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In recent years, deep learning has made brilliant achievements in Environmental

Microorganism (EM) image classification. However, image classification of small EM

datasets has still not obtained good research results. Therefore, researchers need

to spend a lot of time searching for models with good classification performance

and suitable for the current equipment working environment. To provide reliable

references for researchers, we conduct a series of comparison experiments on

21 deep learning models. The experiment includes direct classification, imbalanced

training, and hyper-parameters tuning experiments. During the experiments, we find

complementarities among the 21 models, which is the basis for feature fusion

related experiments. We also find that the data augmentation method of geometric

deformation is difficult to improve the performance of VTs (ViT, DeiT, BotNet, and T2T-ViT)

series models. In terms of model performance, Xception has the best classification

performance, the vision transformer (ViT) model consumes the least time for training,

and the ShuffleNet-V2 model has the least number of parameters.

Keywords: deep learning, convolutional neural network, visual transformer, image classification, small dataset,

environmental microorganism

1. INTRODUCTION

With the advancement of industrialization, industrial pollution becomes increasingly serious.
Therefore, finding effective methods to control, reduce, or eliminate pollution is a top priority.
Biological approaches have outstanding performance in solving environmental pollution problems.
The Biological approaches have four main advantages in environmental treatment: no new
pollution, no additional energy consumption, gentle process, decomposition products can feedback
to nature, and make a virtuous cycle of material changes (McKinney, 2004). Microorganisms are
all tiny creatures that are invisible to the naked eyes. They are tiny and simple in structure, and
usually can only be seen with a microscope. Environmental Microorganisms (EMs) specifically
refer to those species of microorganisms that live in natural environments (such as mountains,
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streams, and oceans) and artificial environments (such orchards
and fish ponds). EMs play a vital role in whole nature
for better or worse. For example, lactic acid bacteria can
decompose some organic matter in the natural environment to
provide nutrients for plants; actinomycetes can digest organic
waste in sludge and improve water quality; microalgae can
fix carbon dioxide in the air and be used as a raw material
for biodiesel (Zhao et al., 2021); activated sludge composed
of microorganisms has a strong ability to adsorb and oxidize
organic matter and purify water (Asgharnejad and Sarrafzadeh,
2020). Harmful rhizosphere bacteria can inhibit plant growth
by producing phytotoxins (Fried et al., 2000). Sludge bulking is
caused by bacterial proliferation and the accumulation of sticky
material, which poses a fundamental challenge for wastewater
treatment (Fan et al., 2017). Therefore, EMs research helps solve
environmental pollution problems, and the classification of EMs
is the cornerstone of related research (Kosov et al., 2018).

Generally, the size of EMs is between 0.1 and 100 µm,
which is challenging to be identified and found. The traditional
microbial classificationmethod typically uses the “morphological
method,” which requires a skilled operator to observe the EMs
under a microscope. Then the results are given according to
the shape characteristics. This is very time-consuming and
financial (Pepper et al., 2011). In addition, if researchers do not
refer to the literature, even very experienced researchers cannot
guarantee the accuracy and objectivity of the analysis results.
Therefore, using the computer-aided classification of EM images
can enable researchers to use the slightest professional knowledge
and the least time to make the most accurate judgments.

Currently, the analysis of EMs by computer vision is
already achieved. For example, RGB (Red, Green, Blue) color
analysis measures the number of microorganisms (Filzmoser
and Todorov, 2011; Sarrafzadeh et al., 2015), and deep learning
methods are used to achieve the classification and segmentation
of EM images. Among them, the research of EM classification
using deep learning methods obtains more and more attention.
Deep learning is a new research direction in the field of
machine learning, and it provides good performance for image
classification (Zhang et al., 2020). Traditional machine learning-
based EM classification methods rely on feature extraction,
which requires many human resources (Çayir et al., 2018).
In contrast, deep learning-based algorithms perform feature
extraction in an automated manner, allowing researchers to
use minimal domain knowledge and workforce to extract
prominent features. Furthermore, the classification results of
deep learning are better than that of traditional machine learning
in the case of super-large training samples (Wang et al., 2021).
However, for small datasets, the performance of deep learning
is limited. Because the collection of EMs is usually carried
out outdoors, for some sensitive EMs, transportation, storage,
and observation during the period may affect the quality of
the final images. Therefore, it is difficult to obtain enough
high-quality images, and this case results in the problem of
small datasets. Therefore, this paper compares the performance
of various deep learning models on small data sets of EMs
and aims to find models with better performance on small
data sets.

This article compares a series of Convolutional Neural
Networks (CNNs), such as ResNet-18, 34, 50, 101 (He et al.,
2016), VGG11, 13, 16, 19 (Simonyan and Zisserman, 2014),
DenseNet-121, 169 (Huang et al., 2017), Inception-V3 (Szegedy
et al., 2016), Xception (Chollet, 2017), AlexNet (Krizhevsky
et al., 2012), GoogleNet (Szegedy et al., 2015), MobileNet-
V2 (Sandler et al., 2018), ShuffeleNet-V2x0.5 (Ma et al.,
2018), Inception-ResNet-V1 (Szegedy et al., 2017), and a
series of visual transformers (VTs), such as vision transformer
(ViT) (Dosovitskiy et al., 2020), BotNet (Srinivas et al., 2021),
DeiT (Touvron et al., 2020), T2T-ViT (Yuan et al., 2021). The
purpose is to find deep learning models that are suitable for EM
small datasets. The workflow diagram of this study is shown in
Figure 1. Step (b) is to rotate the training set and validation set
images by 90◦, 180◦, 270◦, and mirror images up and down, left
and right, augment the dataset by six times. Step (c) is uniform
image size to 224 × 224 to facilitate training and classification.
Step (d) is to input the processed data into different network
models for training. Step (e) is to input the test set into the trained
network for classification, and step (f) is to calculate the Average
Precision (AP), accuracy, precision, recall, and F1-score based
on the classification results to evaluate the performance of the
network model.

The structure of this paper is as follows. Section 2 introduces
the related methods of deep learning in image classification,
the impact of small datasets on image classification, and the
related work of deep learning models. Section 3 introduces the
dataset and experimental design in detail. Section 4 compares and
summarizes the experimental results. Section 5 summarizes the
whole paper and looks forward.

2. RELATED WORK

This section summarizes the impact of small datasets
on classification, including basic deep learning image
classification methods.

2.1. The Impact of Small Datasets on
Image Classification
In rectal histopathology deep learning classification research,
a large number of labeled pathological images are needed.
However, the preparation of large datasets requires expensive
labor costs and time costs, leading to the fact that existing studies
are primarily based on small datasets. In addition, the lack of
sufficient data leads to overfitting problems during the training
process. A conditional sliding windows arithmetic is proposed
in Haryanto et al. (2021) to solve this problem, which generates
histopathological images. This arithmetic successfully solves the
limitation of rectal histopathological data.

In climate research, the use of deep learning in cloud layer
analysis often requires a lot of data. Therefore, classification in
the case of a small dataset cannot achieve higher accuracy. In
order to solve this problem, a classification model with high
accuracy on small datasets is proposed. The method improves
from three aspects:
1. A network model for a small dataset is designed.
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FIGURE 1 | EM image classification process. ViT, Vision Transformer; BoTNet, Bottleneck Transformers; DeiT, Data-efficient image Transformers; T2T-ViT,

Tokens-to-Token Training Vision Transformer; ResNet, Residual Network; VGG, Visual Geometry Group.

2. A regularization technique to increase the generalization ability
of the model is applied.
3. The average ensemble of models is used to improve the
classification accuracy.
Therefore, the model not only has higher accuracy but also has
better robustness (Phung and Rhee, 2019).

In deep learning research, small datasets often lead to
classification over-fitting and low classification accuracy.
According to this problem, a kind of deep CNN based transfer
learning is designed to solve the problem of the small dataset.
This method mainly improves data and models. In terms of
data, the model transfers the feature layer of the CNN model
pre-trained on big sample dataset to a small sample dataset. In
terms of model, the whole series average pooling is used instead
of the fully connected layer, and Softmax is used for classification.
This method has a good classification performance on small
sample datasets (Zhao, 2017).

