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a b s t r a c t

SARS-CoV-2 (COVID-19) virus is a havoc pandemic that infects millions of people over the world and
thousands of infected cases dead. So, it is vital to propose new intelligent data analysis tools and
enhance the existed ones to aid scientists in analyzing the COVID-19 virus. Fragmented Local Aligner
Technique (FLAT) is a data analysis tool that is used for detecting the longest common consecutive
subsequence (LCCS) between a pair of biological data sequences. FLAT is an aligner tool that can
be used to find the LCCS between COVID-19 virus and other viruses to help in other biochemistry
and biological operations. In this study, the enhancement of FLAT based on modified Ions Motion
Optimization (IMO) is developed to produce acceptable LCCS with efficient performance in a reasonable
time. The proposed method was tested to find the LCCS between Orflab poly-protein and surface
glycoprotein of COVID-19 and other viruses. The experimental results demonstrate that the proposed
model succeeded in producing the best LCCS against other algorithms using real LCCS measured by
the SW algorithm as a reference.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Coronavirus (COVID-19) is a novel havoc pandemic flare-up
hrough most of the countries in the world since December
019 and leading to huge infections of up to 10.5 million peo-
le through the world until July 2020 and deaths reach up to
00 thousand people as reported by World Health Organization
WHO). COVID-19 is a severe human pathogen, which affects the
espiratory system, liver, digestive and nervous systems is dis-
ributed among birds, humans, mice, bats, and other wildlife [1,2].
wo previous coronavirus (SARS-CoV was discovered in the year
f 2003 and MERS-CoV in 2012) outbreaks and had the ability
f transmission from human to human or animal to animal [3].
he transmission of viruses can be occurred between humans to
umans through the air, close personal contact, touching surfaces
ontaining viral particles, and rare stool contamination, which
as confirmed by the Centers for Disease Control and Prevention
CDC). One of the serious problems with COVID-19 its incubation
eriod, which ranges from 3 to 14 days, and the average age of
he diseases is 47.0 years [4].
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Now, it is the rule of sciences to analyze and control the
spreading of the COVID-19 virus, such as biochemistry sciences
trying to design a drug for it with co-operating with biological
analyses of the biological protein of the virus by analyzing and
medicine for clinical trials. Some studies were performed in this
direction, such as [5–8]. Therefore, computational tools in bioin-
formatics can be used for the analysis of the genetic data and
protein of COVID-19, such as docking peptides, antibodies against
the potential ligands of COVID-19 [9,10]. Therefore, the intelligent
data analysis tools are vital to helping scientists for modeling
the behavior of the pandemic, detecting the infected cases, and
designing a drug for COVID-19 [11,12].

Aligning genomic sequences (DNA, Protein, and RNA) is a vital
operation in bioinformatics that measures the functional and
evolutionary relationships between the genomic sequences [13].
Besides, other operations in biology use alignment operation such
as prediction of protein secondary structure [14], construction
of phylogenetic trees [15], and DNA fragment assembly [16].
Local pairwise sequence alignment is one of two common kinds
of alignment algorithms that finds the LCCS between pairs of
biological sequences, and the standard algorithm to perform the
local alignment is the SW algorithm [17], which depends on
the dynamic programming approach. Therefore, it produces the
accurate LCCS between a pair of sequences; however, it en-
grosses powerful execution time, especially for sequences with

huge lengths.

https://doi.org/10.1016/j.asoc.2020.106683
http://www.elsevier.com/locate/asoc
http://www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2020.106683&domain=pdf
mailto:Dr.Mahamad_Issa@yahoo.com
mailto:abd_el_aziz_m@yahoo.com
mailto:lusongfeng@hust.edu.cn
https://doi.org/10.1016/j.asoc.2020.106683


2 M. Issa and M.A. Elaziz / Applied Soft Computing Journal 96 (2020) 106683
Fragmented Local Aligner Technique (FLAT) [18] is an intelli-
gent biological data analysis tool is used for detecting the LCCS
between a pair of sequences. FLAT is a developed version of the
Smith–Waterman (SW) algorithm [17], which finds the accurate
real LCCS between a pair of sequences but consumes huge ex-
ecution of time. FLAT speeds up the execution time of the SW
algorithm to produce reasonable LCCS in a reasonable time to
produce primary results instead of wasting time with no benefit
results. Therefore, it allows scanning huge databases to filter the
sequences that have acceptable results and then aligning it using
SW algorithm which produce the most accurate alignment.

COVID-19 virus is a novel virus, so FLAT can be used to align
it against other viruses to find the common features that will aid
in understanding the behaviors of pandemic and construct the
phylogenetic tree of the virus, especially for aligning the virus
against the huge biological database. Hence, the motivation of
this work to enhance the performance of FLAT to find LCCS of
COVID-19 against other viruses in a reasonable time.

