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Immunoglobulins or antibodies are the main effector molecules of the B-cell lineage and

are encoded by hundreds of variable (V), diversity (D), and joining (J) germline genes,

which recombine to generate enormous IG diversity. Recently, high-throughput adaptive

immune receptor repertoire sequencing (AIRR-seq) of recombined V-(D)-J genes has

offered unprecedented insights into the dynamics of IG repertoires in health and disease.

Faithful biological interpretation of AIRR-seq studies depends upon the annotation of raw

AIRR-seq data, using reference germline gene databases to identify the germline genes

within each rearrangement. Existing reference databases are incomplete, as shown by

recent AIRR-seq studies that have inferred the existence of many previously unreported

polymorphisms. Completing the documentation of genetic variation in germline gene

databases is therefore of crucial importance. Lymphocyte receptor genes and alleles are

currently assigned by the Immunoglobulins, T cell Receptors andMajor Histocompatibility

Nomenclature Subcommittee of the International Union of Immunological Societies (IUIS)
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and managed in IMGT®, the international ImMunoGeneTics information system® (IMGT).

In 2017, the IMGT Group reached agreement with a group of AIRR-seq researchers

on the principles of a streamlined process for identifying and naming inferred allelic

sequences, for their incorporation into IMGT®. These researchers represented the

AIRR Community, a network of over 300 researchers whose objective is to promote

all aspects of immunoglobulin and T-cell receptor repertoire studies, including the

standardization of experimental and computational aspects of AIRR-seq data generation

and analysis. The Inferred Allele Review Committee (IARC) was established by the

AIRR Community to devise policies, criteria, and procedures to perform this function.

Formalized evaluations of novel inferred sequences have now begun and submissions

are invited via a new dedicated portal (https://ogrdb.airr-community.org). Here, we

summarize recommendations developed by the IARC—focusing, to begin with, on

human IGHV genes—with the goal of facilitating the acceptance of inferred allelic variants

of germline IGHV genes. We believe that this initiative will improve the quality of AIRR-seq

studies by facilitating the description of human IG germline gene variation, and that in

time, it will expand to the documentation of TR and IG genes in many vertebrate species.

Keywords: immunoglobulin, allelic variation, inference, AIRR-seq, IGHV, V(D)J rearrangement

INTRODUCTION

Immunoglobulins (IG) are the main antigen receptors and
effector molecules of the B cell lineage, and are expressed either
as a component of the membrane-bound B cell receptor (BCR)
or as secreted antibodies. They are encoded by large numbers
of variable (V), diversity (D), and joining (J) genes, which
recombine in developing B cells to generate rearranged V-(D)-
J genes. This process, referred to as V-(D)-J rearrangement,
occurs at the DNA level and leads to an IG V domain
repertoire of immense diversity. The study of such repertoires
has recently been revolutionized by high-throughput sequencing
(1–4), and this is termed Adaptive Immune Receptor Repertoire
(AIRR) sequencing (AIRR-seq). The technical and biological
interpretation of AIRR-seq data is facilitated by databases
containing reference sequences of all known germline genes
(Figure 1), but AIRR-seq studies have demonstrated that
these databases are presently far from complete (5–8). This
compromises analysis of AIRR-seq data in many ways. For
example, it can lead to the inaccurate determination of gene
utilization frequencies, and the extent to which sequences have
been affected by the process of somatic point mutation.

The first complete nucleotide sequence of a human germline
heavy chain variable gene was reported in 1980 (9). In 1989
at the Human Gene Mapping (HGM) (10) Workshop in New
Haven, starting with the human T cell receptor gamma (TRG)
locus genes as a paradigm, the variable, diversity and joining IG
and TR genes were officially acknowledged as “genes” just like
conventional genes, and under the HGM auspices, IMGT R©, the
international ImMunoGeneTics information system R© (IMGT)
was created by University of Montpellier and the Centre National
de la Recherche Scientifique (CNRS) (10). Ten years of IMGT
biocuration on sequences from human genomic cosmid and

artificial chromosome libraries were key to the assembly of the
IG loci and their annotation (11–13). The IG and TR gene
names, available on the IMGTweb site since 1995, were approved
by the HUGO Nomenclature Committee (HGNC) in 1999 and
are managed by the IMGT Nomenclature Committee (IMGT-
NC), the IG, TR and MH nomenclature subcommittee of the
International Union of Immunological Societies (IUIS). The
functional and open reading frame (ORF) of approved human
genes were published with their alleles (203 IG and 168 TR) in
two FactsBooks in 2001 (14, 15), and the number of sequences
now cataloged by IMGT is shown in Table 1.

With this description of the human IG germline genes, the
gene identification and mutation description became an integral
part of the study of V-(D)-J gene rearrangements. Over the next
20 years, hundreds of thousands of expressed V-(D)-J genes were
reported, and dedicated tools and databases were established
to facilitate research (10, 16, 17). It soon became possible to
compile datasets of hundreds of rearranged human V-(D)-J gene
sequences that could be used to analyse the process of V-(D)-J
recombination (18, 19). These analyses also demonstrated that
such datasets could be used to identify previously unreported
allelic variants of known germline IG genes (20).

