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Abstract

Background: Acute T-cell lymphoblastic leukaemia (T-ALL) is an aggressive disorder derived from immature
thymocytes. The variability observed in clinical responses on this type of tumours to treatments, the high toxicity of
current protocols and the poor prognosis of patients with relapse or refractory make it urgent to find less toxic and
more effective therapies in the context of a personalized medicine of precision.

Methods: Whole exome sequencing and RNAseq were performed on DNA and RNA respectively, extracted of a
bone marrow sample from a patient diagnosed with tumour primary T-ALL and double negative thymocytes from
thymus control samples. We used PanDrugs, a computational resource to propose pharmacological therapies based
on our experimental results, including lists of variants and genes. We extend the possible therapeutic options for
the patient by taking into account multiple genomic events potentially sensitive to a treatment, the context of the
pathway and the pharmacological evidence already known by large-scale experiments.

Results: As a proof-of-principle we used next-generation-sequencing technologies (Whole Exome Sequencing and
RNA-Sequencing) in a case of diagnosed Pro-T acute lymphoblastic leukaemia. We identified 689 disease-causing
mutations involving 308 genes, as well as multiple fusion transcript variants, alternative splicing, and 6652 genes
with at least one principal isoform significantly deregulated. Only 12 genes, with 27 pathogenic gene variants, were
among the most frequently mutated ones in this type of lymphoproliferative disorder. Among them, 5 variants detected
in CTCF, FBXW7, JAK1, NOTCH1 and WT1 genes have not yet been reported in T-ALL pathogenesis.

Conclusions: Personalized genomic medicine is a therapeutic approach involving the use of an individual’s information
data to tailor drug therapy. Implementing bioinformatics platform PanDrugs enables us to propose a prioritized list of
anticancer drugs as the best theoretical therapeutic candidates to treat this patient has been the goal of this article. Of
note, most of the proposed drugs are not being yet considered in the clinical practice of this type of cancer opening up
the approach of new treatment possibilities.

Keywords: T-ALL, Next-generation sequencing technologies, PanDrugs, Precision oncology, Personalized precision
medicine, Translational bioinformatics, Cancer genomics, In silico prescription, Targeted therapy, Druggable genome

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

* Correspondence: jfpiqueras@cbm.csic.es
†Pablo Fernández-Navarro and Pilar López-Nieva are co-first authors
3Department of Cellular Biology and Immunology, Severo Ochoa Molecular
Biology Center (CBMSO), CSIC-Madrid Autonomous University, Madrid 28049,
Spain
4Institute of Health Research Jiménez Díaz Foundation, Madrid 28040, Spain
Full list of author information is available at the end of the article

Fernández-Navarro et al. BMC Cancer         (2019) 19:1005 
https://doi.org/10.1186/s12885-019-6209-9

http://crossmark.crossref.org/dialog/?doi=10.1186/s12885-019-6209-9&domain=pdf
https://orcid.org/0000-0001-9427-2581
https://orcid.org/0000-0001-6369-2444
https://orcid.org/0000-0003-2773-2343
https://orcid.org/0000-0002-9570-5542
https://orcid.org/0000-0003-2373-769X
https://orcid.org/0000-0003-4520-6785
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:jfpiqueras@cbm.csic.es


Background
Acute leukaemia of the lymphoid lineage (ALL) is the
most common form of childhood leukaemia. Based on the
immunophenotype of the leukaemia cells we are able to
classify ALL into T-cell acute lymphoblastic (T-ALL) and
B-cell precursor (B-ALL) leukaemia. In particular, T-ALL
is biologically and genetically heterogeneous with gene ex-
pression signatures that identify different biological and
clinical subgroups associated with T cell arrest at different
stages of thymocyte development [1], most often manifests
with extensive diffuse infiltration of the bone marrow and
blood involvement [2] .
T-ALL results from a multistep transformation process

in which accumulating genetic alterations co-ordinately dis-
rupt key oncogenic, tumour suppressor and developmental
pathways responsible for the normal control of cell growth,
proliferation, survival and differentiation during thymocyte
development [1]. Despite undoubted successes, the toxicity
of intensified chemotherapies treatments, chemotherapy
resistance and the outcomes of patients with relapsed or re-
fractory ALL remain poor [1, 3]. It is therefore still neces-
sary develop appropriate strategies to enable us to identify
more effective, therefore, less toxic treatments taking into
account the patient genetic profile. The application of
Next-Generation Sequencing (NGS) techniques has pro-
duced an unprecedented body of knowledge concerning
the molecular pathogenesis of these haematological disor-
ders allowing the discovery of multiple genetic and epigen-
etic alterations underpinning tumour development.
Personalized medicine is gaining recognition due to limi-