Because of the limited training data, a two-phase classification
method using migration learning and web data augmentation
technology is proposed. This method increases the number of
samples in the training set through network data augmentation.
In addition, it reduces the requirements on the number of
samples through transfer learning. This classifier reduces the
over-fitting problem while improving the generalization ability
of the network (Han et al., 2018).

In radar image recognition, due to the complex environment
and particular imaging principles, Synthetic Aperture Radar

(SAR) images have the problem of sample scarcity. A target
recognition method of SAR image based on Constrained Naive
Generative Adversarial Networks and CNN is proposed to solve
this problem. This method combines Least Squares Generative
Adversarial Networks and designs a shallow network structure
based on the traditional CNNs model. The problem of high
model complexity and over-fitting caused by the deep network
structure is avoided, to improve the recognition performance.
This method can better solve the problems of few image samples
and intense speckle noise (Mao et al., 2021).

Lack of sufficient training data can seriously deteriorate
the performance of neural networks and other classifiers. Due
to this problem, a self-aware multi-classifier system suitable
for “small data” cases is proposed. The system uses Neural
Network, Support Vector Machines (SVMs) and Naive Bayes
models as component classifiers. In addition, this system uses the
confidence level as a criterion for classifier selection. The system
performs well in various test cases and is incredibly accurate on
small datasets (Kholerdi et al., 2018).

Convolutional Neural Networks are very effective for face
recognition problems, but training such a network requires
a large number of labeled images. Such large datasets are
usually not public and challenging to collect. According to this
situation, a method based on authentic face images to synthesize
a vast training set is proposed. This method swaps the facial
components of different face images to generate a new face.
This technology achieves the most advanced face recognition
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performance on the Labeled Faces in the Wild (LFW) face
database (Hu et al., 2017).

The effectiveness of tuning the number of convolutional layers
to classify small datasets is proven in Chandrarathne et al. (2020).
In addition, related experiments suggest that by employing a very
low learning rate (LR), the accuracy of classification of small
datasets can be greatly increased.

In medical signal processing, very small datasets often lead to
the problems of model overfitting and low classification accuracy.
According to this situation, a method combining deep learning
and traditional machine learning is proposed. This method
uses the first few layers of CNN for feature extraction. Then,
the extracted features are fed back to traditional supervised
learning algorithms for classification. This method can avoid
the overfitting problem caused by small datasets. In addition,
it has better performance than traditional machine learning
methods (Alabandi, 2017).

2.2. Deep Learning Techniques
Due to the excellent performance of AlexNet in the
image classification competition (Krizhevsky et al., 2012),
improvements in the CNN architecture are very active. A series
of CNN-based networks continue to appear, making CNN an
irreplaceable mainstreammethod in the field of computer vision.
In recent years, Transformer frequently appears in computer
vision tasks and provides good performance, which is sufficient
to attract the attention of researchers.

2.2.1. Convolutional Neural Networks
AlexNet is the first large-scale CNN architecture to perform well
in ImageNet classification. The innovation of the network lies
in the successful application of the Rectified Linear Unit (Relu)
activation function and the use of the Dropout mechanism and
data enhancement strategy to prevent overfitting. To improve the
model generalization ability, the network uses a Local Response
Normalization layer. In addition, the maximum pooling of
overlap is used to avoid the blurring effect caused by average
pooling (Krizhevsky et al., 2012).

The Visual Geometry Group of Oxford proposes the
VGG network. The network uses a deeper network structure
with depths of 11, 13, 16, and 19 layers. Meanwhile, VGG
networks use a smaller convolution kernel (3 × 3 pixels)
instead of the larger convolution kernel, which reduces the
parameters and increases the expressive power of the networks
(Simonyan and Zisserman, 2014).

GoogLeNet is a deep neural network model based on the
Inception module launched by Google. The network introduces
an initial structure to increase the width and depth of the
network while removing the fully connected layer and using
average pooling instead of the fully connected layer to avoid the
disappearance of the gradient. The network adds two additional
softmax to conduct the gradient forward (Szegedy et al., 2015).

ResNet solves the “degradation” problem of deep neural
networks by introducing residual structure. ResNet networks use
multiple parameter layers to learn the representation of residuals
between input and output, rather than using parameter layers to
directly try to learn the mapping between input and output as

VGGs networks do. Residual networks are characterized by ease
of optimization and the ability to improve accuracy by adding
considerable depth (He et al., 2016).

The DenseNet network is inspired by the ResNet network.
DenseNet uses a dense connection mechanism to connect all
layers. This connection method allows the feature map learned
by each layer to be directly transmitted to all subsequent layers as
input, so that the features and the transmission of the gradient is
more effective, and the network is easier to train. The network
has the following advantages: it reduces the disappearance of
gradients, strengthens the transfer of features, makes more
effective use of features, and reduces the number of parameters
to a certain extent (Huang et al., 2017).

The inception-V3 network is mainly improved in two aspects.
Firstly, branch structure is used to optimize the Inception
Module; secondly, the larger two-dimensional convolution
kernel is unpacked into two one-dimensional convolution
kernels. This asymmetric structure can deal with more
and richer spatial information and reduce the computation
(Szegedy et al., 2016).

Xception is an improvement of Inception-V3. The network
proposes a novel Depthwise Separable Convolution allign them
in column, the core idea of which lies in space transformation and
channel transformation. Compared with Inception, Xception has
fewer parameters and is faster (Chollet, 2017).

MobileNets and Xception have the same ideas but different
pursuits. Xception pursues high precision, but MobileNets
is a lightweight model, pursuing a balance between model
compression and accuracy. A new unit Inverted residual with
linear bottleneck is applied in MobileNet-V2. The inverse
residual first increases the number of channels, then performs
convolution and then increases the number of channels. This can
reduce memory consumption (Sandler et al., 2018).

ShuffleNet makes some improvements based on MobileNet.
The 1 × 1 convolution used by MobileNet is a traditional
convolution method with a lot of redundancy. However,
ShuffleNet performs shuffle and group operations on 1 ×

1 convolution. This operation implements channel shuffle
and pointwise group convolution. In addition, this operation
dramatically reduces the number of model calculations while
maintaining accuracy (Ma et al., 2018).

The Inception-ResNet network is inspired by ResNet, which
introduces the residual structure of ResNet in the Inception
module. Adding the residual structure does not significantly
improve the model effect. But the residual structure helps to
speed up the convergence and improve the calculation efficiency.
The calculation amount of Inception-ResNet-v1 is the same
as that of Inception-V3, but the convergence speed is faster
(Szegedy et al., 2017).

2.2.2. Visual Transformers
The ViT model applies transformers in the field of natural
language processing to the field of computer vision. The main
contribution of this model is to prove that CNN is not the
only choice for image classification tasks. Vision transformer
divides the input image into fixed-size patches and then obtains
patch embedding through a linear transformation. Finally, the
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patch embeddings of the image are sent to the transformer to
perform feature extraction to classification. The model is more
effective than CNN on super-large-scale datasets and has high
computational efficiency (Dosovitskiy et al., 2020).

The BoTNet is proposed by Srinivas. This network introduces
self-attention into ResNet. Therefore, BoTNet has both the local
perception ability of CNN and the global information acquisition
ability of Transformer. The top-1 accuracy on ImageNet is as
high as 84.7%, and the performance is better than models such
as SENet and Efficient-Net (Srinivas et al., 2021).

T2T-ViT is an upgraded version of ViT. It proposes a novel
Tokens-to-Token mechanism based on the characteristics and
structure of ViT. This mechanism allows the deep learning model
to model local and global information. The performance of this
model is better than ResNet in the ImageNet data test, and the
number of parameters and calculations are significantly reduced.
In addition, the performance of its lightweight model is better
than that of MobileNet (Yuan et al., 2021).

