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Anti-PD-1/PD-L1 antibodies are 
emerging as promising anticancer 

therapeutics. Interestingly, elevated 
response rates to these agents are mostly 
documented among patients with tumors 
that bear high level of somatic mutations, 
like melanoma or non-small cell lung 
carcinoma. We herein formulate the 
hypothesis that high levels of mutational 
heterogeneity in the tumor could be 
the key for the success of immune 
checkpoint-targeting therapies.

Introduction

Recently, promising results have been 
obtained in patients with advanced cancers 
like melanoma, renal cell carcinoma 
(RCC), or non-small cell lung carcinoma 
(NSCLC) with immune checkpoint 
blockers, including monoclonal antibodies 
targeting cytotoxic T lymphocyte-
associated protein 4 (CTLA4), 
programmed cell death 1 (PDCD1, 
best known as PD-1), or its main ligand 
CD174 (best known as PD-L1), resulting 
in remarkable and long-lasting clinical 
responses. Interestingly, Phase I efficacy 
data on anti-PD-1/PD-L1 agents point to 
a higher response rate among patients with 
melanoma and NSCLC, 2 tumor types 
associated with the highest levels of somatic 
mutations that develop upon exposure 
to UV light and carcinogens (tobacco 
smoke), respectively. Also, preliminary 
Phase IA data on the anti-PD-L1 antibody 
MPDL3280A suggest an association 
between smoking status and response in 

NSCLC patients.1 These observations may 
suggest that the mutational heterogeneity 
of the tumor could be the key of the 
success of immune checkpoint-targeting 
therapies. To evaluate this hypothesis, we 
looked at the overall response rate (ORR) 
to PD-1/PD-L1-targeting agents among 
patients affected by solid tumors and 
compared it to mutational load reported 
in the literature for neoplasms of the 
same type. Herein, we report the results 
of this analysis, provide a rationale to 
explain how the accumulation of somatic 
mutations in tumors could improve 
the response to immune checkpoint 
blockers and propose future directions 
to improve the development of these new 
immunotherapies.

Response Rate  
to PD-1/PD-L1-Targeting Agents 

Across Solid Tumors

The PD-1/PD-L1 pathway mediates 
one major immune checkpoint.7 
PD-1/PD-L1 are a receptor/ligand 
pair that delivers inhibitory signals to 
activated T cells. Malignant cells are able 
to avoid immune destruction by diverting 
such an immune checkpoint.7 Thus, 
anti-PD-1/PD-L1 monoclonal antibodies 
often restore effective antitumor immune 
responses.

Although anti-PD-1/PD-L1 monoclonal 
antibodies have been tested across multiple 
solid tumors, they were first investigated 
in melanoma and RCC patients, mostly 
because of renown sensitivity of these 
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malignancies to immunotherapy. Indeed, 
PD-1/PD-L1-targeting agents are 
associated with significant response rates in 
these clinical settings1, 2, 3, 4, 5, 6, as shown in 
Table 1: ORRs up to 38% (44/117) or 27% 
(9/33) have been reported in melanoma 
patients treated with the anti-PD-1 antibody 
lambrolizumab or RCC patients treated 
with nivolumab (another PD-1-targeting 
antibody), respectively2,3. Nonetheless, 
comparable response rates were later on 
observed in subjects with neoplasms 
expected to be poorly immunogenic. For 
instance, the ORR observed in NSCLC 
patients treated with MDPL3280A and 
nivolumab is 23% (12/53) and 18% 
(14/76), respectively1,2. Individuals bearing 
both the squamous and non-squamous 
NSCLC subtype seems to equally benefit 
from PD-1/PD-L1-targeting agents: ORRs 
of 8–33% and 11–27% were observed 
among squamous and non-squamous 
NSCLC patients, respectively1,2,4 (Table 
1). This suggests that the immunogenicity 
of tumors, as evaluated by their sensitivity 
to interleukin (IL)-2 or interferon (IFN)

α is not a good surrogate marker for the 
efficacy of anti-PD-1/PD-L1 antibodies. 
Interestingly, patients affected by other solid 
tumors exhibit null or very low ORRs to 
anti-PD-1/PD-L1 agents: 0% in colorectal 
cancer patients (0/19 with nivolumab, 
0/18 with lambrolizumab), 0% in prostate 
cancer (0/13 with nivolumab) and 6% 
in ovarian carcinoma (1/17 with BMS-
936559)2,3,4. The expression of PD-L1 on 
cancer cells has been suggested to constitute 
a predictive marker of clinical efficacy for 
anti-PD-1/PD-L1 agents.1,2,8 Nevertheless, 
the method to quantify PD-L1 positivity 
is still debated and available data show a 
significant amount of responses among 
PD-L1-negative tumors. The expression 
of PD-L1 by malignant cells may therefore 
not constitute such an exclusive and 
critical predictive factor and other tumor 
characteristics may be as important for 
its sensitivity to anti-PD-1/PD-L1 agents. 
The remarkable ORRs observed upon 
the administration of anti-PD-1/PD-L1 
antibodies to NSCLC patients raise the 
question on how NSCLC, melanoma and 