FLAT was proposed to speed up the execution time of the
SW algorithm with acceptable alignment results [18] to speed up
the process of aligning sequences with huge length and search
databases. The idea is fragmenting the two sequences into many
fragments with short lengths and perform the SW algorithm on
these fragments where SW will consume a short time due to
the short length of sequences. Due to there are many possibili-
ties of positions to cut the fragments, Meta-Heuristic Algorithms
(MA) are used to point the search toward the locations in the
sequences that have LCCS found. MA are stochastic algorithms
based on search methodology inspired by nature, animals, and
physics phenomena to find the optimal solution. Common and
recent released MA, for example, Sine–Cosine Optimization Algo-
rithm [19], Particle Swarm Optimization [20], Volleyball premier
league algorithm [21], Lightning Attachment Procedure Optimiza-
tion [22], Lightning search algorithm [23] Electron radar search
algorithm [24], The Whirlpool Algorithm [25] and Squirrel Search
Algorithm for optimization [26].

FLAT was implemented using the Sine–Cosine Optimization
(SCA) algorithm [19] and the improved algorithm of SCA using
PSO (ASCA-PSO) [18]. The two algorithms are succeeded in find-
ing reasonable alignment results with a high percentage of real
LCCS in a reasonable time. The percentage of the length of LCCS
founded relative to real LCCS founded by the SW algorithm is the
criteria for evaluating the performance of FLAT. FLAT based on
ASCA-PSO produces the highest average percentage of 83% real
LCCS can be founded over sequences with a product of lengths
in the range from 250,000 to 9,000,000 while it produces 40% of
real LCCS when using SCA. Therefore, the quality of the founded
solution still causes a flaw that motivates the development of
FLAT for enhancing the founded solutions. The poor performance
of the FLAT version, which is based on SCA due to SCA, has
good exploration capability but poor exploitation capability. The
positions of sequence lengths represent the search space that was
explored using FLAT, and the LCCS between the two aligned se-
quences is the desired output that was located at certain positions
in each sequence. As seen in Fig. 1, there are 4 positions (P1 to
P4) explore the search space by visiting most positions over the
entire length of the sequence, and two fragments are cut (one in
each sequence) to be aligned to find the length of the common
subsequence.

The algorithms try to find the positions in each sequence to
cut a fragment, and the fragments that have the longest common
subsequence founded all other search agents moved toward its
position to diverse the solutions and may found better LCCS. As
shown, the search agent P3 found part of real LCCS that have a
length (K), and this part is the longest founded part; hence all

other solutions will move toward it according to the updating
mechanism of metaheuristic algorithm. The search agents inten-
sify around the best search agent (P3) and improve the search
around the region marked by a green circle.

For enhancement of FLAT, a modified version of the meta-
heuristic algorithm named Ions Motion Optimization (IMO) algo-
rithm [27] is developed. Since no one optimization algorithm can
handle all problems efficiently, as stated by No Free Lunch (NFL)
theorem [28]. IMO is inspired by the attraction and repulsion law
of ions for performing the search process.

Ions Motion Optimization (IMO) algorithm has two groups
of search agents; each group has global best solutions and the
movement of these agents based on the attraction and repulsion
force law. Two global best solutions will increase the diversity
of released solutions due to the updating movement of search
agents; hence it has efficient exploration capability, and this the
main advantage of IMO. Another main advantage IMO, its few
parameters to be tuned and efficient exploration for the feasible
search space. However, the exploitation of IMO is weak, which
is performed if a certain condition is satisfied hence it cannot
execute on all iterations for all search agents; hence it produces
poor performance, which needs to be enhanced.

The performance of IMO was tested for implementing FLAT,
which produces poor results, which represented as finding LCCS
far from real one measured by the SW algorithm or very small
percentage of real LCCS. The reason for these poor results is the
huge length of sequences that represent the search space, and
IMO succeeded in locating the region of LCCS due to its good
exploration capability. However, poor exploitation makes it fail
to intensify the region to increase the common part is found.

According to the huge length of aligned sequences in the
FLAT, so efficient exploration of the search space needed to visit
most regions of the sequences. Therefore, IMO is predicted to
propose an enhancement performance better than that of SCA.
However, It has poor exploitation capability, so it is merged with
PSO to enhance its exploitation phase. IMO has been successful
in optimizing many engineering applications such as load eco-
nomic dispatch (Wang, Pan, et al. 2020), short-term hydrothermal
scheduling [29], breast cancer prediction [30], AGC investigation
in [31], protein folding prediction [32], robotics [33] and cloud
job scheduling [34].

Some trials were performed to enhance the exploitation of
IMO, such as [35] proposed enhancement of IMO based on adding
random perturbations to the update equations of ions during
solid states. The enhanced version was called diversity IMO
(DIMO) due to it based on the diversity of solutions. The proposed
version was tested on mathematical benchmark function and the
engineering problem of localization in a wireless sensor network.
They claimed that the convergence speed of IMO and localization
accuracy in wireless sensor network was enhanced. Another trial
for enhancing IMO by combining the greedy algorithm and was
tested on the problem of the protein folding prediction of the HP
model [32]. The proposed enhanced version of IMO (IMOG) pro-
posed an efficient ability to produce high accuracy of prediction
with high stability, especially for longer sequences.

In this work, DIMO and IMOG were used for implementing
FLAT to test their performance, and they produced poor results,
which prove that the enhancement of exploitation of IMO using
the two versions is not efficient for FLAT according to No Free
Launch theorem [28].

