUC​0-inf in the AVT02-GL-101 study (a piv-
otal PK similarity study of adalimumab biosimilar 

[5]). Within each treatment group, the distribution 
of AUC​0-inf differed substantially in terms of central 
tendency between immunogenic subgroups (i.e., 
lower PK exposure was observed in the high ADA 
titer level subgroup). In addition, as summarized in 
the footnote of Fig.  1, the geometric coefficient of 
variation (CV) of AUC​0-inf is greater in the high titer 
subgroup than in the low or zero titer subgroup in 
AVT02-GL-101 study. This is consistent with data 
reported in other adalimumab biosimilar studies, 
for example, Von Richter et  al. [3] reported greater 
variability in AUC​0-inf and AUC​0-last in ADA-posi-
tive subjects than in ADA-negative subjects. Such 
difference in variability of PK parameters between 
immunogenic subgroups could be due to the diver-

Fig. 1  Real data from AVT02-GL-101 study. Distribution of AUC​0-inf by treatment group and immunogenic subgroup (“high titer level” versus “low or 
zero titer level”)
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sity of immune responses in the study population 
(e.g., early versus late onset of ADA, different levels 
of immune response strength) leading to hetero-
geneity in PK profiles and therefore increased the 
overall variability of PK parameters. This is, at least 
partly, the reason for the relatively large sample 
sizes required in PK similarity studies for the highly 
immunogenic biologics.

•	 Secondly, the development of immunogenic-
ity is a complex process. There are many prod-
uct-related and non-product-related factors that 
may affect the immunogenicity of biologics [6]. 
Potential imbalances in non-product-related fac-
tors between treatment groups may lead to dif-
ferences in immunogenicity and thus in PK out-
comes. For example, Von Richter et al. [7] reported 
the immune response to the exact same biologic 
batch was markedly different between the two 
treatment groups (cross studies comparison) and 
hence affected the equivalence assessment. Cur-
rently available techniques do not allow one to 
predict which subjects will develop an immune 
response to a particular biologic and at what time 
during treatment [6]. Therefore, it is not possible 
to stratify subjects according to their propensity to 
develop an immune response at the time of rand-
omization.

•	 In addition, development of immunogenicity is also 
an outcome of the treatment. The ADA response 
information (as a post-baseline variable) cannot 

be used in statistical models to take account for 
its effect on PK outcome. The ADA response vari-
able is correlated with PK outcome variable, but it 
is not causal for PK outcome. See Fig.  2, an illus-
tration of relationship between treatment, PK and 
immunogenicity outcomes. Apparently, treatment 
is the causal for these two correlated outcomes (PK 
and immunogenicity). In practice, subgroup analy-
ses of PK parameters (e.g., ADA-positive/negative 
subgroups) are often used to assess the impact of 
immunogenicity on PK. However, subgroup analy-
ses are not statistically powered and such marginal 
summary of PK data does not reveal the impact 
of immunogenicity on the overall treatment effect 
estimation.

•	 Finally, current standard statistical approaches that 
completely ignore potential associations between 
PK and immunogenicity outcomes (e.g., methods 
like ANOVA or ANCOVA as mentioned above) 
have their drawbacks. When potential dependencies 
between outcomes are ignored, the estimated covar-
iate effects (e.g., treatment effects) in the model can 
be biased and inefficient because the model fails to 
capture the additional information contained in the 
correlation between outcomes [8, 9].

In this paper, we consider PK and immunogenicity 
as the two correlated outcomes of the study treatment. 
In order to efficiently estimate treatment effect in PK 
data considering the impact of immunogenicity, we 

Fig. 2  Diagram for the relationship between treatment, PK and immunogenicity outcomes
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investigate the factorization model [10] for the simul-
taneous analysis of log-transformed PK parameters 
(normal variable) and immunogenic response subgroup 
(binary variable). The main idea of the factorization 
model (a direct approach to connect the two outcomes) 
is to describe the likelihood function as the product of 
the marginal distribution of one outcome and the con-
ditional distribution of the second outcome given the 
previous one. A convenient feature of the factorization 
model is that the model parameters maintain marginal 
interpretation in both outcomes. This is a very useful 
property because in our proposal the focus is on the 
analysis and interpretation of PK data considering the 
influence of immunogenicity. In addition, because the 
factorization model captures the additional informa-
tion contained in the correlation between outcomes, 
it is more efficient than models that ignore potential 
dependencies between outcomes. In our context, fac-
torization model accounts for variability in PK data 
by considering the influence of immunogenicity. This 
allows us to efficiently and accurately estimate the 
treatment effect in the PK parameters by considering 
the impact of immunogenicity.