tations with standard diagnosis and treatment [4]; due to
the high rates of variability observed in clinical responses to
treatments, which probably reflects underlying molecular
heterogeneity. Furthermore, new classes of molecularly
targeted drugs have been developed [5] although its poten-
tial could still be better utilized. Identifying which genetic
variants may be targetable by current therapies presents a
difficult challenge in personalized cancer medicine [6]. The
question raised in this work is whether the availability of
molecular data provided by whole exome and transcriptome
sequencing could serve to guide the selection of site-specific
treatments in a patient with T-ALL as a proof of principle.
We have used the bioinformatics platform PanDrugs [7] as
a feasible method to address the gap between raw genomic
data and clinical usefulness, identifying genetic abnormalities
that can be matched to drug therapies that may not have
otherwise been considered. This could be a challenge to the
implementation and uptake of genomics-based screening
and diagnosis to map the appropriate actions.

Methods
Primary tumour and control samples
The University Hospital 12 Octubre (Madrid, Spain) pro-
vided us a tumour primary T-ALL sample (bone marrow).

Tumour blasts were isolated from primary sample by flow
cytometry sorting as CD7+ CD45+ cells. Sample was diag-
nosed as Pro-T acute lymphoblastic leukaemia according
to World Health Organization Classification of Haemato-
logical Malignancies and recommendations from the
European childhood lymphoma pathology panel.
Normalization next generation sequencing data is neces-

sary to eliminate cell-specific biases prior to downstream
analyses. Thymus control samples, were provide by La Paz
University Hospital (Madrid, Spain). Due to Double Nega-
tive thymocytes (DN) are the less common fraction of cells
multiplex these DN fractions by performing a single
experiment on a pool of all DN cells, also pooling donors
reduces variability. To create the initial pool of DN cells,
isolation of thymocyte subpopulations were performed in
five human paediatric thymuses of patients with only heart
diseases aged 1month to 4 years, removed during correct-
ive cardiac surgery, using autoMACS Pro (Miltenyi Biotec)
with appropriate MicroBeads. Immature thymocytes were
enriched from thymocyte suspensions using the sheep red
blood cell (SRBC) rosetting technique. Early progenitors
(DN) were isolated as CD34+ cells. Purity was determined
by flow cytometry using the following antibody: CD34-PE
(MACS Miltenyi Biotec).

Whole exome sequencing (WES)
DNA extraction was performed using the QIAamp DNA
Mini Kit (Qiagen, Valencia, CA, USA) according to the
manufacturer’s instructions. All isolated DNA samples
were quantified by spectrophotometry, using NanoDrop
(ThermoFisher Scientific, Waltham, MA, USA), and
fluorimetry, using the Qubit® dsDNA HS and/or BR
assay kits (ThermoFisher Scientific Inc.). WES analyses
were performed with an Illumina HiSeq2000 sequencing
platform using a paired end 2 X 100 read strategy and
an Agilent’s SureSelect Target Enrichment System for
71Mb. Sequencing will be done with a 100x of coverage.
Processing of the raw data was done using RubioSeq
pipeline [8] where the reads were aligned against the last
version of human genome reference (GRCh38/hg38 as-
sembly) using the BWA-Mem algorithm [9]. Alignment
was then processed to (i) realign known indel regions,
(ii) remove duplicate reads, and (iii) recalibrate quality
scores. The variant calling process for SNVs and Indels
identification was done using the combined results from
GATK [10] and MuTect2 [11]. Python scripts were de-
veloped to combine variants.

Variant annotations
Variants were annotated following the logic in Pan-
Drugs, which integrates information from the Variant
Effect Predictor of Ensembl [12] and additional data-
bases. We used the versions 90 of Ensembl, 85 of COS-
MIC [13], and the releases 87.0 of KEGG [14], 1.53 of
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ClinVar [15], 31.0 of Pfam [16], 2018_07 of UniProt
(UniProt Consortium 2018) and 69.0 of InterPro [17].
Genes included in a list with the most frequently altered
genes in T-cell lymphoblastic neoplasia were also
indicated.

