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ABSTRACT Artemisinin (ART) resistance has spread through Southeast Asia, posing
a serious threat to the control and elimination of malaria. ART resistance has been
associated with mutations in the Plasmodium falciparum kelch-13 (Pfk13) propeller
domain. Phenotypically, ART resistance is defined as delayed parasite clearance in
patients due to the reduced susceptibility of early ring-stage parasites to the active
metabolite of ART dihydroartemisinin (DHA). Early rings can enter a state of quies-
cence upon DHA exposure and resume growth in its absence. These quiescent rings
are referred to as dormant rings or DHA-pretreated rings (here called dormant
rings). The imidazolopiperazines (IPZ) are a novel class of antimalarial drugs that
have demonstrated efficacy in early clinical trials. Here, we characterized the stage of
action of the IPZ GNF179 and evaluated its activity against rings and dormant rings
in wild-type and ART-resistant parasites. Unlike DHA, GNF179 does not induce dor-
mancy. We show that GNF179 is more rapidly cidal against schizonts than against
ring and trophozoite stages. However, with 12 h of exposure, the compound effec-
tively kills rings and dormant rings of both susceptible and ART-resistant parasites
within 72 h. We further demonstrate that in combination with ART, GNF179 effec-
tively prevents recrudescence of dormant rings, including those bearing pfk13 pro-
peller mutations.

KEYWORDS GNF179, dormant rings, drug susceptibility, imidazolopiperazines,
malaria, rings, triple therapy

The first-line treatment for uncomplicated Plasmodium falciparum malaria recom-
mended by the World Health Organization (WHO) is artemisinin (ART) combination

therapies (ACTs) (1). Since the introduction of ATCs in the mid-1990s and implemen-
tation as first-line treatment in 2000, ACTs have had a significant impact on malaria
control and the reduction of disease burden and morbidity (2, 3). In 2007, a slower
parasite clearance time was first reported in artesunate-treated patients in Pailin at the
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Thai-Cambodian border (2). Similar reports soon followed from Cambodia, southern
Vietnam, and Thailand, all the way to the Thai-Myanmar border (3–10). The exact
molecular mechanism responsible for the slower parasite clearance time remains
unknown, but mutations in the propeller region of the K13 gene have been shown to
confer ART resistance in P. falciparum (11, 12). ART induces a dormant stage in a
subfraction of P. falciparum ring-stage parasites that can cause recrudescent infection
after treatment with ART monotherapy in ART-sensitive infections. Induction of dor-
mancy might also contribute to ART resistance in ring-stage parasites (10, 13–16).
Several studies have reported that following DHA treatment, there is a small percent-
age of developmentally arrested rings, often referred to as dormant rings (14, 17); here,
DHA-pretreated rings are referred to as dormant rings and those not treated with
DHA are simply rings (18). In contrast to rings, dormant rings are phenotypically
resistant to ART treatment and can reenter the full life cycle after 4 days of latency
(14, 19). Recently, we have shown that dormant rings are sensitive to the Plasmo-
dium phosphatidylinositol-4-OH kinase (PI4K)-specific inhibitor KDU691, while rings
are not (18).

KAF156, an imidazolopiperazine (IPZ), is a promising drug candidate showing
preliminary evidence of clinical efficacy in malaria patients, including those infected
with parasites bearing Kelch13 (K13) propeller mutations (20). KAF156 displays activity
against a broad range of stages of the Plasmodium life cycle, including liver and asexual
blood stages as well as in gametocytes (21–23). Nevertheless, stage-specific activity
within the asexual erythrocytic cycle has not been reported to date. Resistance to the
IPZ KAF156 and an analogue, GNF179, has been associated with mutations in one of
three trans-membrane transporters, pfcarl, pfact, and pfugt (23–25). All three of these
loci have also been shown to confer resistance to other classes of experimental
antimalarials, suggesting that they are not directly involved in KAF156’s mechanism of
action but rather are general mechanisms of drug resistance (23–25).