In light of the “evidence-based computational statis-
tics” [11, 12], we evaluate the factorization model in 
the practically relevant simulation studies and exem-
plify in real data sets from PK similarity clinical trials. 
We perform comprehensive simulations to fully inves-
tigate the operating characteristics of the factorization 
model, all relevant factors are taken into account and 
all possible combinations of those factors are thor-
oughly evaluated. Based on the simulation studies, 
factorization model provides more accurate and effi-
cient estimates of the treatment effect in the PK data 
by taking into account the impact of immunogenicity. 
These findings are supported by the real data from two 
PK similarity clinical studies with highly immunogenic 
biologics.

Methods
As mentioned above, we consider PK and immunogenic-
ity as the two correlated outcomes of the treatment. Let 
yci denote the continuous outcome (normal distributed 
dependent variable, e.g., log-transformed PK parame-
ter), ybi denote the binary outcome (binomial distributed 
dependent variable, e.g., ADA response: 1= ADA posi-
tive, 0= ADA negative; or ADA titer subgroup: 1= high 
titer level, 0= zero or low titer level) for the ith subject, ybi 
follow a binomial distribution,

(1)
P
(

ybi = 1
)

= p,P
(

ybi = 0
)

= q, 0 < p < 1, p+ q = 1.

The conditional distribution of (yc  |yb = 1) and 
(yc  |yb = 0) are assumed to be N(μ1, σ1) and N(μ0, σ0), 
respectively. Therefore, yci follow a mixed distribution 
with the function [13],

where

For the correlated continuous and binary outcomes in 
a cross-sectional setting, two general likelihood-based 
multivariate approaches have been developed: direct 
factorizing the joint distribution of the outcomes and 
introducing an unobserved (latent) variable to model 
the correlation among the multiple outcomes [14].

Since the immunogenicity has direct impact on the 
PK outcome (as discussed in section 1), we propose the 
factorization model [10] for analyzing PK and immuno-
genicity data jointly. Let xci and xbi denote the covariate 
vectors associated with the outcome yci and ybi. We use 
a probit link (i.e., inverse of the cdf of the standard nor-
mal distribution) for the binary outcome and the identity 
link for the continuous outcome. In factorization model, 
the joint distribution of two outcomes is factorized into 
a marginal distribution of binary outcome and a condi-
tional distribution of continuous outcome, given the 
binary outcome,

The expected values of the outcomes given the covari-
ate vectors xb and xc are defined as,

and

Where βb  and  βc are the marginal parameter vec-
tors for covariate vectors xb (i.e., independent vari-
ables for the immunogenicity outcome model) and xc 
(i.e., independent variables for the PK outcome model), 
respectively, ǫci ∼ N 0, σ 2

c  , σ 2
c  is the error variance of 

continuous outcome, and τ is the correlation of yci on 
ybi. Large absolute values of τ indicate a strong cor-
relation between the two outcomes. If τ = 0, the two 
outcomes are independent given the covariates. The 
two models are linked by the product of correlation 
between the two outcomes and the residuals of binary 
variable.

(2)F
(

yc
)

= pF1
(

yc
)

+ qF0
(

yc
)

,

(3)Fj
�
yc
�
= p

�
yc ≤ y � yb = j

�
= �

y

−∞

1

�j

√
2�

e
−

�
(z−�j)

2

2�2
j

�

dz, j = 0, 1.

(4)f
(

yb, yc
)

= f
(

yb
)

f
(

yc| yb
)

.