Massive mRNA sequencing
Total RNA was obtained using TriPure Reagent (Roche
Applied Science, Indianapolis, IN, USA), following man-
ufacturer’s instructions. RNA integrity Numbers (RIN)
were in the range of 7.2–9.8. Sequencing of tumour-
derived mRNA (RNA-Seq) was analysed after filtering
total RNA by removal of Ribosomal RNA. Libraries were
sequenced using an Illumina HiSeq2500 instrument
(Illumina Inc., San Diego, CA, USA). Estimation of RNA
abundance was calculated with Cufflinks2.2.1 software
using the Ensembl GRCh37/hg19p5 annotation for
human genome. All these molecular analyses were per-
formed by the Sequencing and Bioinformatics services of
Sistemas Genómicos S.L. (Valencia, Spain; https://www.
sistemasgenomicos.com/en/) in two replicates.

Identification of fusion transcripts and alternative splicing
variants (ATEs)
Interpretation of RNA-Seq data using the predictive al-
gorithm EricScript, a computational framework for the
discovery of gene fusions in paired-end RNA-Seq data
developed in R, perl and bash scripts. This software uses
the BWA51 aligner to perform the mapping on the tran-
scriptome reference and BLAT for the recalibration of
the exon junction reference. In this study, we have used
EricScript 0.5.5b and EnsEMBL GRCh37.73 as a tran-
scriptome reference [18]. RNA-Sequencing data were
also used to identify ATEs using CUFFLINKs [19].

PCR, sanger sequencing
Polymerase-Chain-Reaction (PCR) and Sanger sequencing
were used to validate novel mutations. Sanger DNA sequen-
cing of PCR-amplified fusion sequences were performed with
the specific primers indicated in Additional file 1: Table S1.

PanDrugs
PanDrugs (http://www.pandrugs.org) provides a bio-
informatics platform to prioritize anticancer drug treat-
ments. The current version integrates data from 24
primary sources and supports 56,297 drug-target associ-
ations obtained from 4804 genes and 9092 unique com-
pounds. Selected target genes can be divided into direct
targets, biomarkers and pathway members [7].
During the processing PanDrugs computes a Gene

Score and a Drug Score. The Gene Score (GScore, in the
range of 0 to 1) measures the biological relevance of the
gene and is estimated through the (i) cancer essentiality
and vulnerability (by studying RNAi cell lines), (ii)

relevance in cancer (using Cancer genes Census, Tumor-
Portal, Driver Gene, OncoScope, and inclusion in a list
with the most frequently altered genes in T-cell lympho-
blastic neoplasia), (iii) biological Impact (using Func-
tional impact predictors such as Variant Effect predictor
from ENSEMBL 16 and different predictive algorithms,
VEP relevant consequence, Essentiality score, Domains
and Zygosity), (iv) frequency (GMAF 1000 genomes,
COSMIC and gnomAD), and (v) clinical implications
(ClinVar). The Drug Score (DScore, in the range of − 1
to 1) measures the suitability of the drug and considers
(i) drug-cancer type indication, (ii) the drug clinical sta-
tus, (iii) the gene-drug relationship, (iv) the number of
curated databases supporting that relationship, and (v)
collective gene impact.
To obtain the therapeutic options for this patient case,

PanDrugs was queried 3 times with different types of mo-
lecular evidences: filtered variants, top 500 up-regulated
genes and top 500 down-regulated genes. Filtered variants
were provided as input for the Genomic Variants query
option using a VCF file with converted GRCh37/hg19 as-
sembly coordinates. The deregulated genes were selected
using as criteria the log 2 based fold-change combined
with an adjusted p-value < 0.05 and provided as input for
the Genes query option.
In the three strategies we selected the most relevant

therapies dividing them into 2 tiers: (i) tier 1 with the
Best Therapeutic Candidates (therapies with DScore >
0.7 and GScore > 0.6), and (ii) tier 2 with the therapies
with DScore > 0.7 and GScore > 0.5. For the filtered
variants, we considered the drug-gene associations
where the causal alteration matched the input variant
and those without specification of causal alteration. For
deregulated genes, we selected the therapeutic candi-
dates where the alteration in the drug-gene association
is an expression change or a copy number alteration
(that can be translated into changes in the expression) in
the same direction observed in the deregulated genes.
The selected treatments in the three approaches were
combined. Resistances arisen in some approach were
used to exclude therapies suggested by the others.