In 2009, AIRR-seq data were reported for the first time
(21, 22). Even in the earliest AIRR-seq studies, thousands of
independent V-(D)-J rearrangements could be identified from
each subject investigated, and this facilitated the detection of
previously unreported polymorphisms (5–8) (Figure 2). New
allelic variants of IGHV genes were detectable in these AIRR-
seq data because the crucial nucleotides that defined these alleles
showed up as conspicuous patterns of shared mismatches within
alignments to the known germline V gene sequences.

Utilities have now been developed to streamline the
identification of allelic variants, and to assign measures of
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FIGURE 1 | The value of germline IGHV gene inference for detailed AIRR-seq annotation and analysis. (A) Germline genes of an individual [here represented by a very

limited set of three IGHV genes (A, B, C), and a small number of IGHD (yellow/brown) and IGHJ (purple) genes] are rearranged in cells of the B cell lineage. Following

stimulation with antigen many sequences undergo somatic hypermutation and acquire base substitutions (marked *) that may impact subsequent data analysis. An

investigated subject’s B and plasma cells are collected and typically the cells’ transcriptomes are sequenced (e.g., using Illumina MiSeq technology) to generate reads

that can be computationally processed. (B) A germline IGHV gene database [here represented only by three genes (A, B, C)] will facilitate data analysis, though it is

possible to infer genes and alleles without reference to a starting database. The database could be a collection of all known germline IGHV gene alleles (I), or an

individualized subset of these (II) that best fits the set of sequence reads that are to be analyzed. Finally, computationally inferred novel germline IGHV gene alleles can

be introduced into the individualized germline gene database (III) to even better account for the diversity observed in the experimentally generated sequence dataset.

(C) Each sequence read is binned to the most appropriate germline gene/allele available in the used germline gene database. If germline gene alleles are present in the

database but not in the subject’s genotype, some reads will be binned to them as a consequence of base changes introduced by somatic hypermutation (or

sequencing errors), resulting in a partial incorrect assignment of germline gene allele origin and consequently of the associated analysis of the mutational pattern.

Detailed annotations of part of the sequences are provided for reads binned to alleles of gene C. In this example, the investigated subject has an allele (C*03) of this

gene that is not represented in the original pre-existing germline IGHV gene database. Two bases that differ between one or several alleles in the database and C*03,

and thus may be misinterpreted in mutational analysis, are boxed. Unless valid inference of novel germline genes is also performed, the mutational analysis will

substantially misinterpret the mutational pattern (highlighted in red letters/dots) targeting this gene. Dots indicate identity to the germline gene to which it is compared.

confidence to each inference (23–27). These utilities employ
a variety of inference methodologies, as they have been
designed for the analysis of different kinds of data. IgDiscover,
for example, is best suited to the analysis of relatively
unmutated sequences (23), whereas TIgGER (24) and partis
(26) are specifically designed to analyse data that include both
unmutated and mutated sequences. To date, 58 sequences
have been inferred in this way (see Table 1), and can
be found in the Immunoglobulin Polymorphism database
(IgPdb) (http://cgi.cse.unsw.edu.au/~ihmmune/IgPdb/).

The identification of these previously unreported
polymorphisms has remained unknown to many researchers
because such variants lie outside the scope of the widely-used
IMGT/V-QUEST reference directory of germline sequences
(28). This emerged as an early concern of the AIRR Community
(https://www.antibodysociety.org/the-airr-community/), a
grassroots organization that was founded in 2015 to address
the challenges surrounding the generation, analysis and use of

AIRR-seq data (29). In 2018, this community formally joined
The Antibody Society, a non-profit trade association dedicated
to the field of antibody research and immunotherapeutics.

In 2017, the AIRR Community and IMGT agreed to an
approach for evaluating the veracity of inferred germline-gene
sequences, and for the incorporation of validated sequences into
the IMGT Reference Directory. The Germline Database (GLDB)
Working Group of the AIRR Community was formed to develop
the necessary policies and procedures, and the Inferred Allele
Review Committee (IARC) was formed to critically evaluate
submitted inferences.

Here we present challenges faced in inferring novel IGHV
sequences from AIRR-seq data, and outline strategies for their
mitigation. The process for submitting inferred sequences to the
IARC is also described. It is our aim that this initiative of the
AIRRCommunity will contribute to amore complete description
of human genetic variation, thereby improving the quality of
AIRR-seq studies. Human IGHV genes are the focus of this
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TABLE 1 | Numbers of human IGHV genes and alleles reported in the IMGT

repertoire and in the IgPdb database of inferred alleles.