(5)probit
(

E
(

ybi| xbi
))

= probit(µbi) = xTbiβb

(6)yci | ybi, xci, xbi = xTciβc + τ
(

ybi − µbi

)

+ ǫci



Page 5 of 12Haliduola et al. BMC Medical Research Methodology          (2022) 22:264 	

The parameter estimates for the factorization model 
can be obtained by the commonly used maximum like-
lihood algorithm. The log-likelihood function under the 
factorization model is defined as,

where φ() is the cdf of the standard normal distribution, 
µci = xTciβc , probit(µbi) = xTbiβb.

The correlation of outcomes that results from this 
model is [14],

A convenient property of the factorization approach 
is that the model parameters maintain marginal inter-
pretation in both regression equations. This is a very 
important and useful feature, as in our proposal, the 
focus is to analyze and interpret the PK data consider-
ing the impact of the immunogenicity. This will allow 
us to accurately estimate the treatment effect in the PK 
parameters by taking the impact of immunogenicity 
into account.

Another important feature of this model is the assump-
tion regarding the distribution of yci. Conditional on ybi 
and the covariates (xbi, xci), yci is assumed to be normally 
distributed, implying that the marginal distribution of yci 
is a mixture of two normal distributions. For a high cor-
relation between the two outcomes, the marginal distri-
bution of yci ∣ xbi, xci will in fact be bimodal. Therefore, the 
covariance of yci ∣ xbi, xci depends on xbi,

This assumption is consistent with the actual distribu-
tion of PK parameters in immunogenic subgroups in PK 
similarity studies with highly immunogenic biologics. For 
example, as shown in Fig. 1, the distribution of AUC​0-inf 
differed substantially between immunogenic subgroups, 
i.e., within each treatment group it is a mixture of two 
normal distributions.

In addition, because the factorization model captures 
the additional information contained in the correlation 
between outcomes, it is more efficient than models that 
ignore potential dependencies between outcomes. In our 
context, factorization model accounts for variability in 
PK data by considering the influence of immunogenicity. 
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This makes it more efficient than the standard analyti-
cal approaches like ANOVA or ANCOVA. It should be 
noted that the efficiency can be gained by adopting this 
approach only when the mean outcomes depend on dif-

ferent covariate sets, i.e., xb and xc are different [14]. Since 
the main purpose is to analyze and interpret the PK data 
considering the effect of immunogenicity, the main effect 
(i.e., treatment effect) should be included in the equa-
tion for μci only, not in the model for binary outcome 
(otherwise the treatment effect may be diluted). It is also 
important to note that in our proposal, the aim is not to 
explain differences in PK data in terms of differences in 
immunogenicity between treatment groups, but rather 
to explain the overall variability of PK data by taking the 
influence of immunogenicity into account.

We use SAS Proc NLMIXED for the implementation of 
factorization model.

Simulation study to evaluate performance of proposed 
method
Design of simulation study
We perform Monte Carlo simulation to investigate the 
operating characteristics of factorization model in the 
context of PK similarity study with the impact of immu-
nogenicity. Simulation data were generated assuming 
a two-arm parallel designed PK similarity study with 
single dose administration. The correlated normal and 
binary data are generated simultaneously using the point-
biserial correlation [15]. Suppose that Y1 and Y2 follow a 
bivariate normal distribution with a correlation of ρY1Y2 . 
If Y1 is dichotomized to produce Y1D, then the resulting 
correlation between Y1D and Y2 can be given as point-
biserial correlation δY1DY2 [15]:

where p is the proportions of the observations above 
the point of dichotomization, and h is the ordinate (prob-
ability density function) of the normal curve at the same 
point. We use SAS Proc IML for the data generation.

Within each treatment group (T or R), given the cor-
relation matrices, three correlated variables are gener-
ated simultaneously, including log-transformed PK 
parameter (normal distribution), ADA response binary 
variable (1= ADA positive, 0= ADA negative), and 
a baseline covariate (normal distribution) which is 

(10)δY1DY2 = ρY1Y2

(

h
√
p(1− p)

)
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correlated to ADA response but independent from PK 
variable. The log-transformed PK parameter and ADA 
response are correlated. In order to fully investigate the 
operating characteristics of the factorization model, 
all relevant factors are considered in a simulation sce-
nario and all possible combinations of these factors are 
evaluated.