Results
Clinical data evidenced a case of pro-T acute
lymphoblastic leukaemia
Sixteen years old patient presented with a six weeks pro-
gressive cough, asthenia, hyporexia and lose of weight.
The blood tests showed hyperleukocytosis (152 × 109/L),
anaemia (99 g/L) and thrombocytopenia (83 × 109/L)
with an increase of uric acid and lactate dehydrogenase
(LDH). Chest X-ray presented mediastinum widening. A
bone marrow biopsy was done showing 97% of blast
cells with an immunophenotype compatible with a Pro-
T acute lymphoblastic leukaemia. Cytogenetic analysis
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revealed 47, XY, + 16 [20] and 48, XY, + 9, + 16 [3] kar-
yotypes, negative by FISH for deletion of MYB [6q23]
and a translocation/inversion of the T cell receptor locus
(TCR) (14q11).

Molecular data revealed multiple candidate genes, fusion
transcripts and alternative splicing variants
Whole Exome Sequencing (WES) and Massive transcrip-
tome sequencing (RNA-Seq) were used to identify rele-
vant genetic alterations including gene variants, gene
expression levels, fusion transcripts and alternative spli-
cing variants.

Whole exome sequencing
WES analysis and annotation process was performed as
described in methods. We filtered gene variants using
two main criteria: (i) population frequency, to select only
somatic variants occurring in the tumour cells (GMAF
or gnomAD < 0.01); (ii) functional impact of mutations,
picking out those variants with high or moderate impact
predicted to be pathogenic by at least two predictive
algorithms. Additionally, we used the APPRIS Database
to discard mutations affecting non-functional transcript-
isoforms. A total of 689 gene variants, involving 308 genes,
met those criteria. These genes were then categorized by
GAD-Disease using the Functional Annotation tools from
the Database for Annotation, Visualization and Integrated
Discovery (DAVID) Bioinformatics Resources 6.8 (https://
david.ncifcrf.gov/) [21]; Additional file 2: Table S2).
Scientific data available hitherto indicate that each T-

ALL case only accumulates 10 to 20 biologically relevant
genomic lesions, on average, as necessary events that co-
operate during the development and progression of this
type of leukaemia [22]. According to the information in
Tumour Portal, Role Driver and Genetic Association
Database (GAD_Disease data) 183 out of the 689 variants
are in 77 genes previously involved in cancer. Only 12
genes with 27 presumably pathogenic gene variants were
among the most frequently mutated ones in this type of
leukaemia [1, 20, 23, 24]: ARID1A, CTCF, DNM2, FAT1,
FBXW7, H3F3A, JAK1, JAK3, KMT2D, NOTCH1, PHF6,
and WT1. Interestingly, the affectation of 4 of these genes
(DNM2, JAK1, JAK3 and CTCF) has been described in
Early T-cell Precursor Acute lymphoblastic leukaemia
(ETP T-ALL) [1, 25–27]. The T > C substitution found in
the NF1 gene is an existing variant (re2525574), which
causes a stop lost effect in two defective non-functional
transcripts that in addition are subjected to Non-sense
Mediated Decay (NMD) (Fig. 1a).
To our knowledge 5 gene variants detected in, CTCF,

FBXW7, JAK1, NOTCH1 and WT1 genes have not yet
been demonstrated in T-ALL pathogenesis. Sanger se-
quencing (Fig. 1b) verified novel mutations in these
genes. First, a homozygous insertion of an A after C (C

to CA) in WT1, which generates a high-impact frame-
shift variant that ends in a termination codon 18 amino
acids after resulting in truncation of the C-terminal zinc
finger domains of this transcription factor (c.1100dupR;
p.Val371CysfsTer14). Similar mutations are frequently as-
sociated with oncogenic expression of the TLX1, TLX3 and
HOXA oncogenes [28]. Second, a heterozygous presumably
activating missense-variant at the pseudo kinase domain of
the JAK1 protein (c.2413 T >G; pPhe805Va). Third, a het-
erozygous inactivating missense variant in the FBXW7
gene (c.1634A > T; p.Tyr545Phe), which overlaps with the
three main isoforms (α, β and γ). Fourth, a presumably
activating heterozygous missense variant at the HD-N do-
main of the NOTCH protein /c.4775 T >C; p.Phe1592Ser).
Fifth, an inactivating high-impact frameshift mutation at
the CTCF gene, which generates a premature stop codon
(c.950_951delCA; p.Thr317ArgfsTer91).