RCC differ from other solid tumors, which 
are associated with limited responses to 
these immunotherapeutics. Recent Phase I 
data on the treatment of NSCLC patients 
with MPDL3280A revealed a higher 
ORR of 26% (11/43) among former/
current smokers than among never smokers 
(10%, 1/10)1. These preliminary results 
in the setting of NSCLC and the ORRs 
documented among melanoma patients 
suggest that carcinogens (tobacco smoke 
or UV light) may play a key role in the 
susceptibility of tumors to PD-1/PD-L1 
blockers, perhaps through their ability to 
promote mutagenesis. We thus formulated 
the hypothesis that the specific mutational 
profile of NSCLC, melanoma and RCC 
could underlie, at least in part, their ability 
to respond to checkpoints blockers.

Mutational Heterogeneity Across 
Solid Tumors

To support this contention we 
looked at mutations rates that had been 
previously reported in the literature 

Table 1. pD-1 and pD-L1 overall response rates across solid tumors

ORR

anti-PD1 agent anti-PD-L1 agent

mutation rate
median frequency of 

somatic mutations 
per Mb

Nivolumab
BMS-936558

Lambrolizumab
MK 34-75

BMS-936559
MDX-1105
MeDI  4736

MPDL 3280 A
PD-L1 

expression

Melanoma 13,2
28%

(26/94)
38%

(44/117)
17%

(9/52)
29%

(11/38)
40–100 %

NSCLC  former/ 
current smoker

10,5
26%

(11/43)

NSCLC squamous 8,17
33%

 (6/18)
8%

(1/13)
27%

(3/11)
35–95 %

NSCLC non squamous 6,43
12%

(7/56)
11%

(4/36)
21%

 (9/42)
35–95 %

Colorectal 3,2
0%

(0/19)
0%

(0/18)
53%

Ovarian 1,65
6%

(1/17)
33–80 %

Renal Cell Carcinoma 1,53
27%

(9/33)
12%

(2/17)
13%

(6/47)
15–24 %

Prostate 0,73
0%

 (0/13)

NSCLC never smoker 0,6
10%

(1/10)
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for various solid tumors.9,10,11 Somatic 
mutations may be the consequence of 
defective DNA repair, the infidelity of 
the DNA replication machinery or the 
exposure to mutagens. Recent advances 
in the sequencing technology nowadays 
allow for the identification of a large panel 
of somatic mutations across different 
types of cancer and offer the possibility to 
validate predictive models in humans. The 
frequency of somatic mutations has been 
shown to be highly variable across cancer 
types, ranging from 0.001 to more than 
400 per megabase (Mb).10 The highest 
mutational rate is observed in melanoma 
(median of 13.2 mutations per Mb) and 
in NSCLC (8.17 and 6.43 mutations per 
Mb for the squamous and non-squamous 
subtype, respectively), in which mutations 

are known to be secondary to UV light 
and tobacco smoke exposure, respectively. 
As expected, the mutation rate is radically 
different between NSCLC patients that 
are former/current smoker and their 
counterparts who never smoked. The 
median of somatic mutations per Mb 
is indeed 10.5 for the former and 0.6 
for the latter. On the contrary, relative 
low median rates of somatic mutations 
are observed in tumor types exhibiting 
limited responses to anti-PD-1/PD-L1 
agents: 3.2 mutations per Mb for 
colorectal carcinoma, 1.53 mutations per 
Mb for RCC, 1.65 mutations per Mb for 
ovarian carcinoma and 0.73 mutations per 
Mb for prostate cancer. As a hypothesis-
generating case, we observed a significant 
association between the mutational load 

of tumors and their susceptibility to PD-1/
PD-L1-targeting agents (Fig. 1).