To evaluate the statistical power and robustness of fac-
torization model in the treatment effect estimation, we 
consider the following factors (36 scenarios in total for all 
possible combinations):

The marginal difference in log-transformed PK param-
eter between treatment group is ln(GMR (T/R) = 0.95).

•	 The geometric CV = 0.4 for the PK parameter in both 
treatment group.

•	 Data are generated for 130 subjects in each simula-
tion study (which is the sample size that needed for 
ANOVA to maintain 80% power given the assumed 
GMR =0.95, geometric CV =0.4, α = 5%, and a 
standard equivalence margin of [0.80, 1.25]).

•	 In R group, ADA response rate (P2) is 20 % , 
40 % or 60%; in T group, ADA response rate P1 ≥ P2, 
i.e., with a difference of 0%, 5 % or 10%. For instance, 
if P2 = 20%, then three different scenarios are con-
sidered for P1, i.e., P1 = 20 % , 25 % or 30%. It is worth 
noting that we assume the difference in ADA rates is 
due to non-product-related factors.

•	 The correlation coefficient of PK and ADA response 
is −0.3 or − 0.5.

•	 The correlation coefficient of baseline covariate and 
ADA response is 0.1 or 0.3. To be conservative on the 
model performance, relatively low correlation coeffi-
cients are considered for the covariate.

To evaluate the Type I error rate, we consider the 
following factors (6 scenarios in total for all possible 
combinations):

•	 The marginal difference in log-transformed PK param-
eter between treatment group is ln(GMR (T/R) = 0.80) 
(i.e., to see the error rate at the boundary of the stand-
ard equivalence margin).

•	 The geometric CV = 0.4 for the PK parameter in both 
treatment group.

•	 Data are generated for 200 subjects in each simula-
tion study (i.e., a common PK similarity study size).

•	 ADA response rates are equal between T and R, i.e., 
P1 = P2 = 20 % , 40 % or 60%.

•	 The correlation coefficient of PK and ADA response 
is −0.3 or − 0.5.

•	 The correlation coefficient of baseline covariate and 
ADA response is 0.1. To be conservative on the 

model performance, low correlation strength is con-
sidered for the covariate.

For the exemplification of sample size determination, 
we consider the following factors (12 scenarios in total 
for all possible combinations):

The marginal difference in log-transformed PK param-
eter between treatment group is ln(GMR (T/R) = 0.95).

•	 The geometric CV = 0.3, 0.4, 0.5, or  0.6 for the PK 
parameter in both treatment group.

•	 ADA response rate is 50% for both T and R groups.
•	 The correlation coefficient of PK and ADA response 

is −0.3, − 0.5 or − 0.6.
•	 The correlation coefficient of baseline covariate and 

ADA response is 0.1. To be conservative on the 
model performance, low correlation strength is con-
sidered for the covariate.

•	 Data are generated for a number of subjects in each 
simulation study to maintain 80% power for factori-
zation model using a standard equivalence margin of 
[0.80, 1.25] with α = 5%).

Measuring performance of the proposed methods
For each scenario, we analyze the log-transformed PK 
parameter data using the factorization model (with treat-
ment group as factor in the linear model and using base-
line continuous variable as covariate in the binary model) 
and the standard ANOVA model (with treatment group 
as factor). We perform the following measures to evalu-
ate the operating characteristics of factorization model:

•	 Compare the statistical power of factorization model 
and ANOVA given different ADA response rates and 
correlation matrices.

•	 Compare the treatment effect in PK data (i.e., the 
actual GMR) estimated by factorization model and 
ANOVA given different ADA response rates and cor-
relation matrices.

•	 Evaluate the Type I error rate of factorization model 
given different ADA response rates and correlation 
matrices.

•	 Compare the sample sizes that needed for the fac-
torization model and ANOVA to maintain the same 
target statistical power given different correlation 
matrices and the variabilities of PK data.