Massive transcriptome sequencing (RNA-Seq)
RNA-Seq analysis and annotation process was performed
as indicated in the methods section. Significant deregula-
tion was established calculating the log2 Fold Change
(log2FC) by comparing patient sample expression data
with the expression data of normal paediatric DN thymo-
cytes (CD34+ mix), in two replicates. Absolute fold change
values equal or greater than 1.5 were considered as thresh-
olds of significance. With this stringency filtering criterium
there were 6652 genes with at least one principal isoform
significantly deregulated. Of these, 3575 have at least one
principal isoform up regulated; 3436 exhibited at least one
down regulated main isoform and, surprisingly, we de-
tected 359 genes with at least one major isoform up and
another down (Additional file 3: Table S3).
Cross-talk between exome and transcriptome data re-

vealed 94 genes that exhibited pathogenic mutations and
significant deregulation (52 up and 42 down) (Additional
file 4: Table S4). Of them, five genes are in the list of most
frequently altered ones in T-ALL (FBXW7, FAT1, FAT2,
FAT3 and PHF6) (Additional file 5: Table S5). Notably,
6558 genes without pathogenic mutations were signifi-
cantly deregulated (3523 with some isoform up and 3393
with some isoform down) (Additional file 6: Table S6) and
some of them (25 genes) are included in the list of most
frequently altered genes in T-ALL (13 up and 12 down)
(Additional file 7: Table S7). Up-regulated genes included
MYC, NOTCH2, FLT3, TLX3, TET1, TYK2, LMO2, AKT1,
DNMT3B, HDAC5, HDAC8, KDM7A, and SMARCA1.
Down regulated genes included CDKN2A, CDKN2B,
NSD2, TP53 (TP53–008; Δ133p53 isoform), HDAC6,
IDH1, PHF6, CDH1, EPHA7, FAS and NSD2 (Fig. 2).

Fusion transcripts
Many pediatric cancers are characterized by gene fusion
events that result in aberrant activity of the encoded
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proteins. Interpretation of RNA-Seq data using the pre-
dictive algorithm EricScript (EricScore > = 0.5) allow us
to detect 126 fusion transcripts not previously described
in T-ALL [20] (Additional file 8: Table S8). These fusion
events identified by RNA-Seq may have unique biologic
and diagnostic relevance.

Alternative splicing variants
Relative few significant ATEs have been reported in pre-
vious studies with T-ALL patients [20]. In our case, we
detected novels junctions in FTL3 and KMT2D with a
known acceptor and a novel donor site that may be of
functional consequences in the case of KMT2D gene.

Fig. 1 Schematic representations of the Whole Exome variants predicted to be pathogenic. a.- Distribution of 689 gene variants involving
functional transcripts-isoforms of 308 genes, which met filtering criteria to be considered pathogenic. b.- Mutation validation, of fifth new gene
variants detected in the patient
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ATEs in KMT2D, TCF7 and CNOT6 might also have
negative implications due to the loss of critical domains
(Additional file 9:Table S9).

Proposal of personalized and prioritized drug treatments
Identifying which genetic variants may be targetable by
current therapies in this patient has been accomplished by
using PanDrugs, a new computational methodology that
provides a catalogue of candidate drugs and targetable
genes estimated from a list of gene variants and deregu-
lated genes provided by genomic analyses. This tool con-
siders multiple targetable mutations, deregulations and
the protein pathway-specific activity to prioritize a list of
druggable genes categorized as direct targets, biomarkers
and pathway members [7].
In order to evaluate the relevance of driver mutations,

gene variant annotations of this patient were filtered by
(i) population frequency (GMAF and gnomAD < 0.01),