DeiT is proposed by Touvron et al. The innovation of DeiT is
proposes a new distillation process based on a distillation token,
which has the same function as a class token. It is a token added
after the image block sequence. The output after the transformer
encoder and the output of the teacher model calculates the loss
together. The training of DeiT requires fewer data and fewer
computing resources (Touvron et al., 2020).

2.3. EM Image Classification
With the development of technology, good results are achieved
using computer-aided EM classification. In Kruk et al. (2015),
a system for automatic identification of different species of
microorganisms in soil is proposed. The system first separates
microorganisms from the background using the Otsu. Then
shape features, edge features, and color histogram features are
extracted. Then the features are filtered using a fast correlation-
based filter. Finally, the random forest (RF) classifier is used for
classification. This system frees researchers from the tedious task
of microbial observation.

In Amaral et al. (1999), a semi-automatic microbial
identification system is proposed. The system can accurately
identify seven species of protozoa commonly found in
wastewater. The system first enhances the image to be processed
and then undergoes data collection and complex morphological
operations to generate a 3D model of EMs. The 3D model is used
to determine the species of protozoa. In Amaral et al. (2008),
a semi-automatic image analysis procedure is proposed. It is
found that geometric features have good recognition ability.
It is possible to detect the presence of two microorganisms,
Opercularia and Vorticella, in wastewater plants. In Chen
and Li (2008), an improved neural network classification
method based on microscopic images of sewage bacteria is
proposed. The method uses principal component analysis to
reduce the extracted EM features. Also, the method applies the
daptivate accelerated back propagation (BP) algorithm to learn
image classification.

An automatic classification method with high robustness of
EMs is suggested in Li et al. (2013), which describes the shape
of EMs in microscopic images by Edge Histograms, Extended

Geometrical Features, etc. The support vector machine classifier
is used to achieve the best classification result of 89.7%. A shape-
based method for EM classification is suggested in Yang et al.
(2014), which introduces very robust two-dimensional feature
descriptors for EM shapes. The main process of this method is
to separate EMs from the background. Then a new EM feature
descriptor is used and finally a SVM is used for classification.

A new method for automatic classification of bacterial colony
images is proposed in Nie et al. (2015), which enables the
classification of colonies in different growth stages and contexts.
In addition, the method mainly uses a multilayer middle layer
CNN model for classification and uses the patches segmented
from the CDBN model as input. Finally, a voting scheme is used
for prediction. The results show that the method achieves results
that exceed the classical model.

3. MATERIALS AND METHODS

This section explains the EMDS-6 dataset, data augmentation
methods, the distribution of the dataset, and the evaluation
metrics for classification.

3.1. Dataset
3.1.1. Data Description
This experiment uses Environmental Microorganism Dataset
6th Version (EMDS-6) to compare model performance. The
dataset contains a total of 840 EM images of different sizes.
These images contain a total of 21 types of EMs, each with
40 images, namely: Actinophrys, Arcella, Aspidisca, Codosiga,
Colpoda, Epistylis, Euglypha, Paramecium, Rotifera, Vorticella,
Noctiluca,Ceratium, Stentor, Siprostomum,K. Quadrala, Euglena,
Gymnodinium, Gymlyano, Phacus, Stylongchia, Synchaeta. Some
examples are shown in Figure 2 (Zhao et al., 2021).

3.1.2. Data Preprocessing
In order to improve the accuracy of the model and reduce
the degree of model overfitting, the images in EMDS-6 are
augmented. Due to the security problem of data augmentation,
the only geometric transformation of the data is performed here.
The geometric transformation includes rotation 90◦, 180◦, and
270◦, up and down mirroring, and left and right mirroring.
These transformations do not break the EM label and ensure data
security. In addition, the image sizes in EMDS-6 is inconsistent,
but the input required by the deep learning models is the same.
Therefore, all images in EMDS-6 are standardized to 224 ×

224 pixels.

3.1.3. Data Settings
Experiment A: Randomly select 37.5% of the dataset as the
training set, 25% as the validation set, and 37.5% as the test set.
Experiment A is to directly perform classification tasks on 21
types of microorganisms through the deep learning model. The
details of the training set, validation set, and test set are shown in
Table 1.

Experiment B: Randomly select 37.5% of the dataset
as the training set, 25% as the validation set, and 37.5%
as the test set. Specifically, 21 types of microorganisms
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FIGURE 2 | Example images of EMDS-6. (a) Actinophrys, (b) Arcella, (c) Aspidisca, (d) Codosiga, (e) Colpoda, (f) Epistylis, (g) Euglypha, (h) Paramecium, (i)

Rotifera, (j) Vorticella, (k) Noctiluca, (l) Ceratium, (m) Stentor, (n) Siprostomum, (o) K. Quadrala, (p) Euglena, (q) Gymnodinium, (r) Gymlyano, (s) Phacus, (t)

Stylongchia, and (u) Synchaeta.

are sequentially regarded as positive samples and the
remaining 20 types of samples are regarded as negative
samples. In this way, 21 new datasets are generated.
For example, if Actinophrys images are used as positive
samples, the remaining 20 types of EMs such as Arcella and
Aspidisca are used as negative samples. Experiment B is
imbalanced training to assist in verifying the performance of
the model.

Because EMDS-6 is a very small dataset, the experimental
results are quite contingent. Therefore, 37.5% of the data is used
to test the performance of the model to increase the reliability
of the experiment. This also expresses our sincerity to the
experimental results.

3.2. Evaluation Methods
To scientifically evaluate the classification performance of
deep learning models, choosing appropriate indicators is a
crucial factor. Recall, Precision, Accuracy, F1-score, AP, and
mean Average Precision (mAP) are commonly used evaluation
indicators (Xie et al., 2015). The effectiveness of these indicators
is proven. The Recall is the probability of being predicted
to be positive in actual positive samples. Precision is the
probability of being actual positive in all predicted positive
samples. Average Precision refers to the average value of
recall rate from 0 to 1. The mAP is the arithmetic average
of all AP. F1-score is the harmonic value of precision rate
and recall rate. Accuracy refers to the percentage of correct
results predicted in the total sample (Powers, 2020). The
specific calculation methods of these indicators are shown in
Table 2.

In Table 2, TN is the number of negative classes predicted
as negative classes, FP represents the number of negative
classes predicted as positive classes, FN refers to the

TABLE 1 | Dataset details of EMDS-6.

Class\Dataset Train Val Text Total

Actinophrys 15 10 15 40

Arcella 15 10 15 40

Aspidisca 15 10 15 40

Codosiga 15 10 15 40

Colpoda 15 10 15 40

Epistylis 15 10 15 40

Euglypha 15 10 15 40

Paramecium 15 10 15 40

Rotifera 15 10 15 40

Vorticella 15 10 15 40

Noctiluca 15 10 15 40

Ceratium 15 10 15 40

Stentor 15 10 15 40

Siprostomum 15 10 15 40

K.Quadrala 15 10 15 40

Euglena 15 10 15 40

Gymnodinium 15 10 15 40

Gonyaulax 15 10 15 40

Phacus 15 10 15 40

Stylongchia 15 10 15 40

Synchaeta 15 10 15 40

Total 315 210 315 840

number of positive classes predicted as negative classes,
and TP is the number of positive classes predicted as
positive classes.
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TABLE 2 | Evaluation metrics for image classification. Sample classification (K),

number of positive samples (M).

Assessments Formula

Precision (P) TP
TP+FP

Recall (R) TP
TP+FN

F1-score 2×
P×R
P+R

Accuracy TP+TN
TP+TN+FP+FN

AP 1
M

∑M
i=1 Precisionmax (i)

mAP 1
K

∑K
j=1 AP (j)

TABLE 3 | Computer hardware configuration.

Hardware Product number

CPU Intel Core i7-10700

GPU NVIDIA Quadro RTX 4000

Motherboard HP 8750 (LPC Controller-0697)

RAM SAMSUNG DDR4 3200MHz

SSD HP SSD S750 256GB

TABLE 4 | Deep learning hyper-parameters.