IMGTa IgPdbb

Subgroup Genes Alleles Genes Alleles

IGHV1 12 45 8 21

IGHV2 4 29 2 4

IGHV3 30 110 11 18

IGHV4 11 79 8 13

IGHV5 2 9 1 2

IGHV6 1 2 0 0

IGHV7 2 6 0 0

a IMGT genes and allele counts include sequences reported as Functional sequences and

Open Reading Frames. The IMGT repertoire was accessed on 11/02/2019.
bSequences in IgPdb that have only been identified by genomic sequencing, and

sequences that extend previously reported but truncated sequences are not included.

Eleven sequences (IGHV1-2*05, IGHV1-2*06, IGHV1-8*03, IGHV1-69*15, IGHV1-69*17,

IGHV2-70*15, IGHV3-11*05, IGHV3-11*06, IGHV3-13*05, IGHV3-43D*04 and IGHV3-

64D*06) that were first discovered by inference but are now present in the IMGT repertoire

are also not included here.

discussion, though the challenges surrounding the inference of
other IG and TR germline genes in human and non-human
species are likely to be similar. We anticipate that over time this
initiative will expand to the documentation of IG and TR genes
in all vertebrate species.

GERMLINE GENE INFERENCES:
CHALLENGES, AND STRATEGIES FOR
MINIMIZING ERRONEOUS INFERENCES

Reports of inferred antibody sequences have not been
immediately and universally accepted, in part because
alternative explanations can account for observed nucleotide
differences in IG genes (see Figure 2). Uniquely, IG genes within
activated B cells undergo secondary diversification by somatic
hypermutation (SHM) (30). During an immune response, an
IGHV gene with a 300 bp length will commonly accumulate
15–20 somatic point mutations (31, 32) and much higher levels
of mutations can be observed (33).

The datasets of Sanger sequences that underpinned the first
inferred IGHV sequences were very small—in some cases, just
six or seven sequences (20). This raised the possibility that these
sequences were mutated versions of known alleles. Importantly
though, many of the early inferences have now been confirmed by
genomic sequencing (20, 34, 35), lending support to the validity
of the inference process. Today, the availability of large AIRR-seq
datasets gives much greater confidence in the inference process,
but challenges remain. These challenges have their origins in the
biology of the B cell and of the antibody repertoire, as well as
in technical issues affecting the preparation and sequencing of
recombined V-(D)-J gene libraries.

The following strategies and tests will aid in the identification
of real allelic variants while minimizing the reporting of
erroneous inferences.

• Inferences must be made from AIRR-seq data of the highest
quality. Experimental strategies to ensure such quality in
library generation and sequencing of IG transcripts are now
well-established (36, 37), and the assessment of the quality of
library generation and of sequencing, using synthetic mRNA
spike-ins, is a strategy that can build confidence in inferences
made from a dataset (38–41). Proof-reading enzymes with
minimal error rates should always be used (42), and putative
polymorphisms should be assessed in light of the different
types of sequencing errors (base insertions, deletions and
substitutions) that are associated with the different sequencing
technologies (43). Such errors can be specifically enriched at
particular sequence motifs (44), and if these motifs are present
in a germline gene, the errors may suggest the existence of a
novel allele (7, 45).

• A vital step in the pre-processing of raw sequence data is the
removal of reads with a low average quality, but Phred scores
should also be assessed for critical nucleotides in individual
reads that have contributed to a particular inference. Poor
read quality of single nucleotides may result in erroneous
inferences (7, 45).

• Correction of sequencing errors and PCR artifacts can be
achieved by the use of unique molecular identifiers (UMI).
UMIs are introduced during library preparation, labeling
each individual transcript prior to amplification. Subsequent
consensus building of reads employing identical UMIs can
largely remove erroneous bases (46). Technical or biological
replicates can also be used to validate sequences and increase
confidence that artifacts have been properly discarded.

• Incomplete PCR amplifications create problems. An
incompletely amplified product generated in one cycle
may later anneal to a similar but distinct template, resulting
in the amplification of a hybrid sequence (Figure 3) (47, 48).
Such chimeric amplification products are often observed
in datasets of IG transcripts (49), and unless appropriate
filters are applied to AIRR-seq data, these chimeras can
masquerade as novel alleles. Preparing libraries with
minimally detectable PCR bands helps reduce the problem of
chimerism (49, 50), but this strategy is incompatible with some
research objectives.

• The detection and elimination of chimeric sequences can
be a valuable step in the pre-processing of data. Manual
identification of chimeric sequences involves assessment of
the distribution of apparent mutations along the length of a
sequence. Chimeric sequences often appear to have somatic
point mutations clustered at one or the other end of the
sequence, and utilities have been developed to automate the
detection of sequences with such a non-random distribution
of apparent mutations (51).