(ii) consequences of high and moderate impact according
to Ensembl classification and (iii) affectation of canonical
or unknown isoforms (Additional file 10: Table S10). An
approach using the combination of the two general strat-
egies based on gene mutations and significant gene de-
regulation suggested, as the best candidate selection, a
total of 20 prioritized drugs supported by scores nearest
to 1 in both GScore and D-Score values and should there-
fore be seen as the most effective approaches. All these
drugs have the approval to be used in the treatment of dif-
ferent types of cancer (including blood cancer). Most of
them would function as targeted therapy. Genes with
GScore above the Tier’s threshold include mutated
marker genes such as MAP 2 K3, ARID1A, MAP4K5,
PKHD1 and JAK3, which have a genetic status associated
with the drug response but the protein product is not the
drug target itself. Other deregulated genes, such as NF1,
FGFR1, FLT3 and KIT, encode proteins that can be

Fig. 2 Schematic representations of significant deregulated genes.- Distribution of the 6652 deregulated genes. Significant deregulation was
bases on fold changes > 1.5 (up-regulation) or < 1.5 (down-regulation) with respect to expression values in DN control samples
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directly targeted by a drug. Possible compensatory mecha-
nisms of resistance and sensitivity to drugs have been
taken into consideration. (Table 1).

Discussion
Personalized medicine to map the landscape of the
cancer genome and discover new changes linked to
disease is gaining recognition due to limitations with
standard diagnosis and treatment. Identifying which
genetic variants provided by massive sequencing analyses
may be targetable by current therapies presents a diffi-
cult challenge in personalized cancer medicine. In this
scenario, precision oncology requires novel resources
and tools to translate the vast quantity of data generated
to clinical utility [6].
The use of next generation sequencing technologies

have provided an appraisal of molecular alterations that
have the potential to influence therapeutic decisions in-
volving the selection of treatment [29]. To evaluate the
potential of an integrated clinical test to detect diverse
classes of somatic and germline mutations relevant to T-
ALL, we performed two-platform WES and transcriptome

(RNA-Seq) sequencing of tumours and normal tissue.
WES identifies pathogenic sequence mutations including
single nucleotide variations (SNVs) and small insertion-
deletions (indels); RNA-Seq detects gene fusions and out-
lier expression. Combined WES and RNA-Seq, is the
current gold standard for precision oncology, achieved
78% sensitivity [30]. The results of our study emphasize
the critical need for incorporation of NGS technologies in
clinical sequencing.
For this proof-of-principle, our case study was a 16-

year-old boy with an immunophenotype compatible with
a Pro-T acute lymphoblastic leukaemia diagnostic. He
received first-line induction chemotherapy in the condi-
tioning regimen of the PETHEMA group; unfortunately
this treatment was not effective. Allogeneic stem cell
transplantation was done as a second-line therapy to
treat the progression of the disease, in this case with a
favorable result for the patient. Given the degree of
pathogenicity of the disease, these treatments were car-
ried out at the time in which the genetic analyzes that
gave rise to this publication were being carried out. In
our opinion treatment options may change is vital to

Table 1 Therapeutically Proposal.- Best-Candidate therapies on the basis of genes mutated and/or deregulated (UP y genes DOWN)
in which at least one of the genes linked to the drug contains the specific alteration that determines the drug-gene association

Red color indicates resistance. Green color, sensitivity. In bold, genes with the GScore above the Tier’s threshold
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improve cure rates and minimize toxicities in childhood
ALL.
As indicated the PanDrugs analysis of the tumour

sample for this patient identified druggable genetic alter-
ations showing a list of 20 prioritized drugs as the best
candidate selection. Since genes with GScore above the
Tier’s threshold include mutated marker genes such as
MAP2K3 it is not surprising that Trametinib dimethyl
sulfoxide (DScore 0.95), a highly selective inhibitor of
MEK1 and MEK2 activity that controls the Mitogene
Activated Protein Kinase (MAPK) signalling pathway, is
the first recommended option to treat this patient. This
drug has proved to improve overall survival in adult
patients with unresectable or metastatic melanoma with
a BRAF V600 mutation [31] and could be useful for the
treatment of specific T-ALL subsets [23].
Lenalidome (DScore 0.932), Thalidomide (DScore