Parameter Value

Batch Size 32

Epoch 100

Learning 0.002

Optimizer Adam

4. COMPARISON OF CLASSIFICATION
EXPERIMENTS

4.1. Experimental Environment
This comparative experiment is performed on the local
computer. The computer hardware configuration is shown in
Table 3. The computer software configuration is as follows:
Win10 Professional operating system, Python 3.6, and Pytorch
1.7.1. In addition, the code runs in the integrated development
environment Pycharm 2020 Community Edition.

This experiment mainly uses some classic deep learning
models and some relatively novel deep learning models. The
hyper-parameters uniformly set by these models are shown in
Table 4.

4.2. Experimental Results and Analysis
4.2.1. The Classification Performance of Each Model

on the Training and Validation Sets
Figure 3 shows the accuracy and loss curves of the CNNs and
VT series models. Table 5 shows the performance indicators of
different deep learningmodels on the validation set. According to
Figure 3 and Table 5, the performance of different deep learning
models using small EM dataset cases is briefly evaluated.

As shown in Figure 3, the accuracy rate of the training
set is much higher than that of the validation set of each

model. Densenet169, Googlenet, Mobilenet-V2, ResNet50, ViT,
and Xception network models are particularly over-fitted.
In addition, AlexNet, InceptionResnetV1, ShuffleNet-V2, and
VGG11 network models do not show serious overfitting. Among
21models inTable 5, the accuracy rates of the Deit, ViT, and T2T-
ViT models are at the 10th, 12th, and 14th. The VT models are in
the middle and downstream position among the 21 models.

The Xception network model has the highest accuracy,
precision, and recall rates in the test set results, which are 40.32,
49.71, and 40.33%. The AlexNet, ViT, and ShuffleNet-V2 network
models require the shortest training time, which are 711.64,
714.56, and 712.95 s. In addition, the ShuffleNet-V2 network
model has the smallest parameter amount, which is 1.52 MB.

VGG16 and VGG19 networks cannot converge in EMDS-6
classification task. The VGG13 network model has the lowest
accuracy, precision, and recall rates in the validation set results,
which are 20.95, 19.23, and 20.95%. The VGG19 network model
requires the longest training time, which is 1036.68 s. In addition,
the VGG19 network model has the largest amount of parameters,
which is 521 MB.

Xception is a network with excellent performance in
EMDS-6 classification. In the Xception network accuracy curve,
the accuracy of the Xception network training set is rising
rapidly, approaching the highest point of 90% after 80 epochs.
Meanwhile, the accuracy of the validation set is close to the
highest point 45%, after 30 epochs. In addition, the Xception
network training set loss curve declines steadily and approaches
its lowest point after 80 epochs. But the validation set loss
begins to approach the lowest point after 20 epochs and stops
falling. VGG13 is a network that performs poorly on EMDS-
6 classification. In the VGG13 network, the accuracy curve
of the training set and the accuracy curve of the validation
set have similar trends, and there are obvious differences
after 80 epochs. Meanwhile, the loss of the training set and
the loss of the validation set are also relatively close, and
there are obvious differences after 60 epochs. Networks such
as Xception, ResNet34, and Googlenet are relatively high-
performance networks. The training accuracy of these networks
is much higher than the validation accuracy. Furthermore,
the validation accuracy is close to the highest point in a few
epochs. In addition, the training set loss of these networks is
usually lower than 0.3 at 100 epochs. VGG11 and AlexNet are
poorly performing networks. These network training accuracy
curves are relatively close to the validation accuracy curves.
Disagreements usually occur after many epochs. In addition, the
training set loss of these networks is usually higher than 0.3 at
100 epochs.

4.2.2. The Classification Performance of Each Model

on Test Set
Table 6, shows the performance indicators of each model on
the test set, including precision, recall, F1-score, and accuracy.
Moreover, the confusion matrix of the CNNs and VTs models are
shown in Figure 4.

It is observed from the test set results that the accuracy
ranking of each model remains unchanged. The accuracy rate
of the Xception network on the test set is still ranked first, at
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FIGURE 3 | The loss and accuracy curves of different deep learning networks on the training and validation sets. For example, AlexNet, Botnet, Densenet169,

Googlenet, InceptionResnet-V1, Mobilenet-V2, ResNet50, ShuffleNet-V2, VGG11, VGG16, ViT, and Xception. train-accurate is the accuracy curve of the training set,

train-accurate is the accuracy curve of the validation set, train-loss is the loss curve of the training set, and val-loss is the loss curve of the validation set.
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TABLE 5 | Comparison of classification results of different deep learning models on the validation set.

Model Avg. R(%) Avg. P(%) Avg. F1_score(%) Accuracy(%) Params Size (MB) Time (s)

Xception 45.71 52.48 44.95 45.71 79.8 996

ResNet34 42.86 45.33 42.31 42.86 81.3 780

Googlenet 41.90 42.83 40.49 41.91 21.6 772

Densenet121 40.95 43.61 40.09 40.95 27.1 922

Densenet169 40.95 43.62 39.89 40.95 48.7 988

ResNet18 40.95 45.55 41.05 40.95 42.7 739

Inception-V3 40.00 45.01 39.70 40.00 83.5 892

Mobilenet-V2 39.52 39.57 37.01 39.52 8.82 767

InceptionResnetV1 39.05 41.54 37.96 39.05 30.9 800

Deit 39.05 39.37 37.70 39.05 21.1 817.27

ResNet50 38.57 43.84 38.02 38.57 90.1 885

ViT 37.14 41.02 35.95 37.14 31.2 715

ResNet101 34.76 36.52 32.99 34.76 162 1021

T2T-ViT 34.29 38.17 34.54 34.28 15.5 825.3

ShuffleNet-V2 33.81 33.90 31.68 33.81 1.52 713

AlexNet 31.90 32.53 29.32 31.91 217 712

VGG11 31.43 41.20 29.97 31.43 491 864

BotNet 30.48 32.61 30.06 30.48 72.2 894

VGG13 20.95 19.23 18.37 20.95 492 957

VGG16 9.05 1.31 2.10 9.05 512 990

VGG19 4.76 0.23 0.44 4.76 532 1036

P denotes Precision, and R represents Recall. (Sort in descending order of classification accuracy).

40.32%, and is 3.81% higher than the second. Meanwhile, the
average accuracy, average recall rate, and average F1-score of the
Xception network also remain in the first place, at 40.32, 40.33,
and 41.41%. Excluding the non-convergent VGG16 and VGG19
networks, the accuracy of the VGG13 validation set is still ranked
at the bottom, at 15.55%. However, the ranking of the T2T-ViT
network on the validation set accuracy rate changes dramatically.
The accuracy rate of the T2T-ViT network is 34.28%, and the
ranking rose from 12th to 5th. In addition, the AP, average recall
and average F1-score of the T2T-ViT network are 38.17, 34.29,
and 34.54%. Judging from the time consumed for the models, the
ViT model consumes the least time at 3.77 s. On the other hand,
the Densenet169 model consumes the most time at 11.13 s.

Figure 4 depicts the confusion matrix generated by part
of the test dataset to more intuitively show the classification
performance of the CNNs and VTs models on small EM
datasets. In Table 6, Xception is the network with the best overall
performance, and VGG13 is the network with the worst overall
performance. In the confusion matrix of the Xception network,
127 EM images out of 315 EM images are classified into the
correct category. In addition, the 11th type of EM classification
performs the best, with 12 EM images are correctly classified
and three EM images are misclassified into other categories.
Meanwhile, the Xception network performs the worst in the
13th category of EM classification results. Three EM images
are correctly classified and 14 EM images are misclassified into
other categories. For the VGG13 network, 49 of the 315 EM
images are classified into the correct category. Among them,
the 16th EM classification performs best. Six EM images are

correctly classified, and 9 EM images are mistakenly classified
into other categories. Comparing the CNNs and VTs models, all
of the models perform well on the 11th EM classification and
perform poorly on the 13th EM classification. For example, the
ViT model correctly classifies 9 EM images and 0 EM images in
the classification of the 11th and 13th class EMs, respectively.