In this paper, an improved IMO algorithm for FLAT is proposed
based on enhancing the exploitation phase of IMO by combin-
ing the PSO algorithm with has efficient exploitation process.
In general, the PSO algorithm [20], which inspired its search
methodology from bird flocking, is the best choice since it has
efficient exploitation of the search space. So, there is motivation

to use it due to its success to optimize the exploitation phase in
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Fig. 1. Synergy of exploration and exploitation over the sequence length for FLAT.
a lot of metaheuristics such as SCA [18], Grey Wolf Optimiza-
tion (GWO) [36], Differential Evolution [37], Tabu Search [38],
Gravitational Search Algorithm (GSA) [39], Swallow Optimization
Algorithm (SOA) [40], Bacterial Foraging Algorithm (BFA) [41],
Ant Colony Algorithm [42,43], Genetic algorithms [44]. There are
other trials of optimization of different algorithms.

The proposed model starting by accepting the protein se-
quences of COVID-19 and the against protein virus, and the LCCS
between the two protein sequences is the required output. Then
FLAT explores the search space using IMO, and then the founded
solutions are assigned as initial solutions to be exploited by PSO
then return to IMO. These operations are performed for some
iterations. Therefore, each algorithm is self-contained with no
influence of one of them on the search methodology of the
other and are executed in a relay execution manner. The way
of assigning solutions between search agents of each algorithm
during the transition between the two algorithms (from IMO to
PSO or the reverse) will affect the enhancement of IMO. So, in
the improved IMO, and there are some rules for assigning these
solutions. The required LCCS between COVID-19 and the other
virus is the one founded by the best global solution of PSO.

In this paper, the main achievements can be concluded as
follow:

1- Propose an alternative method to improve the analysis of
COVID-19 using modified FLAT.

2- Enhance the performance of FLAT based on the improved
IMO.

3- Propose an improved IMO algorithm based on merging
with PSO.

The following sections of this article are organized as follows:
Section 2 presents the basic information for the Fragmented Local
Aligner Technique, IMO, and PSO. Section 3 presents the Proposed
IMO-PSO for FLAT. In Section 4, the experimental results and
discussion are given. Section 5 introduces the conclusion and

future works.
2. Preliminaries

The following subsections propose a brief description of Ions
Motion Optimization (IMO) and Particle Swarm Optimization
(PSO) algorithms also presented.

2.1. Fragmented Local Aligner Technique (FLAT)

Aligning genomic sequences (DNA, Protein, and RNA) is a
vital operation in bioinformatics that measures the functional
and evolutionary relationships between the genomic sequences
(Cohen 2004). Besides, other operations in biology use alignment
operation such as prediction of protein secondary structure (Di
Francesco, Garnier et al. 1996), construction of phylogenetic trees
(Feng and Doolittle 1990), and DNA fragment assembly (Li and
Khuri 2004). Local pairwise sequence alignment is one of two
common kinds of alignment algorithms that finds the LCCS be-
tween pairs of biological sequences, and the standard algorithm
to perform the local alignment is the SW algorithm (Smith and
Waterman 1981), which depends on the dynamic programming
approach. Therefore, it produces the accurate LCCS between a
pair of sequences; however, it engrosses powerful execution time,
especially for sequences with huge lengths.

Fragmented Local Aligner Technique (FLAT) was proposed to
speed up the execution time of the SW algorithm with accept-
able alignment results (Issa, Hassanien, et al. 2018) to speed up
the process of aligning sequences with huge length and search
databases. The idea is fragmenting the two sequences into many
fragments with short lengths and perform the SW algorithm on
these fragments where SW will consume a short time due to the
short length of sequences.

As shown in Fig. 2, there are three fragments with length LF
and the yellow parts are the common between each correspond-
ing fragments. As shown, fragments are cut at positions PA1 and

PB1 are aligned using the SW algorithm, and it contains the LCCS
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Fig. 2. A representation of the fragmentation of sequences into short fragments.
founded with length W. Hence, other positions must be moved
toward this position to enhance the search operation. This is
the rule of using MA, which aid in traversing the huge length
of sequences and point the search toward the location has LCCS
founded.

Eq. (1) is used as an objective function (The fitness function
that is used to evaluate the solutions) that is used to control the
movement of search agents and assess the finding alignments.

AlignmentScore =

L∑
i=1

{
if Ai == Bi penalize (+1) score

otherwise penalize zero

}
(1)

where A and B are the aligned sequences with length L. The
procedure of FLAT is presented in the algorithm (1).

FLAT has a complexity of time (TNL3F ), where N , LF, and T are
the number of search agents, the length of cutting fragments, and
the number of iteration respectively.