In this study, we aimed to carefully characterize the asexual erythrocytic stage of
action of IPZ and its effects on ART-induced dormancy and phenotypic drug resistance.
Using a close analog of KAF156, the IPZ GNF179 (23), we showed that IPZ (i) display the
fastest cidal activity against the schizont-stage parasites, (ii) do not induce dormancy,
(iii) slowly but potently kill rings and ART-induced dormant rings regardless of their K13
genotype, and (iv) in combination with ART, IPZ but not PI4K inhibitors effectively kill
wild-type and ART-resistant parasites bearing K13 mutations.

RESULTS
IPZ stage of action is characterized by rapid killing of schizonts and slower but

potent killing of ring-stage parasites. We have previously shown that IPZ are active
against multiple stages of the Plasmodium life cycle, specifically asexual hepatic and
erythrocytic stages, as well as blood and sexual stages (21, 23). In order to determine
the IPZ activity against all individual asexual erythrocytic stages causing the symptom-
atic malaria, we conducted stage-of-action studies (schematically outlined in Fig. 1A)
with the IPZ compound GNF179 (23, 24). Artemisinin (ART) is known to kill all asexual
blood stages and was therefore used as a control (12, 26, 27). Briefly, parasites were
tightly synchronized and treated with GNF179 in a 3-fold dilution ranging from 10 �M
to 4.57 nM for the specific developmental time windows of rings (early and late),
trophozoites, and schizonts (Fig. 1A, B, and C). After thorough washing, the parasites
were left to grow and the viability was assessed 24 and 72 h after the end of drug
treatment using the viability dye MitoTracker orange (Fig. 1). To generate 50% inhib-
itory concentrations (IC50s) for each drug and time point, IC50 graphs were plotted
using a nonlinear regression model from quantitative growth data normalized to the
dimethyl sulfoxide (DMSO) control. Cell viability/death was evaluated using MitoTracker
orange, whose accumulation in the mitochondria is dependent on membrane poten-
tial, which irreversibly collapses in dead cells and cannot be positive again even after
days in culture (17, 18, 28, 29). Cell viability was regularly monitored for a period of 7
days using high-content imaging (see Materials and Methods) (18). At the 24-h time
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point, GNF179 displayed poor activity against rings and trophozoites, while schizonts
appeared to be very sensitive to GNF179 (Fig. 1B). This is in sharp contrast to the ART
profile at 24 h, which was potently and rapidly cidal to rings but less active on
trophozoites and schizonts (Fig. 1B). At the 72-h time point, both GNF179 and ART
showed potent activity (IC50 of �100 nM) across all asexual blood stages (Fig. 1C). Thus,
GNF179 kills rings at a lower rate than ART (Fig. 1C). While the majority of treated
parasites appear viable (e.g., stained with MitoTracker dye) at 24 and 48 h, none were
observed at 72 h (Fig. 1D). Collectively our results show that, similar to ART, the IPZ
GNF179 displays ring-stage antimalarial activity and fast action against the schizonts.
This IPZ cidal activity against rings manifests itself slowly (only after 72 h) and is
observed even against very early rings (�6 h of development). We then proceeded to
evaluate the activities of GNF179 against dormant rings (Fig. 1D, 2, and 3).

IPZ kill both ring and dormant ring parasites regardless of the K13 genotype.
It has previously been shown that after exposure to 700 nM DHA for 6 h, a small fraction
of surviving or induced rings display a characteristic pyknotic-like morphology yet
remain positively stained with the MitoTracker orange viability dye (17, 18). These
DHA-pretreated rings (dormant rings) can resume growth a few days after ART drug
removal (14). Our earlier experiments established that IPZ, similar to spiroindolones
(30), do not seem to induce Plasmodium dormancy during the early ring stage (Fig. 1C