Figure 4 shows that Xception better classifies the 11th and
16th types of EM images. ResNet is better at classifying tasks
of the 11th and 16th types of images. Googlenet is better at
classifying the 9th, 17th, and 21st EMs. The overall classification
performance of T2T-ViT is poor. However, there are still
outstanding performances in the 16th EM classification. The
BotNet hybridmodel is good at the 11th type of EM classification.
However, the classification performance on the 12th and 13th
images is abysmal. ResNet is good at image classification in the
9th, 11th, and 17th categories. The ViT model is good at the 11th,
12th, and 17th EM image classification. It is found from Figure 4

that the images that each model is good at classifying are not
the same. Therefore, there is a certain degree of complementarity
among different deep learning models.

From Figure 4, Xception and Googlenet are highly
complementary. For example, Googlenet has a good performance
in the classification of EMs in classes 17 and 21, but Xception
has a poor performance in the classification of EMs in classes
17 and 21. In addition, Xception is better at classifying the 11th
class of EM images than Googlenet. This result shows that the
features extracted by the two models are quite different. Two
networks can extract features that each other network cannot
extract. Therefore, there is a strong complementarity between
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TABLE 6 | Comparison of classification results of different deep learning models on the test set.

Model Avg. R(%) Avg. P(%) Avg. F1_score(%) Accuracy(%) Params Size (MB) Time (s)

Xception 40.33 49.71 41.41 40.32 79.8 5.63

ResNet34 36.51 42.92 36.22 36.51 81.3 6.14

Googlenet 35.23 37.70 34.21 35.24 21.6 5.97

Mobilenet-V2 34.29 38.21 33.07 34.29 8.82 5.13

T2T-ViT 34.29 38.17 34.54 34.28 15.5 4.44

Densenet169 33.65 36.55 33.79 33.65 48.7 11.13

InceptionResnetV1 33.64 35.71 32.90 33.65 30.9 5.11

ResNet18 33.33 38.10 32.36 33.33 42.7 4.92

ResNet50 33.33 40.98 33.44 33.33 90.1 6.23

Densenet121 33.01 39.20 33.79 33.02 27.1 9.27

Deit 32.39 34.40 32.74 32.38 21.1 5.43

ViT 31.75 33.84 31.47 31.74 31.2 3.77

Inception-V3 31.11 34.84 31.32 31.11 83.5 7.49

ResNet101 27.94 34.59 28.31 27.94 162 8.83

VGG11 27.61 29.64 26.00 27.62 491 4.98

ShuffleNet-V2 27.30 25.02 24.98 27.30 1.52 5.42

BotNet 25.40 29.65 26.04 25.39 72.2 6.5

AlexNet 24.44 23.98 22.65 24.44 217 3.9

VGG13 15.55 15.18 14.38 15.55 492 5.28

VGG16 8.26 1.28 1.93 8.25 512 5.79

VGG19 4.76 0.23 0.44 4.76 532 6.42

P denotes Precision, and R represents Recall. (Sort in descending order of classification accuracy).

the two features. In addition, although VGG11 performs poorly
in the classification of EMs. However, VGG11 is better at class 1
and class 19 classification tasks than Resnet34. Therefore, there
is still a certain complementarity between the features extracted
by the two models. This complementarity makes it possible to
improve model performance through feature fusion.

In the study, we combine 18 models in pairs. Regardless of the
specific feature fusion method or the possibility of a particular
implementation, we calculate the ideal performance of the two
models after fusion based on the current results. Part of the
results is shown in Table 7. All results of the table are in the
appendix. In Table 7, the ideal accuracy rate of each combination
is calculated by the following steps. For each combination, the
best results of every model are firstly accumulated. Then, the
accumulated results are divided by the total number of images
in the test set, and the result is the ideal accuracy rate. For
example, the combination of Xception and Googlenet. In class
1 EM classification, Xception correctly classifies four images,
and Googlenet correctly classifies five images. Here, 5 are the
best results. The other categories can be deduced by analogy.
The calculation method of model performance improvement
is as follows: Use the ideal accuracy to subtract the highest
accuracy of the two models to obtain the performance that can
be improved in the ideal state after the fusion. In Table 7, the
fusion of Xception and Googlenet performs best on the EMDS-
6, with a classification accuracy of 46.03%. However, ResNet101
and VGG11 are improved the most after the fusion, and the
two models have the strongest complementarity. On the left
side of Table 7, we can clearly see the ideal effect of improving

the accuracy after the fusion of the two features. The improved
accuracy after fusion reflects the complementarity of the two
models to some extent. This complementarity can provide some
help to researchers who are engaged in feature fusion.

4.3. Extended Experiments
4.3.1. After Data Augmentation, the Classification

Performance of Each Model on the Validation Set
In this section, we augment the dataset, and the performance
indicators of the models are calculated and exhibited in
Table 8, including precision, recall, F1-score, and accuracy. In
addition, we compare the accuracy changes before and after data
augmentation, as shown in Figure 5.

After data augmentation, the time required for model training
also increases significantly. The training time of the ViT models
is the least, which is 902.27 s. Although the training set is
augmented to six times, the training time of the ViT models is
increased by 187.27 s compared with the 715 s. The classification
accuracy of the Xception network ranks first at 52.62%. The
T2T-ViT network has the lowest classification rate of 35.56%.

After data augmentation, the classification performance of
each model is improved. Figure 5 shows the changes in the
accuracy of each model after data augmentation. The validation
set accuracy of the VGG16 network is increased the most, at
28.41%. This is because the VGG16 network can converge on
the augmentation dataset. In addition, the validation set accuracy
of VGG13 and VGG11 are improved significantly, increasing
by 21.59 and 16.67%, respectively. The accuracy of the VGG11
validation set rose from 17th to 3th. The accuracy of the VGG13
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FIGURE 4 | Confusion matrix comparison of different networks on test set, Xception, Resnet34, Googlenet, T2T-ViT, BotNet, VGG13,ResNet18,ViT, and VGG11. (In

the confusion matrix, 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 represent Actinophrys, Arcella, Aspidisca, Codosiga, Colpoda,

Epistylis, Euglypha, Paramecium, Rotifera, Vorticella, Noctiluca, Ceratium, Stentor, Siprostomum, K. Quadrala, Euglena, Gymnodinium, Gymlyano, Phacus,

Stylongchia, and Synchaeta, respectively).
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TABLE 7 | After fusing the two features, it has ideal precision and ideal performance improvement.

Model Change (up) (%) Model Accuracy

ResNet101 VGG11 9.52 Googlenet Xception 46.03%

InceptionResnetV1 ResNet18 7.94 Inception-V3 Xception 44.76%

Inception-V3 Shufflenet-V2 7.62 ResNet50 Xception 44.76%

Shufflenet-V2 VGG11 7.62 Deit Xception 44.44%

Deit VGG11 7.30 Densenet161 Xception 44.13%

Inception-V3 VGG11 7.30 VGG11 Xception 44.13%

ResNet18 ResNet50 7.30 Densenet121 Xception 43.81%

ResNet34 ResNet50 7.30 Mobilenet-V2 Xception 43.81%

ResNet34 VGG11 7.30 ResNet34 ResNet50 43.81%

ResNet101 Shufflenet-V2 7.30 ResNet34 VGG11 43.81%

Googlenet Mobilenet-V2 7.30 Densenet121 ResNet34 43.49%

Alexnet T2T-ViT 6.98 Googlenet ResNet34 43.49%

Deit Mobilenet-V2 6.98 InceptionResnetV1 Xception 43.49%

Deit ViT-5 6.98 Mobilenet-V2 ResNet34 43.49%

Densenet121 Googlenet 6.98 ResNet18 Xception 43.49%

The left side of the table shows the improved accuracy of feature fusion under ideal conditions, and the right side of the table shows the accuracy of feature fusion under ideal conditions.

validation set rose from 19th to 11th. After data augmentation,
the validation set accuracy of T2T-ViT, Densenet169, and
ViT are not improved significantly, increasing by 1.28, 1.19,
and 1.91%.