• Very large AIRR-seq datasets are required if variants of
some IGHV genes are to be identified. Reports from analysis
of peripheral blood B cells show that usage frequencies of
particular IGHV genes in V-(D)-J rearrangements can be as
high as 20% for IGHV3-23∗01 (52), but as low as 0.01%
for rearranged genes incorporating IGHV3-13, IGHV4-28,
or IGHV7-81 (5). Rarely utilized IGHV genes will only be
present in convincing numbers in the very largest V-(D)-J
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FIGURE 2 | Inference of polymorphic IGHV gene alleles from immunoglobulin repertoire sequencing datasets. The genes that encode immunoglobulin heavy chain

variable regions are generated through genomic recombination of single genes of three different types; variable (IGHV), diversity (IGHD), and joining (IGHJ). Each of

these gene types are present in the genome as a set of tandem genes that are both polymorphic and polygenic and include approximately 50 IGHV genes, 27 IGHD

genes and 6 IGHJ genes. At the mRNA level, splicing joins the rearranged V-(D)-J gene with the IGH constant region genes that confer the isotype to the IG.

Repertoire sequencing studies amplify mRNA transcripts, via cDNA, by methods such as targeted PCR using leader region forward primers coupled with reverse

primers specific for the IGHC or by using 5
′
RACE primed from the IGHC genes. To be suitable for inference, amplification protocols must capture the complete

V-(D)-J rearranged coding region and cannot use primer that bind within the V region. Amplification strategies may add unique molecular identifiers (UMIs) as part of

cDNA synthesis to tag individual RNA transcripts. High throughput sequencing of a V-(D)-J gene library can generate many thousands of reads for single subjects.

Reads are quality assured (QA) to remove sequencing errors; for example, reads with low quality (phred) scores, and PCR artifacts such as hybrid amplicons that have

resulted from single stranded DNA from previous PCR cycles acting as primers in future cycles creating hybrid or chimeric templates that are derived from two original

amplicons. For inference, IGH from clonally expanded B cells, which have each originated from a single progenitor cell must be reduced to a single representative

sequence (for example, the clone member with the fewest mutations) to prevent over-counting. IGH carrying the same UMI can greatly increase confidence that the

V-(D)-J rearrangement was in the original pool. In the absence of UMIs, read counts for unique IGH can provide some confidence. Finally, V-(D)-Js are aligned to

germline reference datasets that report alleles for the population. Shared “mismatches” relative to the closest germline gene among many sequences from the same

subject at position(s) that are not motifs for somatic hypermutation (SHM) in sequences expected to be unmutated (naïve B cells) or have low mutation (IgM+) can be

suggestive of the putative allelic variant in the subject’s genotype. When a polymorphism is inferred at a heterozygous locus, confidence in the inference can be greatly

increased if the putative allele is considered in the context of any other expressed alleles for the gene, with approximately equal expression of the two alleles, and the

haplotype, which can phase the gene alleles to their respective chromosomes.

datasets. Large datasets are also needed if the final nucleotides
of a germline IGHV sequence are to be determined. The
uncertainties surrounding the nucleotides at the 3′ end of
the sequence are a consequence of the variability of the gene
ends, produced by the processes of exonuclease removal and N
nucleotide addition. Biases in these processes can result in the
generation of relatively common motifs that may be mistaken
for germline-encoded nucleotides (53–56). Of special note, the
last base of a germline sequence may not be the most common
base in rearranged sequences.

• Somatic point mutations accumulate in IG-encoding genes at
a rate of about one mutation per 1,000 bp per cell division
within the germinal center reaction (57, 58). The existence of
mutational hotspots (59–61) that can target specific germline
IGHV genes (62, 63) means that it is inevitable that there will
be some sharedmutations in any dataset that includes mutated
sequences. Some IGHV genes have positions that can be
mutated in >30% of class-switched sequences (24). Very high
levels of mutation can occur at positions far removed from

the regions encoding complementarity determining regions
(CDR) of an IGHV sequence, and even at positions outside
conventional mutational hotspots (62, 64). For these reasons,
inferences of new germline IGHV genes using datasets of
mutated sequences are more likely to be erroneous.

Somatic point mutations may be mistaken for germline-encoded

nucleotides, but this issue is substantially reduced if sequences

are derived from less-mutated cell populations. This can be

achieved by the amplification of IgM-encoding transcripts

through the use of constant region-specific primers. The issue

is partially addressed by the amplification of sequences from

sorted B cells displaying a naïve phenotype. More highly mutated
datasets can, however, still be the source of reliable inferences
if appropriate analytical tools are used. Both the TIgGER and
partis software suites, for instance, are designed to use patterns
of apparent mutation to infer novel alleles (24, 26). While
taking different overall approaches, they both use regression-
based statistical tests to identify polymorphisms at positions that
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FIGURE 3 | Likely principle of generation of hybrid molecules through cross-over caused by incomplete products during previous PCR cycles (A), and examples of

inferred sequences (B) that may have an origin in cross-over events during the library generation process. Shown are the inferred sequences (middle) and the parts of

other germline sequences that are inferred to be present in the same subject and that through an artifactual cross-over event may have created the inferred novel

allele. The region in which cross-over events may have occurred is shown in yellow. The 5′- and 3′- sequences unique to one of the potential donor sequences are

shown in blue and green, respectively. Mismatches between the two potential donor sequences are highlighted in orange. The frequency of reads associated with

each inference is shown after the name, indicating that some but not all of these inferences may be removed by cut-offs defined in terms of allelic ratios. Base

numbering is according to the IMGT numbering scheme.

appear to be recurrently mutated, in sequences that are otherwise
relatively unmutated.