FIG 1 IPZ rapidly kill schizonts and slowly but potently kill ring-stage parasites without inducing dormancy. (A) Drug treatment schematic; (B) 24-h readout of
3D7 asexual blood-stage IC50s of GNF179 and ART using MitoTracker orange viability dye; (C) 72-h readout of 3D7 asexual blood-stage IC50s of GNF179 and
ART using MitoTracker orange viability dye; (D) killing kinetic images of GNF179 (100 nM) after 6 and 24 h of exposure to Dd2 WT ring parasites and live parasites
(green-blue) and dead parasites (blue only) using high-content imaging (HCI). Blue corresponds to DNA (DAPI stain), green corresponds to functional
mitochondria (MitoTracker orange stain), and red corresponds to red blood cells (wheat germ agglutinin [WGA] conjugated to Alexa Fluor 647 stain). Drug
treatment was applied on 3- to 6-h-old ring-stage parasites.
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and D). Rings were killed by 72 h posttreatment (Fig. 1D), when 100 nM GNF179 drug
pulses were applied at 6 and 24 h (see Fig. S1 in the supplemental material). Cell
viability was again regularly monitored for a period of 7 days using high-content
imaging and MitoTracker orange as described above (see Materials and Methods) (17,
18, 28, 29). In addition, microscopically no parasites were identified by the less sensitive
method of Giemsa staining 7 days posttreatment (Fig. S1).

The inhibitory activity of the IPZ GNF179 (23, 24) was then determined for the
dormant rings. Tightly synchronized ring-stage cultures either were pretreated with 700
nM DHA to induce dormant rings or were not treated (rings) prior to a 24-h drug
exposure with the IPZ GNF179. Negative (DMSO) and positive (PI4K inhibitor KDU691
[18]) controls were included. In contrast to KDU691, which only kills dormant rings (18),
GNF179 significantly (P � 0.0001) kills both rings and dormant rings (Fig. 2A and B). This
IPZ-cidal activity against the dormant rings is also observed for parasites bearing K13
mutations known to confer clinical ART drug resistance (Fig. 2A and B). Thus, IPZ can
kill ring-stage parasites regardless of the K13 genotype, developmental stage, and/or
metabolism (e.g., quiescent or not).

ART in combination with IPZ, but not PI4K inhibitors, kills wild-type and K13
ART isolates. The dormancy of rings observed upon exposure to ART has been
speculated to be an underlying physiological response mediating ART phenotypic drug
resistance and prolonged clearance in patients (14, 31). Given the demonstrated cidal
activity of IPZ and PI4K inhibitor KDU691 against dormant rings, we sought to deter-
mine whether these novel antimalarial compounds would be able to kill ring-stage
K13-ART isolates in combination with ART. The activity of DHA alone or DHA in
combination with either GNF179 (DHA-GNF179) or KDU691 (DHA-KDU691) was tested
against the Dd2 WT strain, the ART-resistant Dd2 K13 transgenic parasites (11), and
clinical isolates bearing K13 mutations (Fig. 3A and B). DHA alone for 6 or 24 h was more
active on the Dd2 WT strain than the K13 transgenic lines pfK13-R539T and pfK13-I543T.
The K13 transgenic parasites showed 2- to 8-fold growth increases by day four
compared to Dd2 WT parasites (Fig. 3A), as expected from ART-resistant isolates and in

FIG 2 IPZ kill both ring and dormant ring parasites regardless of the K13 genotype. (A and B) IC90 activity against rings and
dormant rings of clinical isolates of ART-resistant parasites bearing K13KDU691 (1,400 nM) (A) and GNF179 (100 nM) (B) after
72 h, detected using SYBR green. The growth controls for ring and dormant rings were DMSO-treated rings and DMSO-treated
dormant rings.
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agreement with a previous publication (18). The ART-resistant K13 transgenic line
pfK13-C580Y displayed moderate growth similar to that of the WT strain for 6 and 24
h of exposure, respectively (Fig. 3A). Six-hour treatment with 700 nM DHA is the
condition used for selection or induction of dormant rings (18). The combination of
DHA and KDU691 did not inhibit the growth of WT strains and K13 mutants at 6 and
24 h, respectively, compared to DHA alone (Fig. 3A). We have previously shown that
KDU691 alone is lethal to dormant rings when drug treatment starts 24 h after exposure
to 700 nM DHA for 6 h (Fig. 2B) (18). However, that does not seem to be the case when
KDU691 treatment is concomitant with DHA exposure (Fig. 3A). In sharp contrast, the
DHA-GNF179 drug combination proved to be highly effective against Dd2 WT and K13
mutant parasites, even after a short 6-h exposure (P value of �0.0001 and 0.0004 at 6
and 24 h, respectively) (Fig. 3A). Consistent with this, only DHA in combination with
GNF179 potently inhibited rings from clinical isolates encoding the K13 mutant geno-
type compared to inhibition by DHA or DHA plus KDU691 (P values of �0.0001 and
�0.0001 at 6 and 24 h, respectively) (Fig. 3B). Taken together, these results show that
while PI4K inhibitors may require preexposure of the rings to DHA to exert their effect
on dormant rings, IPZ are immediately and potently active on rings and dormant rings
concurrently exposed to DHA. Thus, ART in combination with IPZ could be a suitable
partner even for ART-resistant cases.