2.2. Ions Motion Optimization (IMO) algorithm

IMO algorithm is a stochastic optimization algorithm which
inspired its search methodology from the properties of ions in
physics. The population (candidate solutions) of the IMO algo-
rithm is divided into two sets of anions and cations. Updating
the movement of these ions (solutions) according to the theory
of attraction and repulsion of the ions that states, ‘‘ions with
the same charges repel each other, but with opposite charges
attract each other’’ [45]. The algorithm consists of two states:
liquid state and solid state wherein liquid state, the ions are
moved freely more than in the solid-state that give possibilities
for exploration search space and produce more diversification of
the solutions, which is an advantage of IMO. While in solid-state
(exploitation phase), the stabilized attraction forces between ions
make it not free enough to search around in narrow regions;
hence the exploitation phase is poor. In the following liquid and
solid phase are described :

- Liquid phase (exploration phase)
In the liquid state, each population of anions and cations

update its movement such that each anion move toward the best
cation and each cation move toward the best anion found. Eq. (2)
and Eq. (3) are used for update anions and cations in order.

Ai,j = Ai,j + AFi,j ∗ (Cbestj − Ai,j) (2)

i,j = Ci,j + CFi,j ∗ (Abestj − Ci,j) (3)

where i is the ion index, j is the dimension, Ai,j is anion candidate
olution, C is the cation candidate solution. A is the best
i,j bestj
anion solution, and Cbestj is the best cation solution found, AFi,j
and CFi,j is the mathematical model that represents the distance
between ions and cations as in Eq. (4) and Eq. (5).

AFi,j =
1

1 + e
−

0.1
ADi,j

, ADi,j =
⏐⏐Ai,j − Cbestj

⏐⏐ (4)

CFi,j =
1

1 + e
−

0.1
CDi,j

, CDi,j =
⏐⏐Ci,j − Abestj

⏐⏐ (5)

Exploration can be guaranteed due to ions are attracted to the
opposite charges ions, and during the next iterations, more inter-
action between ions leads to converging toward the best opposite
charge ions until reaching balance attraction force between ions
leads to stabilization of the ions form.

For a certain condition where the best fitness found becomes
more than half of the worse fitness of anion and cations, the solid-
state was entered where the ions become approximately fixed
due to the stability of attraction forces. This condition may not
be satisfied in some cases (for certain runs or certain engineering
problems), and the exploitation phase cannot be occurred or not
clear hence it needs to be enhanced.

- Solid-state (exploitation phase)
In the solid-state, ions are difficult to be moved and form

the stabilization phase, so there is a need for an external force
to move the ions around the search space to escape from local
minima. Eq. (6) and Eq. (7) are used for this purpose, and also
there is a random initialization of some ions around search space
to increase the diversity of ions around search space. Hence, the
important condition to apply external force is the value of the
best ion of anions (and cations) is bigger than or equal half of the
worst value of anions (and cations), which means the ions are in
the stable case.

Ai = Ai + α1 ∗ (Cbest) (6)

Ci = Ci + α2 ∗ (Abest) (7)

α1 and α2 are random variables in the range [−1, 1]. After updat-
ing ions based on Eq. (7) and Eq. (8) if a probability lower than
0.05 hence re-initialize the ions in the search space to guarantee
to escape from freezing and enhance exploration.

IMO has a time complexity is O(T ∗ n ∗ (cLiquis + cSolid)) where
T and n are the number of iterations and the number of search
agents in order. CLiquid and CSolid are the costs time for updating
equations of one search agent in the liquid and solid phase

iteratively.
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2.3. Particle Swarm Optimization (PSO)

PSO is a swarm optimization algorithm that mimics the atti-
ude of birds flocking for flying. It has a stochastic search strategy
hat depends mainly on the global communications between
he search agents, where all search agents modify their move-
ent pointed to the global search agents that finds the global
olution. Besides, it memorizes the best solutions each search
gent pass through, which influences the new update of it as
tated in Eq. (8), and this memorization of location enhances the
xploitation phase of PSO.
The updating equations of PSO are represented as Eq. (8) and

q. (9), where the particle (Pgbest) has the global best position
solution) among all search agents and the best personal posi-
ion (Pbest

i ) that each search agents found during the previous
terations.

i (t + 1) = w ∗ vi(t) + c1 rand
(
Pbest
i − Pi(t)

)
+ c2 rand

(
Pgbest

− Pi(t)
)

(8)

Pi (t + 1) = Pi(t) + vi (t + 1) (9)

Where vi represents the velocity of the ith particle, c1 and c2
are the local the global best position coefficient in order. w is
the inertia coefficient that estimates the influence of the prior
velocity on the new estimated velocity. rand () is a uniformly
distributed random variable in the range [0–1].

PSO has a complexity of time O(T ∗n∗cpso) where T, n, and cpso
express the number of iterations, the number of search agents,
and the cost time of modifying the position of one search agent,
respectively. PSO has a main advantage is the interchanging of
information between search agents, which gives it more reliabil-
ity to achieve an approximate optimal solution with acceptable
convergence speed besides robustness.

PSO was used in many optimization problems such as solar
cell design [46,47], electrical motor design [48], and surgical robot
applications [49].

3. Proposed IMO-PSO for FLAT

This section proposes the details of the proposed IMO-PSO
algorithm for FLAT, which is described as a framework in Fig. 3,
which describes the rule of using FLAT for aligning the COVID-19
virus against another virus to find LCCS between them. LCCS will
be input for another biochemistry and biological operations on
COVID-19 to aid in drug design of it, constructing its phylogenetic
tree or updating therapeutic protocols.