• A useful test of an inferred allelic variant is to consider the
sequence in the context of other alleles of the gene that may
be present in the dataset. For single-copy genes, only two
alleles should be present in the genotype of an individual. If
an inference suggests that three alleles of a particular gene
are present in an individual genotype, the inference should be
further investigated. More than two named variants of some
genes can be present in an AIRR-seq dataset for gene names
without genomic information on the haplotype copy number,
as a result of copy number variation (CNV) (5, 6, 8, 35, 46, 65).
It is highly likely, for example, that some named allelic variants
of the IGHV1-69 gene are actually variants of the duplicate
IGHV1-69D gene. Genotypes may also include three or more
alleles of one or other of the highly similar IGHV4-4, IGHV4-
59, and IGHV4-61 genes, for the genomic location of some
sequences associated with these genes is uncertain (7, 45,
52, 66). It seems likely, for example, that the IGHV4-59∗08
sequence in some subjects is actually a variant of the IGHV4-
61 gene (66). In view of these complications, an evaluation
of some inferences must be made with reference to alleles
of several genes that may be present in the genotype of the
individual. Genomic data of a single cell or individual will

remain necessary to unambiguously assign expressed genes
with CNV.

• Alleles at heterozygous loci are usually expressed at similar

frequencies (52), while inferred sequences suggested by

sequencing errors or somatic point mutations are usually
present at relatively low frequencies. The calculation of the

percentage of alignments to a gene that involve the inferred

allele is therefore a simple test that can be used to identify
false inferences. Although the IARC will affirm inferred

alleles that are observed in just 10% of all alignments to a

particular gene, additional analysis may be required to support

inferences that imply expression at a low level. We recognize
that this will make it more difficult to infer some alleles.

CNV, mentioned above, will also complicate the interpretation
of this measure of allele expression, whereas recombination
signal (RS) sequence variation and other non-coding region
variation could lead to abnormal allele expression levels (67).
For all these reasons, the allele expression test has limitations.

• The validity of an inference can be demonstrated if all V-(D)-
J sequences containing the inference in an AIRR-seq dataset
are associated with just one of the two chromosomes of
the individual. Such validation can be done using haplotype
analysis as outlined in Figure 4. This is a method that was
developed for human AIRR-seq studies (6, 53, 68), and it is
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FIGURE 4 | Principle of inference haplotyping defining the AIRR-encoding genes associated with each of the chromosomes carrying the relevant locus, here

demonstrated by genes encoding human IG heavy chains. Germline genes involved in V-(D)-J rearrangements are from genes harbored on each chromosome only

(i.e., in cis), as illustrated with a small number of the genes that actually populate the IGH locus (A). It is possible, using large sequence datasets, to computationally

define the association of each IGHV allele to one of the two haplotypes using their association to e.g., different alleles of an IGHJ gene (commonly IGHJ6), if such

different alleles are present in the genotype. These alleles serve as anchors in the haplotyping process. An IGHV allele that resides on both chromosomes will

rearrange to both alleles of the heterozygous IGHJ gene, whereas IGHV alleles that reside on only one chromosome should primarily be found rearranged to one of

the alleles of the heterozygous IGHJ gene (C). In the case of haplotype differentiating expression of IGHD genes (or allelic differences in one or several IGHD genes)

these differences can similarly be used as anchors to visualize IGHV allele distributions between haplotypes (B). Such inference can be used to raise confidence in

specific allele calls, as incorrectly inferred alleles are likely to associate with the same haplotype as another allele of the same (or a very similar allele) that also exist in

the haplotype. This is exemplified here by the haplotyping of an artifactual inference of a novel allele (IGHV1-2*variant) that has a similar association to haplotypes as

IGHV1-2*02. [For specific examples, see Kirik et al. (22, 53)].

increasingly being used to support reported inferences (7, 45,
52). Haplotyping is only possible for the validation of IGHV
gene inferences in subjects who are heterozygous at IGH loci
beyond the IGHV locus region. Anchors for the haplotype
inference of IGHV genes are most commonly IGHJ6 alleles
(IGHJ6∗02 and IGHJ6∗03), but heterozygosity at the IGHD2-
8 and IGHD2-21 loci can also allow them to be used (7,
45, 52, 68). It is likely that novel long-read high-throughput
sequencing platforms will soon make it possible to use IGH
constant region genes as haplotype anchors as well.