Simulation results

Evaluation of statistical power  The statistical power 
of factorization model and ANOVA for all simulated 
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scenarios are plotted in Fig.  3. ANOVA maintains the 
target power of 80%, while factorization model improves 
the power significantly. The gained efficiency depends on: 
1) the strength of correlation between PK and ADA data 
(strong factor, the higher correlation strength, the more 
variability explained by ADA data, the more efficiency 
gained); 2) the strength of correlation between ADA and 
covariate (weak factor, increasing correlation strength 
leads to slight increase in the power).

To fully investigate the operating characteristics of 
factorization model, in data generation step, we con-
sider different scenarios for the ADA response rate, i.e., 
P1 ≥ P2, with a difference of 0%, 5 % or 10% between treat-
ment groups. We assume the difference in ADA rate is 
due to non-product-related factors. In Fig. 3, the greater 

the difference in ADA rates, the higher the correspond-
ing power. This is due to the fact that the difference in 
immunogenicity between the treatment groups leads to a 
difference in PK outcome (since these two outcomes are 
correlated) and there is more variability explained by the 
factorization model, thus increasing the power.

Evaluation of robustness of factorization model in treat-
ment effect estimation  In data generation step, we set 
the marginal difference in log-transformed PK param-
eter between treatment group as ln(GMR (T/R) = 0.95). 
If the ADA response rate is higher in T than in R (the 
difference is assumed to be due to non-product-related 
factors in our simulation), considering the influence of 
immunogenicity on PK data, the actual “pure” treat-
ment difference in PK data may be smaller than the 

Fig. 3  Comparison of power of factorization model and ANOVA. a: correlation coefficient of ADA and covariate = 0.1; b: correlation coefficient of 
ADA and covariate = 0.3; c: correlation coefficient of ADA and ln(PK) = − 0.3; d: correlation coefficient of ADA and ln(PK) = − 0.5. Note: (c) and (d) are 
different presentations of (a) and (b). In the PK parameter data generation, assumed GMR = 0.95, CV = 0.4 and total sample size = 130
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marginal difference. In this case, the estimation of the 
marginal treatment difference is biased. An appropriate 
statistical analysis method should take such bias into 
account.

The actual GMRs estimated by factorization model and 
ANOVA are plotted for all simulated scenarios in Fig. 4. 
The actual GMRs are around 0.95 based on ANOVA as 
it estimates only the marginal treatment difference in PK 
data. While based on the factorization model, the actual 
GMR = 0.95 only when the ADA response rates are 
equal in two treatment groups; when the ADA response 
rates are different in two treatment groups, the actual 
GMRs are adjusted by factorization model to reflect the 
pure treatment effect in the PK data. The extent of such 

Fig. 4  Comparison of actual GMR estimated from factorization model and ANOVA. a: correlation coefficient of ADA and covariate = 0.1; b: 
correlation coefficient of ADA and covariate = 0.3; c: correlation coefficient of ADA and ln(PK) = − 0.3; d: correlation coefficient of ADA and 
ln(PK) = − 0.5. Note: (c) and (d) are different presentations of (a) and (b). In the PK parameter data generation, assumed GMR = 0.95, CV = 0.4 and 
total sample size = 130

Table 1  Type I error rate of factorization model by ADA response 
rate and correlation matrix

For PK parameter data generation, assumed GMR = 0.80 (at the boundary of 
the standard equivalence margin), assumed geometric CV = 0.4, correlation 
coefficient of ADA and covariate = 0.1
a  ADA response rates are equal for Test and Reference groups

Scenario # ADA response 
rate (%) a

Correlation coefficient 
of PK and ADA

Type I 
error rate 
(%)

1 20% −0.5 4.86%

2 40% −0.5 4.85%

3 60% −0.5 4.92%

4 20% −0.3 4.98%

5 40% −0.3 4.92%

6 60% −0.3 4.86%
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adjustment is proportional on the difference of ADA 
response rate between treatment group and also influ-
enced by the strength of correlation between ADA and 
PK data (strong factor) and the strength of correlation 
between ADA and covariate (weak factor).