Fig. 4 shows the detailed procedure of the enhanced FLAT
based on IMO-PSO. It accepts a pair of biological sequences (Pro-
teins, DNA or RNA) as COVID-19 protein sequence (or any se-
quence) and any other virus sequence to be compared with
where the output is the longest common consecutive subse-
quence (LCCS) between the two input sequences. The search
agents of the improved IMO (IMO-PSO) represent the positions
in the pair of sequences to cut fragments (a position in each
sequence), and the cutting fragments by ions (search agents of
IMO) are aligned using SW algorithm [17]. To determine the best
anion and best cation, which represents the position of sequences
at which the cutting fragments have the LCCS found. The fitness
function that is used to measure the objective of solutions of
search agents as expressed in Eq. (1), where it used to count
the number of similar residues (character of sequences which
represents amino acids).

FLAT processing finding the LCCS starting from the third step
in a framework where the ions will be attracted to opposite best
ion to move the positions toward the best positions founded in
each sequence, and this step represents exploring the sequences
by producing more diversifications of positions. The founded
solutions (positions) due to exploration by IMO are mapped to
the search agents of PSO to be intensified and find better LCCS
around the founded one.

Since IMO can find part of the LCCS but PSO can enhance it
by finding the remainder by searching around the founded one.
The solutions founded by PSO mapped back to IMO to resume
exploration, and the transition between IMO and PSO is executed
for some iterations. Still, the main rule during the mapping is
mapping the solutions if it provides better fitness.

The best LCCS that will be output is that of the best global
search agent of PSO, which has the best global solutions over all
iterations and overall search agents.

3.1. Implementation of the proposed model

In this section, the steps of the proposed COVID-19 model are
discussed as in algorithm (2) that describes the details of FLAT
based on the improved IMO (IMO-PSO) algorithm. The proposed
model starts by accepting the pair of sequences to be aligned.
Then initialize (n) ions of IMO (two groups of ions anion and
cation, so the total number of ions is 2*n) with two positions (one
position in each sequence) and the lower limit of solutions is 1
(the first residue of the sequence) while the upper limit is the end
position of the sequence subtracted by the width of the fragment
(LF). These two positions represent the start of cutting fragments
(one fragment in each sequence) to be aligned using the SW
algorithm (in step 3). The next step is to align the two cutting
fragments by anion or cation ions using the SW algorithm, and
the similarity measurements of the LCCS founded are measured
using Eq. (1) (In step 4).

Thereafter, the best cation and anion ions are updated from
the cation and anion ions that produce the highest fitness (the
longest common consecutive subsequence) (as in step 5). Next,
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Fig. 3. A framework explaining the rule of using FLAT and the relation with other applications on COVID-19.
Fig. 4. Description of FLAT based on the improved IMO algorithm for aligning COVID-19 with other viruses.
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pdating the ions based on exploring the search space for some
teration (T1). The cation and anion ions are updated based on the
ovement equations of IMO during liquid and solid-state if the
ondition satisfied (Step 6). The fragments in the two sequences
re cut according to the updated positions toward the fragments
ave LCCS founded until this step, and the new LCCS are founded
sing the SW algorithm in step 7. The best cation and anion ions
re updated in step 8.
Steps (9–10) represents the mapping of solutions for transition

rom IMO to PSO where solutions found by IMO are assigned
o the search agents of PSO (yi), the best personal solutions for
ach search agents (yibest) and the global best solutions among all
earch agents (y ).
gbest
The global best solutions (ygbest) are updated from the best
nion (Agbest) or best cation (Cgbest) if they provide better fitness
In step 10). As shown, IMO explore the search space and move
he ions toward two best solutions, which lead to more diversity
f solutions and exploring large search space hence the global
est solutions (ygbest) each iteration may locate the regions of
est fitness. In step 11, the best personal solutions of each search
gent (yibest) are updated from the corresponding anion ion (Ai) or

cation ion (Ci) if they provide better fitness and the corresponding
search agent (yi) is assigned with the left choice.

Steps (11–14) are the procedure of updating equations of PSO
for some iterations T1. In step 11, the fragments are cut and
aligned using the SW algorithm for each particle, and the fitness
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is evaluated based on Eq. (1). Steps 12–14 update the particle
positions and best particle of PSO.

The exploited results found by PSO will return back to be
ssigned to the ions of IMO if they provide better fitness to
esume exploring and exploitation of the search space for some
terations T2. In steps (15–20), the mapping between PSO to IMO
is performed as the anions search agents are assigned by the
corresponding best personal solutions of each search agent (yibest).
he cations are assigned with the solutions (yi) of PSO, but these
ssignments are done if it provides better fitness. The best anion
s assigned the global best solution (ygbest), while cation is chosen
rom the cation ions that provide the minimum fitness. Note that,
the solutions of PSO are assigned to cation ions since it will attract
to the best anion (Agbest) while anions which are assigned by
corresponding (yibest) will be attracted to the best cation that is
determined from the solutions of cations. The assignment mecha-
nism will lead to more diversity of solutions to explore the search
space.