Defining which Antitumor 
Immune Responses are 
Stimulated by Immune 

Checkpoint Blockers

In the past decades, cancer vaccine 
specialists have been focusing on the 
identification of antigens selectively 
expressed by various solid tumors to 
developed efficient anticancer vaccines. 
Generally, tumor-specific T cells can 
recognize antigens resulting from 
oncogenic proteins, differentiation-
associated proteins, overexpressed or 
aberrantly expressed proteins, proteins 
coded by oncogenic viruses, and 

Figure 1. Link between mutational heterogeneity and response to immune checkpoint blockers. (A) Mutational heterogeneity of tumors and overall 
response rates (Orrs) to pD-1/pD-L1-targeting agents. Colored bars indicate the median frequency of somatic mutations per megabase (Mb) reported 
for patients affected by different solid tumors. yellow arrows represent the Orrs of these patients to anti-pD-1/pD-L1 antibodies, as detailed in Table 1. 
nSCLC, non-small cell lung carcinoma. (B) Correlation between median frequency of somatic mutations and Orr to pD-1/pD-L1-targeting agents in solid 
tumors. Dot size is proportional to the number of patients in which the efficacy of anti-pD-1/pD-L1 antibodies was tested. the red dashed line represents 
the LOeSS regression curve. the P value is derived from a linear univariate model (median somatic mutation frequency ~Orr to anti-pD-1/pD-L1 agents).
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cancer-testis proteins.12 All these tumor-
associated antigens are usually shared 
by different patients affected by the 
same neoplasm and sometimes even by 
distinct tumor types. Unfortunately, the 
results of clinical trials that have tested 
anticancer vaccines so far are deceiving, 
with null or very low ORRs. Now 
that immune checkpoint blockers are 
showing encouraging results, the future 
of anticancer immunotherapy looks 
more promising. Indeed, checkpoint-
targeting agents represent, together 
with the adoptive transfer of tumor-
infiltrating lymphocytes, the only 
immunotherapeutics that have been 
assocaited with high ORR and long-
term responses. Compared with peptide-
based vaccines or the adoptive transfer 
of engineered T cells with a narrow 
specificity, immune checkpoint blockers 
activate immune responses targeting a 
broad spectrum of antigens. Interestingly, 
patients responding to checkpoint-
targeting agents show modest reactivity 
to known tumor-associated antigens, 
suggesting they are not strongly implicated 
in the immune response elicited by these 
agents.13,14 In fact, the tumor antigens 
that drive efficient T cells responses in 
patients who obtain clinical benefits from 
immune checkpoint blockers have not 
been clearly identified so far. The exome-
guided immunomonitoring of patients 
treated with checkpoint-targeting agents 
has recently revealed that tumors are 
producing a large panel of neo-antigens 
that can drive immune responses.15 
These neo-antigens originate from 
the so-called tumor “mutanome,” the 
ensemble of tumor-specific (and hence 
most often patient-specific) mutations 
accumulated in the course of oncogenesis 
and tumor progression, which can 
involve both oncogenes and passenger 
genes. Moreover, mutations can result 
in neo-epitopes that are characterized 
by an improved MHC-binding profile, 
resulting in superior presentation to 
T cells. New technologies based on 
next-generation sequencing or peptide/
MHC multimers are being developed to 
identify the numerous potential T-cell 
epitopes resulting from neo-antigens and 
to create optimal polytopic vaccines.16-18 
However, since neo-antigens most often 

are tumor-specific, it seems particularly 
complex nowadays to employ these 
technologies to develop personalized 
treatments at a large scale.

Mutational Heterogeneity and 
Immune Response

Elevated mutation frequencies are 
sometimes attributable to the exposure 
to well known carcinogens, such as UV 
radiation in the case of melanoma and 
tobacco smoke in the case of lung cancer. 
As UV rays form pyrimidine dimers, 
melanoma-associated mutations show 
a high prevalence of C- > T transitions 
on the untranscribed, as compared with 
the transcribed, strand.19 The mutational 
signature linked to NSCLC is dominated 
by C- > A transitions, which are associated 
with the exposure to the polycyclic 
hydrocarbons found in tobacco smoke.20 
Indeed, whole genome and transcriptome 
sequencing revealed a much higher 
number of mutations per Mb in NSCLC 
patients who were or had been tobacco 
smokers (mutations per Mb: median 
10.5, range 4.9–17.6) than in never 
smokers (mutations per Mb: median 
0.6, range 0.6–0.9), with a possible 
dose-response relationship between the 
amount and duration of smoking and 
the frequency of mutations.21 Such an 
extreme mutational heterogeneity (be 
it intrinsic or induced by mutagens) 
represents a fundamental problem for 
targeted therapies, as it is responsible for 
the evolution of cancer cells exhibiting 
multiple molecular subtypes that exhibit 
variable susceptibility to treatment, hence 
facilitating resistance. As any mutation 
can potentially produce neo-antigens, 
the levels of mutagenesis may correlate 
with the degree of immunogenicity. 
Also, contrarily to targeted therapies, 
the immune system is highly adaptable, 
implying that a high mutational 
heterogeneity could play a key role in 
the tumor susceptibility to checkpoint 
blockers by eliciting a wide immune 
response to neo-antigens and therefore 
improving efficacy in particular against 
individual subclonal heterogeneity. 
Unlike anticancer vaccines, which may 
allow for the outgrowth of antigen-
loss tumor variants, these neo-antigens 