DISCUSSION

The emergence of ART resistance in the last decade threatens the success of global
malaria control programs. While mutations in the Kelch13 propeller domain (K13) have
been identified as major determinants of ART resistance, quiescent or dormant ring-
stage parasites have been associated with growth retardation, recrudescence, and
phenotypic resistance to artesunate (11, 15, 32). The use of the active form of the ART
prodrug dihydroartemisinin (DHA) is known to result in phenotypic resistance by
inducing dormant ring formation, yet drugs withpk;1 specific activity against early
and dormant rings have not been evaluated. Such drugs could be used in combi-

FIG 3 IPZ, but not PI4K inhibitors, rescue K13-mediated ART drug resistance. (A and B) Dd2 WT and Dd2 K13
mutants (C580Y, R539T, and I543T) (A) and seven clinical isolate ART-resistant parasites (B) were examined for
sensitivity to DHA only or DHA (700 nM) combined either with KDU691 (1,400 nM) or GNF179 (100 nM). The growth
control was DMSO-treated rings.
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nation with ACT to prevent delayed response to treatment, including in cases
involving a K13 genotype. Here, we evaluated the inhibitory activity of GNF179, a
close analog of the clinical candidate KAF156 (23), and the tool compound KDU691
against rings and dormant rings, alone and in combination with DHA against
wild-type and K13 ART-resistant isolates. In order to discriminate dormant rings
displaying a characteristic pyknotic-like appearance from dead cells, viability was
determined by high-content imaging using MitoTracker orange as a viability marker
(18).

Unlike DHA (14) and similar to the spiroindolones (KAE609) (30), IPZ did not induce
the appearance of dormant rings. While both GNF179 and KDU691 displayed cidal
activity against dormant rings, only GNF179 potently inhibited rings (Fig. 2B). Moreover,
GNF179 proved to be equally active against dormant rings as well as rings even when
coadministered with DHA simultaneously. We previously reported KDU691 (18) is
selectively active against dormant rings but not rings. The selective dormant ring
activity profile of KDU691 parallels in part the activity of mefloquine, which has also
been shown to reduce the recovery of dormant rings (14) but not early rings (33). While
it is possible that mefloquine is active against dormant rings, it should be noted that
mefloquine has a long half-life and likely accumulates in red blood cells (RBCs), hence
it could be inhibiting the development of the parasite at later stages of the life cycle
(33). Mefloquine has recently been shown to inhibit protein synthesis by binding the P.
falciparum 80S ribosome (34), a mechanism of action whose functions have yet to be
evaluated in a dormant parasite. We have yet to determine whether the IPZ also
accumulates in the RBCs. However, if inhibition resulted from accumulated compound
in the cells, then the slower inhibitory activity of KAF179 observed on the early rings,
late rings, and trophozoites, but faster activity on schizonts, would shift the total
recovery by an additional 72 h. This is because it would target dormant rings in the
recovery phase (Fig. 1 and 2). Overall, the inhibitory activity of KAF179 and mefloquine
on the dormant rings should be further explored in order to better understand
metabolism and phenotypic resistance in this quiescent stage of the parasite. This is
particularly relevant given that mefloquine is already in use in combination therapy and
has recently been associated with drug resistance (35, 36).