The final output (best LCCS founded) is produced in step 19
where the positions stored in the best particle of PSO (ygbest)
represent the positions of the fragments that have the best LCCS
founded in the overall length of aligned sequences. Therefore, the
fragments are cut and aligned to find LCCS and calculate its width,
which represents the output.
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Table 1
The setting values for the parameters of MA used to implement FLAT.
Algorithm Parameter Value

SW alignment
Match +1.0
ge −0.5
go −1.0

SCA a 2.0

IMO – PSO
Inertia Coefficient 0.2
Local coefficient (C1) 0.5
Global coefficient (C2) 0.5

ASCA-PSO

Inertia Coefficient 0.2
Local coefficient (C1) 0.5
Global coefficient (C2) 0.5
a 2.0

3.2. Complexity of IMO-PSO

IMO-PSO has a complexity of time is O (T2 * (T1 * N * (CIMO
+ CPSO))) where T1 and T2 are the number of iterations for each
algorithm and the number of a total round of execution in order.
N is the number of search agents, and CIMO is the cost time of
modifying the position of one ion of IMO, and CPSO is the cost
time of modifying the position of one search agent of PSO.

4. Experimental results and discussion

The experimental results of measuring the performance of
FLAT based on the improved IMO algorithm against other algo-
rithms in the literature work will be presented in this section.
Two experimental tests are performed to evaluate the perfor-
mance of FLAT based on the improved (IMO-PSO). The first test
measure different metrics for the performance of FLAT, such as
the quality of solutions represented as average LCCS founded, the
success rate of finding 75% of real LCCS, and statistical analysis
using the Wilcoxon test [50]. The second test for finding the LCCS
for COVID-19 virus against the protein of other viruses using FLAT
based on the improved IMO (IMO-PSO) relative to the real LCCS
founded by the SW algorithm.

The performance of the IMO-PSO algorithm in the two tests
is compared with standard IMO [27], SCA [19], ASCA-PSO [18],
IMOG [32], and DIMO [35]. All the settings of parameters of
algorithms as listed in Table 1. In this study, ASCA-PSO [18],
SCA [19], IMOG [32], and [35] are used in our comparison.

The number of iterations was 30 iterations for all algorithms
except IMO-PSO; the number of iteration for each algorithm was
10, and the two algorithms repeated 5 times. The fragment length
was 30. The number of individual runs is 20; the number of search
agents was assigned to the length of each sequence as listed in
Table 2.

4.1. Measurement criteria

Various measurement criteria are used to evaluate the perfor-
mance of FLAT are described in the following:

• The average of LCCS: the average of the length of the
common substring that is found for all runs of the algorithm
and for each range of sequence product lengths.

• The success of rate: It is the number of runs that found 75%
of the real length of common subsequence (LCCS founded by
the SW algorithm) divided by the total number of runs.

• The execution time: it is the execution time of FLAT using
different algorithms for each range of products of sequence
lengths.
Table 2
The percentage of LCCS founded by IMO-PSO versus other algorithms.
m X n Search

Agent #
SCA ASCA-PSO IMO Improved

IMO
IMOG DIMO

250000 40 45 89 34 95 78 44
350000 40 45 78 34 95 75 28
550000 100 56 89 50 93 78 45
750000 120 50 84 50 94 73 23
1000000 150 50 89 60 95 79 23
1400000 180 56 89 56 92 77 56
1800000 200 50 78 50 93 63 28
2200000 240 56 80 45 91 67 39
2600000 400 56 78 39 93 62 28
3000000 400 56 84 39 92 60 67
4000000 450 56 89 50 95 62 50
5000000 450 56 78 45 94 62 45
6000000 450 47 73 56 93 50 34
7000000 500 39 78 28 92 45 39
8000000 700 45 84 39 94 45 34
9000000 700 42 84 28 94 30 34

4.2. Experimental series 1: Evaluation performance of FLAT using the
IMO-PSO algorithm on biological sequences datasets

4.2.1. Dataset description
For testing the performance of FLAT for measuring the per-

centage of LCCS founded relative to one founded by the SW
algorithm, real biological protein sequences datasets that are used
are gathered from GenBank of NCBI (https://www.ncbi.nlm.nih.
gov/). FLAT has a pair of sequences as input, so each pair of
gathered sequences have approximately equal lengths and have
common consecutive subsequences founded by SW alignment
algorithm. The sequences are divided at 16 ranges based on
the product of pair sequence lengths, and the levels range from
250,000 to 9,000,000 to measure the performance over different
lengths of sequences.

4.2.2. Results and discussion
Table 2 proposes the results of testing the average percentage

of LCCS founded by FLAT based on the improved IMO (IMO-
PSO) algorithm versus other algorithms relative to the real LCCS
founded by the SW algorithm. In this test, each pair of sequences
of the datasets are aligned using to measure the length of LCCS
between it using the SW algorithm. Then the FLAT based on dif-
ferent metaheuristic algorithms is executed to measure the LCCS
founded, and the percentage of it relative to the ones founded
by the SW algorithm is presented in Table 2. Then the quality
of solution criteria for FLAT is represented by what is the per-
centage of the length of real LCCS founded by any metaheuristic
algorithm. In the first and second columns of Table 2 are the
length of sequences product and the corresponding search agents
(population) of each metaheuristic algorithm that was used. As
the length of sequences increasing, the search space increasing
hence the search of agents increasing to substitute the increasing
of the span of search space.