From a specific series of models, the performance of VGG
series models is improved significantly after data augmentation.
The performance improvement of the Densenet series models
is not apparent. The accuracy of the Densenet121 and the
Densenet169 validation sets are increased by 1.43 and 1.19%,
respectively. Meanwhile, the performance improvement of the
VT series models is not apparent. The classification accuracy of
the T2T-ViT validation set is increased by 1.28%, ViT is increased
by 1.91%, and Diet is increased by 4.28%. In the ResNet series
models, ResNet18, ResNet34, and ResNet50 are increased by 3.49,
3.25, and 3.65%, and the improvement is not obvious. However,
the classification accuracy of the ResNet101 validation set is
increased by 8.65%, which is obvious.

4.3.2. After Data Augmentation, the Classification

Performance of Each Model on the Test Set
After data augmentation, the performance of each model on the
test set is shown in Table 9. In Table 9, the Xception network
has the highest accuracy of 45.71%. Meanwhile, the Xception
network has an excellent recall index of 50.43%. Excluding
the non-convergent VGG19, the VGG16 model has the worst
performance, with an accuracy of 24.76%. The ViT model
consumes the least time, which is 3.72 s. The Densenet169 model
consumes the most time, which is 11.04 s.

Figure 6 shows the change of accuracy on the test set before
and after the augmentation. In Figure 6, we can see that the
accuracy of each deep learning model on the test set is generally
increased. Among them, the accuracy of the VGG series models
is improved the most. VGG11 is increased by 9.25%, VGG13
is increased by 21.28%, and VGG16 is increased by 16.51%.
However, the accuracy of the VT series models test set is not

significantly improved. The accuracy of some model test sets
even drops. After data augmentation, the accuracy of the Diet
network validation set is not changed. The accuracy of the T2T-
ViT network is dropped by 3.80%. The accuracy of the ViT
model is dropped by 3.17%. However, the accuracy of BotNet,
a mixed model of CNN and VT, is improved significantly,
reaching 11.12%.

4.3.3. In Imbalanced Training, After Data

Augmentation, the Classification Performance of

Each Model on the Validation Set
In this section, we re-split and combine the data. Take each of the
21 types of EMs as positive samples in turn and the remaining
20 types of microorganisms as negative samples. In this way, we
repeat this process 21 times in our paper. The specific splitting
method is shown in Section 3.1.3. The deep learning model
can calculate an AP after training each piece of data. Table 10
shows the AP and mAP of each model validation set. We select
the classical VGG16, ResNet50, and Inception-V3 networks for
experiments. Furthermore, a relatively novel ViT model is also
selected. In addition, the Xception network, which has always
performed well above, is selected for experiments. Since the
VGG16 network cannot converge at a LR of 0.0001, this part of
the experiment adjusts the LR of the VGG16 network to 0.00001.

It can be seen in Table 10 that the mAP of the Xception
network is the highest, which is 56.61%. The Xception network
has the highest AP on the 10th data, and the AP is 82.97%. The
Xception network has the worst AP on the 3rd data, with an AP of
29.72%. As shown in Figure 7, the confusion matrix (d) is drawn
by the 10th data. In (d), 46 of the 60 positive samples are classified
correctly, and 14 are mistakenly classified as negative samples. In
the confusion matrix drawn by the third data, 8 of the 60 positive
samples are classified correctly, and 52 are incorrectly classified
as negative samples.
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TABLE 8 | Comparison of classification results of different deep learning models on the validation set.

Model Avg. R(%) Avg. P(%) Avg. F1_score(%) Accuracy(%) Params Size (MB) Time (s)

Xception 52.62 52.05 50.63 52.62 79.80 2636.08

Mobilenet-V2 49.67 51.91 48.82 49.68 8.82 1237.49

VGG11 48.10 52.40 48.44 48.10 491.00 1745.73

ResNet34 46.10 47.85 44.68 46.11 81.30 1335.87

ResNet18 44.44 51.87 43.03 44.44 42.70 1090.39

Googlenet 44.29 47.16 43.50 44.29 21.60 1257.33

Inception-V3 43.97 50.78 43.41 43.97 83.50 2004.08

AlexNet 43.58 45.02 43.05 43.57 217.00 951.27

ResNet101 43.41 46.08 43.33 43.41 162.00 2786.95

Deit 43.34 46.62 43.29 43.33 21.10 1306.99

VGG13 42.54 41.38 41.21 42.54 492.00 2307.04

Densenet121 42.38 46.91 42.39 42.38 27.10 2169.11

ResNet50 42.22 47.76 42.10 42.22 90.10 1968.28

Densenet169 42.14 48.04 42.79 42.14 48.70 2526.61

InceptionResnetV1 41.66 47.83 41.68 41.67 30.90 1451.76

ViT 39.05 43.50 38.52 39.05 31.20 902.27

ShuffleNet-V2 37.62 39.37 36.84 37.62 1.52 965.81

VGG16 37.47 38.21 36.80 37.46 512.00 2589.15

BotNet 36.59 36.38 35.59 36.59 72.20 2000.17

T2T-ViT 35.56 38.43 36.19 35.56 15.50 1385.62

VGG19 4.76 0.23 0.44 4.76 532.00 1022.57

P denotes Precision, and R represents Recall. The training set is augmented. (Sort in descending order of classification accuracy).

FIGURE 5 | In the validation set of different deep learning models, the accuracy difference between data augmentation and before data augmentation.
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TABLE 9 | Comparison of classification results of different deep learning models on the test set.

Model Avg. R(%) Avg. P(%) Avg. F1_score(%) Accuracy(%) Params Size (MB) Time (s)

Xception 45.71 50.43 46.15 45.71 79.8 5.49

Mobilenet-V2 42.54 47.56 43.07 42.54 8.22 5.04

ResNet18 39.05 44.82 39.22 39.05 42.7 4.90

Densenet121 38.73 40.28 38.20 38.73 27.1 8.98

ResNet34 38.73 42.25 37.84 38.73 81.3 6.07

ResNet50 38.10 41.56 36.97 38.10 90.1 6.20

Inception-V3 37.78 44.32 38.00 37.78 83.5 7.47

Googlenet 37.46 43.55 37.92 37.46 21.6 6.03

Densenet169 37.14 41.51 37.37 37.14 48.7 11.04

VGG11 37.14 38.81 36.70 37.14 491 4.96

InceptionResnetV1 36.82 41.47 36.75 36.83 30.9 5.11

VGG13 36.82 38.46 36.25 36.83 492 5.28

BotNet 36.50 39.12 36.35 36.51 72.2 6.44

ResNet101 35.23 38.01 35.44 35.24 162 8.85

AlexNet 34.92 39.10 34.97 34.92 217 5.25

Deit 32.39 34.40 32.74 32.38 21.1 4.41

T2T-ViT 30.48 35.88 30.85 30.48 15.50 5.41

ShuffleNet-V2 28.57 35.64 29.41 28.57 1.52 5.42

ViT 28.58 29.63 27.86 28.57 31.2 3.72

VGG16 24.77 25.53 24.11 24.76 512 5.79

VGG19 4.76 0.23 0.44 4.76 532 6.36

P denotes Precision, and R represents Recall. The training set is augmented. (Sort in descending order of classification accuracy).

FIGURE 6 | In the test set of different deep learning models, the accuracy difference between data augmentation and before data augmentation.

The mAp of the VGG16 network is the lowest at 34.69%. The
VGG16 network performs best on the 10th data AP, with an AP
of 76.12%. The VGG16 network performs the worst on the 21st

data AP, with an AP of 5.47%. Despite tuning the LR, the VGG16
network still fails to converge on the 3rd, 8th, 13th, 15th, and
21st data.
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TABLE 10 | AP and MAP of different deep learning models in imbalanced training.