Surprisingly, KDU691 in combination with DHA treatment did not differ from
treatment with DHA alone. This observation provides some important insights into the
biology of Plasmodium dormancy, as it suggests that this physiological quiescent state
is induced, and not selected for, by DHA exposure. This inference is based on the fact
that KDU691 proved potent only against preexisting dormant rings and only once they
have appeared posttreatment with DHA alone for 6 h (18) (Fig. 2B). In contrast, KAF179
alone and in combination potently kills rings, thereby preventing the development of
dormant rings. Had DHA selected for preexisting dormant rings, DHA and KDU691 in
combination should clear all parasites compared to DHA treatment alone. It is plausible
that the PI4K, the target of KDU691, is not expressed in the early rings but that it is
essential in the dormant ring stages. The activity of GNF179 was further evaluated
against each asexual erythrocytic stage of the parasite, where it proved to be fast acting
against the schizont stage and slowly kill during ring and trophozoite stages. This
finding may facilitate further studies establishing IPZ molecular mechanisms of action.

Combination therapies such as ACTs are essential in reducing the emergence of
drug resistance. Nevertheless, while ART resistance has now been widely reported in
Southeast Asia and China (37), it has not been reported as of yet in Africa (38), South
America, or South Asia (39). In the absence of resistance to long-half-life ACT partner
drugs, such as lumefantrine, amodiaquine, mefloquine, and piperaquine, ACT clinical
efficacy for treatment of falciparum malaria is largely preserved. However, ART resis-
tance facilitates selection of partner drug resistance. This has been observed in Cam-
bodia and at the Thai-Myanmar border, where emergence of ART resistance was
followed by a fast increase in piperaquine and mefloquine resistance, causing high ACT
treatment failure (40–43). Recent reports from Vietnam indicate treatment failure was
associated with mutations in the K13 target gene and the Pfplasmepsin2 (pfpm2) gene
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associated with a partner drug, causing piperaquine resistance (44). More recently, a
strain resistant to ACT (artemisinin and piperaquine) spread from western Cambodia to
southern Vietnam through northeastern Thailand and southern Laos (45). Introduction
of ART and partner drug resistance spread from Southeast Asia, or as de novo emer-
gence, would be disastrous for the African continent. Although current reports have not
convincingly shown that ART resistance has been established in any sub-Saharan
African country, this might unfortunately only be a matter of time (39). These early signs
of treatment failures to ACT may be an indication that the time has come to consider
new combinations of ART with novel mechanism-of-action compounds or triple ther-
apy. We have previously shown that the spiroindolone KAE609 is fast acting at
low-nanomolar concentrations but that in contrast to ART, it does not induce dormancy
and has a longer half-life (23 h) capable of preventing recrudescence, including that
from dormant rings (2, 9, 30, 46, 47). Our study shows that IPZ with a mean half-life of
44.1 � 8.9 h in humans (20) potently inhibited both early and dormant rings of
wild-type as well as K13 ART-resistant parasites without inducing dormancy. The data
reported here suggest that this novel class of antimalarial is a suitable drug partner
for ACT combination therapy to prevent the recrudescence of dormant rings in K13
ART-resistant isolates.

MATERIALS AND METHODS
Antimalarial drugs. Compounds KDU691 and GNF179 were synthesized in-house (48, 49). All other

compounds used in the study were obtained from Sigma-Aldrich (St. Louis, MO, USA).
Parasites. P. falciparum field clinical isolates ANL4-C580Y, ANL5-C580Y, ANL8-Y493H, and ANL9-

R539T, encoding K13 mutations, were obtained from Mahidol University, Bangkok, Thailand (50). Samples
were collected under approved ethical guidelines of the Oxford Tropical Research Ethics Committee
(OXTREC 562-15) and the Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand (MUTM
2015-019-01). All sample collection was performed in accordance with the relevant guidelines and
regulations (OXTREC 562-15 and MUTM 2015-019-01).