SUBMISSION OF INFERENCES AND
DATA DEPOSITION

IARC and the GLDB WG strive to provide the community with
open, transparent and reusable information on inferred genes. To
this end, a web-based service termed Open Germline Reference
Database (OGRDB) has been set up to facilitate the submission
and evaluation of inferences as well as the subsequent retrieval
of inferred genes accepted by IARC. In addition, the inferred
sequence and the NGS data supporting it have to be deposited
in general purpose sequence repositories of the International

Nucleotide Sequence Database Collaboration framework to allow
re-analysis by third parties and ensure long-term availability of
the data. The detailed workflow for data submission is available
at OGRDB (https://ogrdb.airr-community.org). In brief, it covers
the following steps:

• Verification that the complete raw data of the underlying

experiment is available via the Sequence Read Archive (SRA).
If possible, the SRA and associated metadata records should

be compliant with the Minimal Information about Adaptive

Immune Receptor Repertoire (MiAIRR) standard (69).
• Deposition of reads supporting the gene inference to SRA.

Note that this submission is in addition to the publication of
the complete read data of a given set of experiments.

• Submission of the inferred sequence to GenBank/TPA,

depending on the origin of the data on which the inference
is based:

a. First-party data (the inference is performed on one’s own
datasets) is submitted to GenBank.

b. Third-party data (inference performed on datasets

produced by others) is submitted to GenBank’s Third Party
Annotation (TPA) section.
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• Submission of the inferred sequence and the associated

information about the inference procedure as well as the
accession IDs of the INSDC submission to IARC via the
OGRDB interface.

Each inference must be made from data that originates from
a single individual. The standardized submission protocol
incorporates metadata related to the individual, as well as to the
generation, processing and analysis of the individual’s sequences.
It also provides data that gives the genotypic context in which
an inference should be assessed, and helps identify confounding
factors that should be considered.

Currently, data used for germline IGHV gene inference
are often generated from PCR-amplified IG transcripts using
Illumina’s MiSeq technology, as it provides sufficient read length
and depth. The IARC will, however, consider inferences and
determinations made in other ways. The IMGT-NC requires
genomic sequencing of IGHV genes, including the complete
leader sequence and associated Recombination Signal sequence
(V-RS). Genomic sequences that are not suitable for submission
to IMGT-NC will be considered by the IARC if they include the
complete IGHV coding region. Partial genomic sequences may
also be considered by IARC as evidence in support of an inference
from AIRR-seq data. Direct RNA sequencing (70) may also come
to play an important role in defining germline IGHV genes in
the future.

Inferences must be made from full-length sequencing reads.
In contrast, many studies employ primers that anneal within
the IGHV sequences themselves, such as the well-validated
BIOMED-2 primer set (71). Although sequences generated in
this way may be suitable for many research purposes, the partial
sequences that can be inferred from such datasets are not suitable
for submission to IARC. Submitted sequences must be full-
length V-REGION sequences, from base 1 to at least base 318
of the IGHV sequence, according to the IMGT numbering
system. Inferences generated using primers that anneal within the
sequence should not be submitted to the IARC.

Inference may be carried out using a diversity of
computational methodologies. The IARC is agnostic to the
investigator’s choice of inference methodology as long as it is
validated, published, publicly available, and well-documented.

We believe that the identification of dependable, curated
gene sets, to which this effort contributes, is a public good. To
that end, affirmed sequences, and the submissions that support
them are published by IARC under the Creative Commons
CC0 license (https://creativecommons.org/publicdomain/zero/
1.0/legalcode), allowing their use for any purpose without
restriction under copyright or database law.

THE EVALUATION AND
DECISION-MAKING PROCESS

The affirmation of submitted inferences requires the unanimous
support of the IARC, and this may only be possible after
the provision of additional information by the Submitter. The
deliberations of this Committee may differ depending on the

biological context in which particular sequences are observed and
on the process of inference. Particular attention will be paid to:

• The frequency of V-(D)-J rearrangements that include the
inferred sequence. Inferences that appear to be very rarely
represented in the IG repertoire are at high risk of being
incorrect inferences. To guard against this, inferences of
sequences that are seen at a frequency of 0.05% or less will not
generally be affirmed.

• The number and frequency of unmutated sequences
representing the inferred sequence.

• The presence of the inferred IGHV sequence in a diversity
of V-(D)-J rearrangements. The sequence needs to be seen in
association with different IGHJ genes and in rearrangements
with varying CDR3 lengths. This guards against the possibility
that sequences that support the inference are clonally-
related sequences.

• The number of alleles assigned to the relevant gene or to the
set of highly similar genes.

• The distribution of reads between an inferred allele and other
alleles of that particular gene, calculated using unmutated
sequences. Inferences with low expression frequencies may
require additional supporting evidence.

• The outcome of haplotype analysis, where such analysis
is possible.