IMO, SCA and DIMO have the same results approximately,
and the lowest percentages LCCS founded in comparison with
other algorithms. DIMO cannot produce an enhancement of IMO
in FLAT that guarantee the theorem of NFL [28] where no al-
gorithm cannot solve all engineering problem with the same
efficiency. IMOG produces little enhancement of IMO for ana-
lyzing FLAT on biological sequences. ASCA-PSO algorithm was
produced the highest percentage of LCCS using FLAT with an
average percentage of 83% overall lengths; however, IMO-PSO has
a percentage of 93.5%, which proves the superiority of IMO-PSO

overall algorithms.

https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
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Table 3
The success rate of founding 75% of real LCCS by FLAT based on the improved
IMO and the development versions of it.
m X n Search

Agent #
SCA ASCA-PSO IMO Improved

IMO
IMOG DIMO

250000 40 14 90 20 100 70 10
350000 40 20 60 14 100 70 10
550000 100 27 87 34 100 50 30
750000 120 27 80 34 96 60 0
1000000 150 27 87 67 97 70 0
1400000 180 20 94 34 93 70 30
1800000 200 14 60 34 95 60 10
2200000 240 34 87 20 96 50 20
2600000 400 20 74 14 97 50 0
3000000 400 34 80 20 95 40 40
4000000 450 27 87 40 97 35 30
5000000 450 20 54 27 97 50 20
6000000 450 74 54 34 96 50 10
7000000 500 0 67 14 96 20 20
8000000 700 20 80 14 94 20 10
9000000 700 27 80 7 94 25 10

The efficiency of IMO-PSO is due to the balancing of explo-
ation of IMO over the huge length of sequences and the exploita-
ion of PSO to enhance the best results found in narrow regions,
nd the repetition of this process ensures the enhancement of
est results founded.
In Fig. 5, the quality of the solution is represented as the

ength of LCCS founded divided by the maximum length of the
wo aligned sequences. As shown, the results are produced by
he improved IMO are better than those delivered by ASCA-PSO,
hich makes it clear the enhancement of performance of FLAT
sing the improved IMO.
The second criterion was measured to guarantee the perfor-

ance of IMO-PSO versus other algorithms is the success rate
f finding LCCS but with at least 75% of the real LCCS founded
y the SW algorithm. As shown in Table 3, SCA, IMO, and DIMO
roduced the lowest poor success rate with DIMO has zero values
n some test which mean no one result of the 20 independent
uns achieve 75% of the real length founded by SW algorithm.
MOG produces a success rate better than IMO but not efficient
ike ASCA-PSO. IMO-PSO produced the highest success rate versus
ll other algorithms, which implies the superiority of it.
For the statistical analysis of the results, the Wilcoxon rank-

um test [50], (a non-parametric test detailing of t-test for two
ndependent groups) was performed on the 20 independent runs
f algorithms. Table 4 shows the results of the statistical analysis
etween standard IMO and each other algorithm. As shown,
he p-value of comparing IMO with IMO-PSO and ASCA-PSO has
he best results over other algorithms (SCA, IMOG, and DIMO).
able 5 shows the execution time of FLAT based on the IMO-
SO algorithm versus IMO and other algorithms in the literature
esides time executed by the SW algorithm. All experiments were
erformed on MATLAB software tool, and a computer machine
as the following specifications: RAM with 4 GB and Intel Core
3 processor with 3.1 GHz each. Due to the huge time complexity
f SW algorithms, the execution time has a huge increase with
ncreasing the length of sequences. Hence, if there is a biologi-
al database that needs to be scanned, it will consume a huge
ime, especially if the databases contain thousands of biological
equences.
Fig. 6 presents a comparison of the execution time of the

W algorithm, improved IMO, and ASCA-PSO for performing the
lignment over various length products of pair of sequences and
LAT based on. As shown in the figure, FLAT save huge execution
ime in comparison with others but improved IMO consumes
ittle time more ASCA-PSO for long sequences. The incensement
omes from serial execution of IMO and PSO but provides better
erformance for finding LCCS approximately 93.5% of the real one,
nd this is the main advantage of improved IMO.
Table 4
Wilcoxon test results (P-value < 0.05) for comparing IMO with other algorithms
m X n SCA ASCA-PSO Improved IMO IMOG DIMO