MRA-1239, MRA-1240, MRA-1241, and the corresponding ring-stage survival assay (RSA) data were
obtained from BEI Resources. Strains MRA-1239, MRA-1240, and MRA-1241 were obtained from The
Malaria Research and Reference Reagent Resource Centre (MR4), USA. Strain MRA-1239 (IPC 5188;
susceptible in an RSA from 0 to 3 h [RSA0 –3]) was originally isolated in 2011 from the blood of a human
patient with malaria in Ratanakiri province, northeastern Cambodia. When exposed to dihydroartemis-
inin, the strain gave an RSA0 –3 value of 0.1%. Strain MRA-1240 (IPC5202; resistant in RSA0 –3) was originally
isolated in 2011 from a human patient with malaria in Battambang province, western Cambodia. When
exposed to dihydroartemisinin, it gave an RSA0 –3 value of 88.2%. Strain MRA-1241 (IPC4912; resistant in
RSA0 –3) was originally isolated in 2011 from the blood of a human patient with malaria in Mondulkiri
province, southeastern Cambodia. When exposed to dihydroartemisinin, it gave an RSA0 –3 value of
49.3%.

P. falciparum laboratory-adapted parental strain Dd2 (a clone of W2MEF) and ART-resistant transgenic
lines with mutations (R539T, I543T, and C580Y) in the K13 gene were a kind gift from the David Fidock
laboratory, Columbia University, New York, NY (51).

Parasite cultures. All clinical isolates and laboratory-adapted strains of P. falciparum were cultured
using standard RPMI 1640-HEPES (Gibco Life Technologies, Singapore) medium supplemented with 0.5%
AlbuMAX and 4% RBCs. RBCs used in this study were obtained from Innovative Research, USA. Parasites
were synchronized with 5% D-sorbitol at each cycle and prior to drug exposure in each experiment (52).

GNF179 stage of action. A drug-sensitive P. falciparum 3D7 culture was synchronized for a week
prior to the start of the experiments. The asynchronous 3D7 culture was first synchronized using MACS
purification (Miltenyi Biotec) to obtain pure schizonts. The second synchronization with 5% sorbitol at the
ring stage was carried out 12 h preceding the next MACS purification. The alternating sorbitol and MACS
purification program was repeated for three life cycles with a final purification using the MACS column
for mature schizonts. To facilitate reinvasion of merozoites into red blood cells, the culture was left in a
shaking incubator at 40 rpm for 4 h after MACS purification. The repeated synchronization of cultures
gave a tight 4- to 6-h window of parasite growth. The aim of the experiment was to investigate the effect
GNF179 and ART control had on early rings (0 to 6 h postinvasion [p.i.]), rings (7 to 24 h p.i.), trophozoites
(25 to 38 h p.i.), and schizonts (39 to 48 h p.i.).

A 96-well master plate containing ART and GNF179 was prepared, with the highest concentration at
10 �M and 3-fold serial dilutions to yield eight concentration points. A final working concentration of
0.1% DMSO was used as the negative control, and 10 �M ART was used as the positive control. Each well
was spotted with 200 nl of compound using a Mosquito nanoliter dispenser (Cambridge, UK). At different
hours postinvasion of the red blood cells, early rings (0 h p.i.), late rings (6 h p.i.), trophozoites (24 h p.i.),
and schizonts (36 h p.i.) in 200 �l of P. falciparum 3D7 culture at the respective intraerythrocytic stage
were seeded at 0.5% parasitemia and 4.0% hematocrit manually into the compound-spotted plates. The
plates were incubated in an incubator with a reduced oxygen environment and 5% CO2 at 37°C.
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Giemsa-stained slides were prepared prior to seeding to ensure the culture was at the correct intra-
erythrocytic stage.

The culture at the respective intraerythrocytic stage was incubated with the compounds for a
number of hours before the compounds were washed off extensively, twice with 1� phosphate-buffered
saline (PBS) and once with complete RPMI medium. The incubation times were the following: early rings,
6 h; late rings, 18 h; trophozoites, 12 h; and schizonts, 12 h. Upon the removal of the compounds, the
stage-specific parasites were cultured in complete RPMI medium before being assessed with MitoTracker
orange for their IC50 determinations at 24 h and 72 h (see below).