Evaluation of type I error rate of factorization model  We 
evaluate the Type I error rate of factorization model given 
different ADA response rates and correlation matrices. 
We assume equal ADA response rate between the treat-
ment groups. As shown in Table 1, there is no inflation 
in the Type I error rate, i.e., the error rates are well con-
trolled within 5% in all simulation scenarios.

Sample size determination examples  We compare the 
sample sizes (for a two-arm study with one comparison) 
that needed for the factorization model and ANOVA to 
maintain the same target statistical power given differ-
ent correlation matrices and the variabilities of PK data. 

As shown in Fig. 5, the sample sizes that needed for the 
factorization model to maintain the same target power 
of 80% are considerably lower than the sample sizes that 
are needed for ANOVA. The higher correlation coef-
ficient of the ADA and PK data, the more gain in the 
sample size.

Real data example
We exemplify the proposed method in real data from PK 
similarity studies AVT02-GL-101 and AVT02-GL-102. 
AVT02-GL-101 is a three-arm pivotal study to dem-
onstrate PK similarity of AVT02 (a biosimilar of adali-
mumab), EU-Humira and US-Humira following a single 
40 mg subcutaneous injection in healthy adult volunteers 
[5]. AVT02-GL-102 is a two-arm study to demonstrate 
the PK similarity of AVT02 when administered via pre-
filled syringe (PFS) or autoinjector (AI) in healthy adult 
subjects (following a single 40 mg subcutaneous injection 

Fig. 5  The sample sizes that needed for the factorization model and ANOVA to maintain the target power of 80% given different correlation 
matrices and CV in PK data. CV = coefficient of variance, ANOVA = analysis of variance, FM = factorization model
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[16]). It is worth noting that the exact same AVT02 man-
ufacturing batch was used in both the PFS and AI groups.

Since the majority of study subjects (> 90%) devel-
oped ADA at some point in time during the study period 
(Day 0 to Day 64) in both studies, subjects are split into 
immunogenic subgroups according to the ADA titer area 
under curve values (i.e., “high titer level” versus “low or 
zero titer level”) using the Classification and Regression 
Tree (CART) model [2]. In AVT02-GL-101 study, there 
is no meaningful difference in immunogenicity profiles 
between treatment groups. In the PK analysis set, there 
are 50.0% (64/128), 53.6% (67/125), and 54.3% (69/127) 
subjects are classified as “high titer level” in AVT02, EU-
Humira, and US-Humira groups, respectively. The cor-
relation coefficients of PK data (log-transformed) and 
immunogenic subgroup (1 = “high titer level”, 0 = “low 
or zero titer level”) are − 0.62, − 0.57 and − 0.24 for AUC​
0-inf, AUC​0-last and Cmax, respectively. In AVT02–102 
study, there is slightly high titer strength in PFS group 

than in the AI group. In the PK analysis set, there are 
65.7% (65/99) and 52.5% (52/99) subjects are classified as 
“high titer level” in PFS and AI groups, respectively. The 
correlation coefficients of PK data and immunogenic sub-
group are − 0.59, − 0.54 and − 0.32 for AUC​0-inf, AUC​0-last 
and Cmax, respectively. As mentioned, in AVT02-GL-102 
study, the exact same manufacturing batch of AVT02 was 
used in both the PFS and AI groups, therefore, the differ-
ence in immunogenicity between the treatment groups 
can be considered to be due to unknown non-product-
related factors.

We analyze the PK parameter data from both studies 
using the factorization model (with treatment group and 
body weight as covariates for the linear model and with 
gender as covariate for the binary model) and the stand-
ard ANOVA model (with treatment group and body 
weight category as factors, i.e., using the planned analy-
sis for the clinical study report). The analysis results are 
shown in Fig. 6.