• Evidence that PCR artifacts, such as cross-over events
involving other genes and alleles of the subject’s genotype,
do not explain the inference. Evidence could include a

demonstration of the absence of cross-over effects in

sequencing libraries of germline gene standards analyzed
in parallel to the subject’s expressed IG repertoire (38), or

demonstration of the systematic identification and removal
of sequences with evidence of cross-over effects prior to
inference, or analysis of the extent of shared CDR3 sequences
between different V-(D)-J gene rearrangements.

• Evidence supporting the reported 3′-end of an inferred

germline IGHV gene. The final base of an IGHV gene
sequence cannot be inferred with confidence (55, 56) unless

additional investigations are undertaken. If a sequence is

reported up to and including base 320, the final base will only
be affirmed by IARC if supporting analysis is provided.

• Sequencing of part of an inferred allele, from non-B cell
genomic DNA.

An assessment will result in one of three outcomes. If a

sequence is affirmed as a valid inference, it will be assigned an
IARC sequence name and a summary of evidence in support

of the inference will be documented in an Inferred Sequence
Documentation Sheet. This will be made publicly available at the
AIRR community website. It will also be reported to IMGT-NC
with an individual GenBank accession number for inclusion in
the IMGT Reference Directory. When a sequence is affirmed for
the first time, it will be reported as a Level 1 Sequence. If affirmed
a second time, it will be reported as a Level 2 Sequence, and if
affirmed a third time, it will be reported as a Level 3 Sequence.
It is important that researchers continue to notify the IARC of
later identification of Level 1 and Level 2 Sequences, so that
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they can rise to higher tiers. This will promote acceptance of
the inferences within the research community. The IARC will
not consider additional inferences of a sequence following its
elevation to Level 3.

If evidence in support of a sequence does not reach the level of
certainty required for immediate affirmation, the sequence may
remain “under review”. An Inferred Sequence Documentation
Sheet will be completed, and the sequence will be assigned an
IARC name, but it will not be publicly reported. Such sequences
will be re-assessed if additional supporting information becomes
available, or if identical inferences are later submitted to IARC. If
a later inference supports the elevation of the sequence to Level
1, the original inference will be credited in the documentation of
the sequence.

If there is insufficient evidence to allow a sequence to remain
“under review”, details of the submission will be retained by
IARC, but the submission will not be a part of any future re-
assessments.

Inferred alleles will be named using a modification of the
IMGT nomenclature (72), incorporating:

• the gene locus (e.g., IGHV, IGKV, IGLV for genes of heavy,
kappa light, and lambda light chain loci, respectively);

• the most similar gene at the time of submission in the
IMGT/V-QUEST reference directory (28), or in the case of
multiple, most-similar genes, using the name with the lowest
alphanumeric value;

• an allele number, preceded by an “i” to indicate its discovery
by inference. Assigned allele numbers for any gene will be
consecutive, and the first inferred allele will be designated the
∗i01 allele (e.g., IGHV1-2∗i01).

A given allele number for a specific gene will be uniquely
associated with a specific sequence. If the sequence is
incorporated into the IMGT Reference Directory, it will be
assigned a new name by IMGT-NC based on the chronological
rule and reported to the IUIS/IMGT Nomenclature Committee.
The inferred allele name will not be reused and records of the
inference will be permanently maintained. Similarly, if evidence
emerges suggesting that a particular inference was made in
error, the sequence will be removed from any listing of affirmed
sequences, but the name and documentation sheets will remain
permanently associated with the sequence.

Germline gene databases currently include entries that are
incomplete at the 5′ and/or the 3′ end. The inference process
could allow the extension of incomplete sequences, as is the
case with the sequence IGHV4-4∗i01 that is reported here
(see Figure 5). A sequence of this kind could be a longer
representation of the previously reported allele, or it could be a
very similar sequence that varies from the original sequence at its
ends. The IARC will not attempt to resolve this ambiguity and
will simply assign an inferred allele name to the new sequence.

AFFIRMED NOVEL ALLELES

Using the recommendations and policies outlined above, as of
August 31, 2018, the IARC has approved five novel alleles at Level
1 (Figure 5) and nine inferred alleles remain “under review” (data

not shown). Four of the inferred alleles were affirmed from data
submitted by the data-generating author (73), of which three
were from one donor and one was from a second donor.

IGHV1-2∗i01 differs from IGHV1-2∗02, its closest matching
allele from IMGT, by a single substitution (t163c), resulting in an
amino acid change (W55R). Exact matches to the inference were
seen in 2.19% of those donor sequences that were determined
to be unmutated rearrangements. A second allele for IGHV1-
2 (IGHV1-2∗04) was observed within the subject’s genotype,
however IGHV1-2∗i01 was seen in 71% of alignments to IGHV1-
2. This sequence has been previously described in multiple
subjects from AIRR-seq (5, 7, 24), and from genomic DNA (8)
and it is listed in the IgPdb database as IGHV1-2∗p06. Since this
inference was affirmed by IARC, it has been confirmed using
full-length genomic DNA sequencing and was recently accepted
(24 July 2018) by IMGT-NC as IGHV1-2∗06 (Report 2018-1-
0724) (http://www.imgt.org/IMGTindex/IMGT-NC.php).