could help to shape the antitumor 
immune response toward an improved 
fitness. High amounts of neo-antigens 
may also induce a beneficial effect 
by broadening the repertoire of 
responding T cells. Moreover, high 
levels of mutational heterogeneity 
may also promote immunogenicity by 
facilitating the interaction between 
tumor-derived epitopes and MHC 
class I and II molecules, resulting in 
improved presentation to T cells. The 
immune system is known to shape 
the tumor immunogenicity through 
immunoediting, reflecting the constant 
selection pressure exerted by the immune 
system on malignant cells.22 On the other 
side, tumor’s mutational heterogeneity 
could reciprocally improve anticancer 
immune responses by widening the T-cell 
repertoire. In this setting, checkpoint 
blockers could reinstate therapeutically 
relevant immune responses against a 
hidden repertoire of neo-antigens.

Direct Effects of Carcinogens on 
the Immune System

Besides producing neo-antigens, 
carcinogens like UV rays or tobacco 
smoke have direct effects on the 
immune system. In addition to their 
carcinogenic potential, UV rays 
exert immunosuppressive effects by 
impairing the function of antigen-
presenting cells, by promoting clonal 
anergy, by stimulating the accumulation 
of regulatory T cells or by favoring 
the secretion of immunosuppressive 
cytokines.23 Detrimental mutations 
induced by tobacco carcinogens are also 
expected to facilitates the escape of cancer 
cells from the immune system through 
different mechanisms: they reduce 
immune recognition by favoring the loss 
of MHC class I proteins, by limiting 
the expression of anti-apoptotic proteins 
and by promoting the establishing of an 
immunosuppressive microenvironment 
characterized by high levels of IL-10, 
transforming growth factor β1, (TGFβ1) 
and indoleamine 2–3-dioxygenase 1 
(IDO1).22,24 Finally, smoking may also 
help to maintain an inflammatory 
environment in the lungs, resulting in 
the IFNγ-driven expression of PD-L1.25
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Treatment-Induced  
Mutational Changes

It has been reported that melanoma 
cell clones becoming resistant to BRAF 
inhibitors harbor a different mutation 
profile upon exposure to these therapeutic 
agents. BRAF inhibitors may therefore 
contribute to mutational heterogeneity. 
Since approximately 50% of metastatic 
melanomas harbor BRAF V600 
mutations, many melanoma patients 
enrolled in Phase I clinical trials have 
previously received BRAF inhibitors. 
Likewise, many NSCLC or RCC patients 
treated with PD-1/PD-L1-targeting 
agents in the context of Phase I clinical 
studies had previously been treated with 
a tyrosine kinase inhibitor (TKI), which 
may have directly shaped the tumor 
mutational pattern through drug selective 
pressure. These drug-induced mutations 
may play a key role at modeling the clinical 
response to PD-1/PD-L1-targeting agents. 
Additionally, these mutations that emerge 
under drug selection can directly affect the 
expression of immune checkpoint-related 

molecules on cancer cells, as it has been 
reported for melanoma in BRAF inhibitor 
resistant clones manifesting increased 
expression levels of PD-L1.

Conclusions and Future 
Directions

Our analysis is based on a limited 
amount of data. Moreover, the efficacy 
observed in Phase I clinical trials is of 
course very preliminary, and ORR data 
from Phase II and III studies are extremely 
expected. Nonetheless, we believe that 
our analysis has the merit to generate a 
new hypothesis to explain the responses 
to checkpoint inhibitors observed so 
far among patients with solid tumors, 
notably that mutagen-induced tumors 
appear to exhibit an improved response 
to these immunotherapeutic agents. This 
may indirectly suggest that targeted 
anticancer agents such as TKIs can affect 
the immunogenicity of tumors as they 
impose a selective pressure, a notion that 
should be taken into consideration for the 
design of future clinical trials involving 

immune checkpoint blockers. Moreover, 
if high levels of mutational heterogeneity 
increase the tumor immunogenicity, it 
will be interesting to evaluate the clinical 
activity of PD-1/PD-L1 agents in DNA 
mismatch repair (MM)-deficient tumors, 
such as microsatellite instability (MSI)+ 
colorectal carcinoma as well as BRCA1 
and 2 neoplasms (breast cancer 1and 2, 
early onset), all of which display severe 
genomic instability. Other tumors that 
present foci of localized hypermutations 
as observed in subsets of breast, 
pancreatic, lung and hematological 
cancers, could also be good candidates 
for immune checkpoint inhibitors, a 
possibility that should be evaluated in 
future clinical trials.
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