Model/Sample 1 (%) 2 (%) 3 (%) 4 (%) 5 (%) 6 (%) 7 (%) 8 (%) 9 (%) 10 (%) 11 (%)

ViT 30.77 44.99 18.43 48.51 74.47 76.17 50.98 15.32 31.12 60.74 54.02

Xception 37.66 51.16 29.72 68.32 73.66 67.96 79.19 65.41 55.84 82.97 55.91

VGG16 48.38 41.43 9.63 51.05 52.61 42.23 76.92 5.97 27.57 76.12 34.77

ResNet50 30.58 45.96 14.24 68.19 66.15 43.10 71.24 46.51 31.87 62.19 36.79

Inception-V3 37.75 36.79 33.41 56.37 55.77 43.51 59.52 41.18 38.40 75.03 69.26

Model/Sample 12 (%) 13 (%) 14 (%) 15 (%) 16 (%) 17 (%) 18 (%) 19 (%) 20 (%) 21 (%) mAPA

ViT 15.24 17.84 25.46 6.74 13.95 48.61 7.26 60.33 23.07 9.53 34.93

Xception 54.16 52.28 65.06 46.36 30.61 60.41 31.21 61.14 45.50 74.36 56.61

VGG16 24.06 16.22 63.90 5.80 10.49 33.87 24.77 44.00 33.14 5.47 34.69

ResNet50 15.59 42.12 68.57 24.94 17.49 47.52 6.64 49.04 16.73 56.10 41.03

Inception-V3 15.09 49.09 64.11 37.91 15.00 43.98 15.84 54.40 10.78 60.38 43.50

(In [%]).

The mAp of the ViT network and the VGG16 network
are relatively close. The ViT network performs best on the
6th data AP, with an AP of 76.17%. Among the 60 positive
samples, 35 are classified correctly, and 25 are classified as
negative samples. The ViT network performs the worst on the
15th data AP, with an AP of 6.74%. Among the 60 positive
samples, 0 are classified correctly and 60 are classified as
negative samples.

In addition, Resnet50 performs the best on seven data AP
and the worst on the 18th data AP. The Inception-V3 network
performs best on 10 data AP and the worst on the 16th data AP.

4.3.4. Mis-classification Analysis
In the extended experiments, we randomly divide EMDS-6 three
times and train the data for each division. The results and
accuracy errors of the three experiments are shown in Table 11

and Figure 8.
In Table 11, under the original dataset, Xception has the best

classification performance on 21 deep learning models. After
data augmentation, Xception still has the highest classification
performance. In Table 11, the performance of the VGG series
network has major changes compared to Table 9. In Figure 9,
we can clearly understand that VGG11, VGG13, VGG16, and
VGG19 failed to converge at least once in the three experiments.
This phenomenon causes the VGG series models to fall behind
in average performance. Except for the VGG series models, the
performance of other models tends to be stable on the whole,
and the errors are kept within ± 5% of the average of the
three experiments. Xception and Densenet169 networks show
good robustness in the classification results before and after data
augmentation. However, the classification performance of the
AlexNet network fluctuates greatly in the three experiments, and
the robustness is poor.

In Figure 9, after data augmentation, the performance of
VGG13 improves the most, but this is mainly caused by
the failure of some experiments on the original dataset to
converge. In addition to the VGG13 network, the Mobilenet-V2,
ShuffleNet-V2, and Densenet121 models improve the most, with

accuracy rates increase by 10.25, 9.52, and 8.89%. In addition,
the performance improvement of ResNet34, ResNet18, and
InceptionResnetV1 models is relatively small, and the accuracy
are increase by 2.54, 2.96, and 3.5%. Generally speaking, after
data augmentation, the CNN series models have a very obvious
improvement in the precision, recall, F1-Score, and accuracy of
the test set. However, the opposite situation appeared in the
VTs after data augmentation. Taking the Accuracy index as an
example, the accuracy of the ViTmodel in the test set has dropped
by -2.5%, the Accuracy of the T2T-ViT model is equal to that
before the augmentation, and the Accuracy of the Deit model has
only increased by 1.16%.

In general, augmenting the dataset through geometric
transformation can effectively improve the classification
performance of the CNN series models. Nevertheless,
for the VTs, the method of geometric transformation to
augment the dataset is difficult to improve the classification
performance of the VTs and even leads to a decrease in
model performance.

4.3.5. Comparison of Experimental Results After

Tuning Model Parameters
In this section, our extended experiments select representative
models, namely the CNN-based Xception, the Transformer-
based ViT, and the BotNet hybrid model based on CNN and
VT. This section of the experiment trains 100 epochs. The
purpose of the study is to observe the effect of changing two
hyper-parameters, LR, and batch size (BS), on the experimental
results. The experimental results are shown in Table 12.

Under the same BS and different LRs conditions, the
maximum fluctuation of ViT training time is only 4.6 s, the
maximum fluctuation of BotNet training time is 74.6 s, and
the maximum fluctuation of Xceotion training time is 80.6 s.
Experiments indicate that tuning LRs has little effect on the
time required for training. However, the change of LRs greatly
influences the accuracy of experimental results. Taking the ViT
as an example, the accuracy of the model is 16.83% under the
conditions of BS = 16 and LR = 2 × 10−5. Under the condition
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FIGURE 7 | The confusion matrices (A–H) are drawn based on the Xception validation set results. Likewise, the confusion matrices (I–P) are drawn based on the ViT

validation set results. (A–H) are generated from datasets 1, 3, 5, 7, 10, 11, 13, 15. (I–P) are generated from datasets 1, 3, 6, 7, 9, 11, 13, and 15, respectively.

(Dataset segmentation is shown in 3.1.3 Experiment B).

of LR = 2 × 10−4, the highest accuracy of the ViT can reach
31.11%. In addition, the accuracy of the model is only 3.17%
under the condition of LR = 2 × 10−2. Experiments indicate
that the performance of the model decreases when using an
oversized LR (LR = 2 × 10−2) and an extremely small LR (LR
= 2 × 10−5). An oversized LR may cause the network to fail

to converge, which means the model lingered near the optimal
value and could not reach the optimal solution. This leads to
performance degradation. The following two reasons explain the
performance degradation when applying extremely small LRs.
On the one hand, an extremely small LR makes the network hard
to converge fastly. The related experiments show that the model
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TABLE 11 | Comparison of different deep learning models on test set.

Mode1 Original data Augmented data

Recall (%) Precision (%) F1-score (%) Accuracy (%) Recall (%) Precision (%) F1-score (%) Accuracy (%)

Xception 39.37 44.25 39.07 39.37 44.76 47.97 44.53 44.76

ResNet34 37.14 41.96 36.93 37.14 39.68 43.15 39.54 39.68

ResNet18 35.24 40.53 34.33 35.24 38.20 42.64 38.38 38.20

Mobilenet-V2 34.50 37.24 33.86 34.50 44.75 48.31 44.82 44.75

InceptionResnetV1 34.39 36.46 33.92 34.39 37.88 41.09 37.53 37.89

Googlenet 34.07 36.89 33.48 34.07 40.32 44.59 40.37 40.32

Deit 32.27 34.08 31.92 33.44 34.60 37.01 34.76 34.60

Inception-V3 33.33 33.78 32.26 33.33 39.79 43.17 39.69 39.79

ViT 33.24 34.92 32.63 33.23 30.69 32.49 30.08 30.69

Densenet169 32.80 35.38 32.49 32.80 38.73 43.52 38.79 38.73

ResNet50 32.28 36.41 31.79 32.27 38.84 41.69 38.37 38.84

Densenet121 31.11 35.66 31.25 31.11 40.00 43.02 39.75 40.00

ResNet101 30.90 35.29 30.97 30.90 36.61 38.34 36.01 36.61

AlexNet 30.26 31.08 28.70 30.26 36.51 39.62 36.41 36.51

T2T-ViT 29.10 32.84 29.17 29.10 29.10 32.19 29.13 29.10

BotNet 29.00 31.11 28.46 28.99 33.02 34.29 32.45 33.02

ShuffleNet-V2 24.66 23.71 22.86 24.66 34.18 37.09 34.19 34.18

VGG11 20.74 19.99 18.31 20.74 26.77 26.98 25.39 26.77

VGG13 8.68 5.66 5.47 8.68 28.78 29.52 27.12 28.78

VGG16 5.93 0.58 0.94 5.92 11.43 8.66 8.33 11.43

VGG19 4.76 0.23 0.44 4.76 4.76 0.23 0.44 4.76

[In (%)].