IGHV1-3∗i01 was present in 1.17% of the donor’s sequences,
and differs from IGHV1-3∗01 by a single nucleotide (g172a),
resulting in an amino acid change (A58T). This sequence has not
been observed previously.

IGHV4-30-4∗i01 was observed in 1.3% of the donor’s
sequences, and also has a single nucleotide difference (t120c)
compared to its closest matching IMGT allele, IGHV4-30-4∗01,
however this did not result in an amino acid change. It has been
observed in multiple individuals from genomic DNA sequencing
(8) and in a single individual from AIRR-seq (63). It was
previously listed as IGHV4-30-4∗p08 in the IgPDb database.

IGHV4-4∗i01 was observed in 0.6% of the donor’s sequences.
It may be an extension of the existing IGHV4-4∗03 allele
described in IMGT, involving bases 312-319.

The last of the five affirmed alleles, IGHV3-43D∗i01, was
submitted as a third party annotation dataset (74) and although
it was observed at a low frequency (0.07%) in the subject’s
repertoire, it could be accepted as a Level 1 sequence. It has
been observed previously in multiple individuals from AIRR-
seq studies (7), and as genomic DNA (8), and is listed as
IGHV3-43∗p04 in IgPdb. It has also been observed in a fosmid
clone (GenBank: AC242184) that was not annotated in detail.
At the time of its acceptance by IARC, this sequence differed
from its closest matching IMGT sequence IGHV3-43D∗01 (now
renamed as IGHV3-43D∗03) by a single nucleotide (c195a),
however this does not result in an amino acid change. Since
the affirmation by IARC of this novel inferred allele, it has been
accepted (October 4, 2018) by IMGT as IGHV3-43D∗04, based
on genomic evidence.

For all five affirmed alleles, the genotype and allele frequencies
were within the IARC guidelines. Where possible, haplotype
analysis confirmed the validity of the inferences, and cross-over
artifacts were ruled out. The Inference Documentation Sheets for
these inferred alleles can be found at the OGRDBwebsite (https://
ogrdb.airr-community.org).

CONCLUSION

Germline IGHV, IGHD, and IGHJ genes constitute the building
blocks of IG V domain diversity, and so have a direct bearing
on the functional B cell immune response. The formation of
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FIGURE 5 | Affirmed inferred alleles. (A) Table of inferred alleles. Shown are the names given to the inferred sequences by IARC; the closest matching IMGT alleles;

the genetic differences observed in the inferred allele relative to the IMGT allele; any other name that has previously been associated with this sequence, if previously

identified; the genotype frequency of the inferred sequences within the donor’s genotype and the allele percentage of the inferred allele based on all of the alleles within

the donors genotype for that particular gene. (B) Alignment of each inferred sequence relative to the closest matching IMGT allele with the differences between the

sequences highlighted in orange. Numbering of the alignments are according to IMGT numbering.

IARC, and the establishment of processes for the evaluation
of inferred sequences provides an important new avenue for
cataloging germline gene variation at the population level.
Ultimately, this should provide insights into how germline gene

diversity influences functional immunity (75, 76). Here, we
describe the prerequisites, procedures and potential outcome of
the IARC-based review and evaluation process, and as proof of
principle, we report five novel alleles.

Frontiers in Immunology | www.frontiersin.org 10 March 2019 | Volume 10 | Article 435

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Ohlin et al. The Inference of Antibody Gene Sequences

The establishment of the IARC review process should
help the research community to chart germline IGHV gene
variation across human ethnicities and patient groups. This is
an achievable goal if studies increasingly infer the germline gene
repertoires of each of their study subjects. Such personalized
references databases will also improve AIRR-seq studies, through
the improved germline gene annotation and confidence in
identification of SHMs that will result (Figure 1).

The AIRR Community and the IMGT group have attempted
to provide a robust roadmap and conceptual framework
for germline gene inference, but the challenge will now be
to encourage the incorporation of germline gene inference
software into preprocessing and data analytical workflows.
This has not yet been widely adopted by the community
of researchers who generate and analyze AIRR-seq data.
To facilitate this, IARC aims to create detailed step-by-
step experimental and bioinformatics tutorials, and will
document case studies showing the manifold advantages
that lie in this approach. To minimize human intervention
and subjectivity, we will also work to further automate
the evaluation process of putative germline gene alleles,
and to improve the data submission toolchains to INSDC
repositories and to IMGT. Finally, in the future, we intend
to partner with other researchers, to extend this initiative
to the validation of other adaptive immune receptor gene
loci. Other IG and TR genes in humans and species of
medical importance may be an early focus, but in time
we anticipate that the process of inference can be used
to extend our knowledge of antigen receptor genes in all
vertebrate species.

Putative novel alleles may now be submitted to the IARC-
managed web portal for evaluation.
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