HCI. HCI was carried out on an Opera (PerkinElmer) high-content screening system, and the
fluorescent dye MitoTracker orange was used to monitor parasite growth. The HCI readout measures only
the absolute live parasite count per field base on MitoTracker orange staining only and not as a
percentage of parasitemia. GraphPad Prism 7 software was used to make the analysis and generate the
graphs. For detection with a final concentration of 250 nM MitoTracker orange, 170 �l of medium was
removed from each of the 96-well plates, and an equal volume of MitoTracker orange in PBS was added
to the remaining 30 �l of infected culture. The plates were incubated for 24 h at 37°C before being read
on the Opera high-content imaging system (PerkinElmer). Each well was imaged bottom-up for 25 fields
using a 561-nm laser.

The wells were imaged for live cells stained with MitoTracker orange. Parasites were counted in a
total of 20 fields per well. The number of live parasites was quantified using a custom Acapalla script and
algorithms for high-content imaging. Quantitative data were normalized to the control (DMSO), and IC50

graphs were plotted using a nonlinear regression model. Bar graphs were plotted using GraphPad
Prism7.

GNF179 rings killing kinetic. Sorbitol (52)-synchronized rings (1% parasitemia) were directly
exposed for 6 and 24 h to 100 nM GNF179 and incubated at 37°C in 5% CO2. After the 6- and 24-h
treatments, drug was removed by three consecutive washes and parasite growth was monitored for 24
h, 48 h, and 72 h as shown in Fig. 1D. MitoTracker-positive and -negative parasites were evaluated as
follows. Parasite nuclei (blue) were stained with 1 �g/ml of 4=,6-diamidino-2-phenylindole (DAPI; Sigma),
and mitochondria (green) were stained with a 2 �M final concentration of MitoTracker orange (dissolved
in culture media together with DAPI) for 2 h at 37°C in 5% CO2. After 2 h of staining, medium was
removed and 1/500 diluted wheat germ agglutinin (WGA), conjugated with Alexa Fluor 647 (1 mg/ml
stock concentration), was used to stain the red blood cells in 1� PBS for 10 min and then washed twice
in 1� PBS. Images were taken with an Opera (PerkinElmer) high-content screening system at 60�
magnification (Fig. 1D).

Ring and dormant ring drug susceptibility assessment. All parasites were first synchronized at
ring stage with sorbitol (52). In single-drug treatment (Fig. 2), equal levels of parasitemia adjusted to 0.1%
were used for both rings and dormant rings. Dormant rings were induced as described above and
previously reported (14). Synchronized ring parasites were either exposed directly to compound pulses
at concentrations corresponding to their respective 72-h SYBR green assay IC90 values (see Fig. S2 in the
supplemental material) for 24 h (for rings) or pretreated with DHA (700 nM) for 6 h, washed thrice to
remove the DHA, and then exposed 18 h later to the compound treatment for 24 h (for dormant rings).
In combination treatment (Fig. 3), 700 nM DHA, previously reported to induce dormancy or ring-stage
survival, was used (15, 16). DHA alone or DHA plus one of the partner drugs (GNF179 or KDU691) was
used. Synchronized rings (0.1% parasitemia) were directly exposed for 6 and 24 h to DHA plus one
partner drug or to DHA alone to determine 72-h SYBR green assay IC90 values. A DMSO-treated sample
was used as a control. Treatment was done with GNF179 (100 nM), KDU691 (1,400 nM), and DHA (700
nM). Drug- and DMSO-treated parasites were stained with MitoTracker orange (250 nM final concentra-
tion in culture medium for 24 h at 37°C in 5% CO2) and analyzed with a PerkinElmer Opera HCI system.
The uptake of MitoTracker orange is dependent on the negative mitochondrial membrane potential and
indicative of cell viability (17, 53). For high-content imaging, cultures containing MitoTracker orange were
adjusted to 2% hematocrit in Greiner PS microplates (black cell culture, 96-well, F-bottom, �Clear plate
format; product code 655090). Following 6 and 24 h of treatment, drugs were removed from culture
medium by three consecutive washes at the end of 6 and 24 h of exposure using 1� PBS, and parasite
growth was assessed by day four. All drug-treated conditions were normalized to corresponding
DMSO-treated conditions. All data were obtained from three or more independent biological experi-
ments with technical duplicates or triplicates (means � standard errors of the means). Statistical analyses
of data were done using a Mann-Whitney U test.
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