FIGURE 8 | Error bar of accuracy on test set. The left figure shows the test set error bar before data augmentation. The figure on the right shows the error bar of the

test set after data augmentation.

is difficult to reach the optimal value within 100 epochs with an
extremely small LR (2× 10−5). On the other hand, an extremely
small LR may cause the network to fall into an optimal local
solution, which leads to performance degradation.

In addition to the LR, the change of BS also dramatically
affects the performance of the model. Different models show
different patterns at different BS values. For example, the
accuracy of the ViT model decreases rapidly with increasing
BS at LR = 2 × 10−5. The accuracy of the BotNet increases

sharply with increasing BS at LR = 2 × 10−5. However, the
relevant experiments show that BS does not seriously affect the
performance of the model under large datasets (Radiuk, 2017).
Nevertheless, with small datasets, only a slight change in the BS
value can dramatically change the performance of the model.

Compared to a large dataset, tuning the BS and LR on
a small dataset can significantly change model performance.
Therefore, finding the optimal parameters to improve the model
performance on small datasets is necessary.
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FIGURE 9 | Error bar of accuracy on test set. The left figure shows the test set error bar before data augmentation. The figure on the right shows the error bar of the

test set after data augmentation.

TABLE 12 | Comparison of training time consumption and test set accuracy of different networks.

LR
ViT (Times) ViT (Accuracy)

BS 4 BS 8 BS 16 BS 32 BS 4 (%) BS 8 (%) BS 16 (%) BS 32 (%)

2× 10−5 530.70 793.56 760.76 760.99 28.25 21.59 16.83 14.92

2× 10−4 530.32 793.12 761.17 762.88 30.16 27.94 31.11 30.16

2× 10−3 530.30 792.43 760.87 761.88 11.43 15.87 20.63 17.14

2× 10−2 535.30 794.01 760.67 760.99 4.76 4.76 3.17 7.62

LR
Xception (Times) Xception (Accuracy)

BS 4 BS 8 BS 16 BS 32 BS 4 (%) BS 8 (%) BS 16 (%) BS 32 (%)

2× 10−5 840.31 1106.94 1119.99 1074.65 38.10 37.46 37.14 37.78

2× 10−4 834.88 1107.95 1081.05 1088.86 51.43 50.48 41.90 38.73

2× 10−3 837.11 1113.56 1042.63 1042.75 23.49 34.29 28.25 30.48

2× 10−2 808.83 1086.24 1037.36 1073.62 14.29 16.83 20.00 17.46

LR
BotNet (Times) BotNet (Accuracy)

BS 4 BS 8 BS 16 BS 32 BS 4 (%) BS 8 (%) BS 16 (%) BS 32 (%)

2× 10−5 806.80 1006.82 977.10 950.71 16.51 17.14 20.32 21.27

2× 10−4 778.31 990.82 1022.45 1011.02 12.70 24.76 26.67 27.94

2× 10−3 772.63 984.33 967.09 937.65 9.21 7.94 14.29 10.79

2× 10−2 774.33 985.43 968.46 936.39 7.94 10.79 7.62 16.83

The left side of the table shows the training time consumption, while the right side of the table shows the accuracy of the test set. learning rate (LR), Batch Size (BS).
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5. DISCUSSION

This experiment studies the classification performance of 21 deep
learningmodels on small EM dataset (EMDS-6). The comparison
results are obtained according to the evaluation indicators, as
shown in Tables 5, 6, 8, 9. Meanwhile, some models are selected
for imbalanced experiments to investigate the performance of
the models further. The results are shown in Table 10. In order
to increase the reliability of the conclusions, this paper repeats
the main experiment three times. The average value is shown
in Table 11, and the errors of the three experiments are shown
in Figure 8. In addition, this paper explores the impact of
hyper-parameters on small dataset classification, and the results
are shown in Table 12.

The performance of the VGG network gradually
decreases as the number of network layers increases.
Especially the VGG16 and VGG19 networks cannot
converge on EMDS-6. This may be because the dataset is
too small, and the gradient disappears in the process of a
continuous deepening of the network layer, which affects
the convergence.

The training time of the ViT network on EMDS-6 is very short,
but it does not make a significant difference with other models.
After the data augmentation of EMDS-6, the ViT network has
apparent advantages in the time of training the model, and
the time consumption is much less than other models. We can
speculate that the ViT model may further expand its advantage
when trained on more training data.

In the experiments where the model parameters are tuned,
slight changes in both the LR and BS parameters lead to
drastic changes in model performance. This does not happen
if the experiment is based on a large-scale dataset. However, in
small datasets, each class of EMs only accounts for a portion
of the image, and most of the others are noise. Moreover,
some models that include batch normalization normalize the
environmental noise at different BS leading to fluctuations in
classification accuracy.

After data augmentation, the accuracy of CNN series models
improves significantly. However, the increase of VT series
model accuracy is slight, and some of them even decrease.
The results are shown in Figure 6. To further prove the
above experimental results, this paper re-divides the dataset
and conducts three experiments, and the results are shown
in Figure 9. Experiments once again prove that the geometric
deformation augmented data method is difficult to improve the
performance of the VT series models. This may be because
our data augmentation method only makes geometric changes
to the data. The geometric transformation is only changed the
spatial position of the feature. However, the VT series models
use attention to capture the global context information, and it
pays more attention to global information. Operations such as
rotation and mirroring have little effect on global information,
and it is impossible to learn more global features. This makes
the performance of the VT series models unable to improve after
data augmentation significantly. However, the performance of
BotNet, a hybridmodel of CNN andVT, is significantly improved
after data augmentation. This is because the BotNet network

only replaced three Bottlenecks withMHSA. The BotNet network
is essentially more inclined to the feature extraction method
of CNN.

6. CONCLUSION AND FUTURE WORK

The classification of small EM datasets are very challenging
in computer vision tasks, which has attracted the attention of
many researchers. Due to the development of deep learning,
image classification of small datasets is developing rapidly.
This article uses 17 CNN models, three VT models, and
a hybrid CNN and VT model to test model performance.
We have performed several experiments, including direct
classification of each model, classification tasks after data
augmentation, and imbalanced training tasks on some
representative models. The experimental results prove that
the Xception network is suitable for this kind of task. The
ViT models take the least time for training. Therefore, the
ViT model is suitable for large-scale data training. The
ShuffleNet-V2 network has the least number of parameters,
although its classification performance is average. Therefore,
ShuffleNet-V2 is more suitable for occasions where high
classification performance is not necessary and limited
storage space.

This study provides an analysis table of the differences
between the 18 models. This result can help related research on
feature fusion quickly find models with significant differences
and improve model performance. In addition, this study finds
for the first time that the data augmentation method of geometric
deformation is extremely limited or even ineffective in improving
the performance of VT series models. This study and conclusion
can provide relevant researchers with a conclusion with sufficient
experimental support. Our research and conclusions reduce their
workload in selecting experimental augmentation methods to a
certain extent. This has a significant reference value.

Although the augmentation method of geometric
deformation is effective for the performance improvement of
CNNs, it does not help much for the performance improvement
of VTs. We can improve the VT networks performance by
studying new data augmentation methods in future work.
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