0.923) and Pomalidomide (DScore 0.901) are immuno-
modulatory drugs that have shown activity against the
activation of tumor necrosis factor (TNF) pathway prob-
ably through the mutation of MAP2K3 in our patient.
This means that control and effectively blocks the devel-
opment of abnormal cells, prevents the growth of blood
vessels within tumors and also stimulates specialized
cells of the immune system to attack the abnormal cells.
These drugs have been used in multiple myeloma treat-
ment but Lenalidomide also for some myelodysplastic
syndromes and mantle cell lymphoma [32].
Other antineoplastics molecular target inhibitors as

Dasatinib (DScore 0.933), which inhibits STAT5B signal-
ling [33], Bosutinib (DScore 0.921), Ponatinib (DScore
0.976) and Nilotinib (DScore 0.927) tyrosine-kinase in-
hibitors designed for the treatment of BCR_ABL positive
neoplasms, mainly in chronic myeloid leukaemia but
also acute lymphoblastic leukaemia, have also off-target
effects on other tyrosine-kinases. However, Dasatinib
could be discarded on the basis of criteria of resistance
(shaded in red in Table 1).
In addition drugs as Ibrutinib [23] (DScore 0.822) and

Acalabrutinib (DScore 0.812) Burton’s tyrosine-kinase
inhibitors used in chronic lymphoid leukemia and
mantle-cell lymphoma shows activity against JAK3 [34],
which is mutated in our patient. Also FLT3 [35], a gene
that is upregulated in our case is inhibited by Sorafenib
a kinase inhibitor drug approved for the treatment of
primary kidney cancer (advanced renal cell carcinoma),
advanced primary liver cancer (hepatocellular carcin-
oma) FLT3-ITD positive AML and radioactive iodine
resistant advanced thyroid carcinoma.
Other drugs already used for T-ALL chemotherapy as

Vinblastine (DScore 0.852) what causes M phase specific
cell cycle arrest by disrupting microtubule assembly and
proper formation of the mitotic spindle and the kineto-
chore or Etoposide (DScore 0.892) witch forms a ternary

complex with DNA and the topoisomerase II enzyme
(which aids in DNA unwinding), prevents re-ligation of
the DNA strands, and by doing so causes DNA strands
to break [3, 36] are also suggested by PanDrugs thus
supporting the reliability of this bioinformatics applica-
tion (see Additional file 11: Table S11 for further
details).

Conclusions
It is well known that complex diseases as cancer should
not be considered as a single entity. Personalized medicine
is a therapeutic approach involving the use of individual’s
information (genetic and epigenetic) to tailor drug therapy
instead of one-size-fits-all medicine. The current approach
to drug development assumes that all patients with a par-
ticular condition respond similarly to a given drug. This
paper provided a framework for T-ALL patients based on
the use of PanDrugs to integrate whole exome sequencing
and RNA-Sequencing data into the proposal of a priori-
tized list of drugs, which could be clinically actionable in
the context of a personalized medicine of precision. This
approach is toward truly precision cancer care. Further-
more drugs directed to the activity of the surrounding
interactors in the biological pathway of a mutated gene
could be used in combination to avoid possible compensa-
tory mechanisms of resistance to drugs. It means that pa-
tients with different types of cancer could receive similar
treatments on the basis of the genomic diagnosis. Of note,
most of the proposed drugs in this T-ALL case are not
being yet considered in the clinical practice of this type of
cancer, opening up the approach of new treatment possi-
bilities. At present, many of the proposed drugs are ap-
proved on the basis of clinical trials on large populations
in tumours other than T-ALL so the risk of failure is
lower, because the drugs have already been found to be
safe, the time frame for drug reprofiling can be reduced,
because most of the preclinical testing, safety assessment
and formulation development will be completed. However
regulatory considerations, organizational hurdles and pa-
tent considerations must be taken into account. Repurpos-
ing of these drugs for T-ALL would require validation of
the results of treatments in in vitro models that have the
same genetic characteristics as the samples of the patients
to be treated as well as in vivo patient-derived xenografts
and eventually in trials that allow repositioning of the
proposed drugs.
The speed, accuracy and accessibility of next-generation

sequencing (NGS) have driven the arrival of precision
medicine, its mandatory to assume that this revolution
must be transferred to its applicability to patients. Bio-
informatics tools such as Pandrugs will allow, using the
information obtained by the sequencing platforms, to
improve the effectiveness of the treatments, reducing
unwanted side effects and favoring survival rates.
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