Fig. 6  Analysis results of PK parameters using factorization model and ANOVA in AVT02-GL-101 and AVT02-GL-102 studies. GMR = geometric mean 
ratio, ANOVA = analysis of variance, FM = factorization model, PFS = prefilled syringe, AI = autoinjector
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•	 For the PK parameter Cmax (which is less impacted 
by the immunogenic response as the onset of ADA 
mostly after the time point of Cmax), in both stud-
ies, the point estimates of GMR are similar for both 
models, the 90% CIs of the factorization model are 
slightly narrower than the ANOVA.

•	 For the PK parameters AUC​0-inf and AUC​0-last (which 
are substantially influenced by the immunogenic 
response), the 90% CIs of the factorization model are 
much narrower than the ANOVA in both studies. 
For the point estimates of GMR, different phenom-
ena are observed:

◦ In AVT02-GL-101 (where the immunogenicity 
profiles are balanced between treatment groups), the 
point estimates of GMR are similar in both models.
◦ In AVT02-GL-102 (where the same AVT02 batch 
was used for both treatment groups but with slight 
difference in immunogenicity between groups due 
to unknown non-product-related factors), the point 
estimates of GMR in factorization model are much 
closer to 1.0 than the ANOVA (i.e., 1.01 vs. 1.07 
for AUC​0-inf and 1.02 vs. 1.07 for AUC​0-last). The 
ANOVA model estimates the marginal treatment 
difference in the PK data only and such estimation 
is biased due to influence of immunogenicity. This 
suggests that looking only at PK data and com-
pletely ignoring the impact of immunogenicity can 
be misleading. The treatment difference in PK data 
quantified by the ANOVA model is not only due to 
the treatment per se, it is confounded by the effect 
of immunogenicity. Factorization model takes into 
account the impact of immunogenicity and provides 
accurate treatment effect estimation on the PK data.

In addition, to evaluate the “extended” ANOVA/
ANCOVA models that also include the factors that used 
in the binary model, additional analyses have been per-
formed and results are provided in Additional file  2.

Discussion
The development of immunogenicity poses many chal-
lenges in the design and analysis of PK similarity studies, 
as it increases the variability of PK data, and potential 
imbalances in non-product-related factors between treat-
ment groups may lead to differences in immunogenicity 
and thus in PK outcomes. The current standard statisti-
cal approaches ignore potential associations between 
PK and immunogenicity outcomes. We consider PK and 
immunogenicity as the two correlated outcomes of the 
treatment and we propose factorization model for the 
simultaneous analysis of PK and immunogenicity data. 
Factorization model captures the additional information 

contained in the correlation between outcomes, provides 
more accurate and efficient estimates of the treatment 
effect in the PK data by taking into account the impact of 
immunogenicity. The efficiency can be gained only when 
the PK and immunogenicity outcomes depend on differ-
ent covariate sets, and the gained efficiency depends on: 
1) the strength of correlation between PK and ADA data 
(it is a strong factor, the higher correlation strength, the 
more variability explained by ADA data, the more effi-
ciency gained); 2) the strength of correlation between 
ADA and covariate (it is a weak factor, increasing correla-
tion strength leads to slight increase in the power).

We exemplify the proposed method in the real data 
from two PK similarity clinical studies with highly 
immunogenic biologics. For parameters that are less 
impacted by immunogenicity, factorization model 
provides similar estimation as ANOVA, this suggests 
robustness of factorization model in the treatment 
effect estimation. For parameters that are substantially 
impacted by immunogenicity, factorization model pro-
vides efficient estimations. It is interesting that when 
the non-product-related factors impact immunogenicity 
and hence the PK outcome (like AVT02-GL-102 where 
the exact same manufacturing batch was used in both 
treatment groups), factorization model reduces the bias 
that was introduced by the influence of immunogenicity.

We encourage the use of factorization model to design 
and analyze PK similarity studies of highly immunogenic 
products when it is expected that potential difference 
in immunogenicity between treatment groups is due to 
non-product-related factors (e.g., the PK similarity stud-
ies with different devices administering the same prod-
uct). For PK similarity studies using different highly 
immunogenic products, factorization model can be an 
option for sensitivity analysis when there are no clini-
cally meaningful differences in immunogenicity profiles 
between treatment groups.
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