250000 0.043 5.25E−05 3.35E−05 0.580 0.531
350000 0.031 0.001 0.001 0.127 0.211
550000 0.464 0.006 0.005 0.027 0.736
750000 0.643 0.023 0.003 0.620 0.801
1000000 0.014 0.833 0.004 1 0.001
1400000 0.602 0.001 0.001 0.001 0.476
1800000 0.498 0.094 0.004 0.828 0.410
2200000 0.134 6.163E−05 3.97E−05 0.271 0.011
2600000 0.017 0.006 3.89e−05 0.354 0.789
3000000 0.009 5.48E−06 4.27E−06 0.792 0.080
4000000 0.316 0.015 0.001 0.118 0.202
5000000 0.031 0.006 0.006 0.629 0.434
6000000 0.119 0.193 0.005 0.096 0.267
7000000 0.002 8.64E−05 1.13E−05 6.95E−05 0.005
8000000 0.032 7.34E−05 3.82E−06 0.357 0.328
9000000 0.001 2.58E−05 1.62E−05 0.036 0.454

Table 5
The execution time of SW local alignment algorithm versus FLAT using IMO-PSO
and other algorithms.
m X n Search

agent #
SCA ASCA-PSO IMO Improved

IMO
IMOG DIMO

250000 40 4.70 6.04 5 14 5 5
350000 40 4.70 6.04 5 13 5 5
550000 100 12.0 12.7 12 32 12 12
750000 120 14.3 14.9 15 32 14 14
1000000 150 18.8 18.9 22 48 21 23
1400000 180 21.7 21.7 22 54 21 22
1800000 200 25.0 26.0 24 59 23 26
2200000 240 29.0 30.2 48 113 49 55
2600000 400 49.2 51.2 48 112 47 46
3000000 400 49.2 51.2 53 139 52 51
4000000 450 53.9 55.9 53 141 52 50
5000000 450 53.9 55.9 54 139 52 51
6000000 450 53.9 55.9 54 139 52 51
7000000 500 67.0 69.8 59 140 64 57
8000000 700 78.9 83.7 77 208 75 88
9000000 700 78.9 83.7 77 202 75 107

4.3. Experimental series 2: Finding LCCS between COVID-19 poly-
protein and other viruses

FLAT was tested for finding the LCCS between the orf1ab poly-
protein of COVID-19 and other viruses protein sequences such
as Alveolar Proteinosis, Human Immunodeficiency, Hepatitis C,
Influenza A, Influenza B, and Trachea Infections. The real LCCS
that was founded by the SW algorithm is used as the reference
to measure the FLAT performance.

4.3.1. Datasets description
The protein data of viruses were gathered from GenBank of

NCBI (https://www.ncbi.nlm.nih.gov/). The protein ID of the virus
was used in the test as follows: the orf1ab poly-protein of COVID-
19 (Protein ID: YP_009724389.1), the surface glycoprotein of
COVID-19 (ID: QJX59884.1), Alveolar Proteinosis (ID: Q8IWL2.2),
Human Immunodeficiency (ID: AAB50262.1), Hepatitis C (ID:
SLM22236.1), Influenza A (ID: YP_009118631.1), Influenza B (ID:
BAA00002.1) and Trachea Infections (ID: Q460N5.3)

4.3.2. Results and discussion
Table 6 shows the result of finding LCCS between COVID-

19 and other diseases using FLAT based on the improved IMO
algorithm versus standard IMO, standard SCA, DIMO, IMOG, and
ASCA-PSO algorithm besides, SW algorithm was used to find the
real LCCS. The score column in the table represents the length of
LCCS founded and also denotes the number of similar residues. As

https://www.ncbi.nlm.nih.gov/
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Fig. 5. Measuring of length of LCCS relative to the maximum length of the pair of sequences.
Fig. 6. Comparison of time performance of the SW algorithm and FLAT based on improved optimization algorithms.
hown in Table 6, the IMO-PSO algorithm succeeded in locating
he real LCCS but part of it in all tests; however, the ASCA-PSO
lgorithm locates it three times only. However, other algorithms
annot determine the real LCCS located by the SW algorithm; it
inds common subsequences with small length.

Table 7 shows the test results of using FLAT to analyze the
urface glycoprotein of COVID-19 with other different surface
lycoproteins with ID as in the table. Here, the pair of sequences
ave many common consecutive subsequences, and the LCCS has
length no more than 5 residues, so the challenge is finding the
eal LCCS from many ones common but with lower length. IMO-
SO algorithm succeeded in enhancing the performance of FLAT
o locate the real LCCS as produced by the SW algorithm, and the
SCA-PSO algorithm locates it in most test cases.
These tests show the superiority of the improved IMO algo-

ithm to enhance FLAT and its ability in a biological application
here COVID-19 was tested as a case study, and the application
can be developed to not locate only one feature (LCCS) but more
than ones. However, the idea is proposing the application of FLAT
with efficient results in an acceptable time.

4.3.3. Advantages and limitation of FLAT based IMO-PSO algorithm
The main advantages of implementing FLAT based on the

improved IMO (IMO-PSO) algorithm are listed as in the following

1. The synergy between exploration of IMO and exploitation
of PSO aids efficiently for solving the problems with huge
search space such as FLAT.

2. It produces a better quality of solutions by finding real LCCS
with a percentage of 93.5% over various sequences lengths
with the highest success of rate for finding 75% of the
length of real LCCS in comparisons with other algorithms.

However, the limitation of FLAT based on the IMO-PSO al-
gorithm is consuming more execution time more than that of
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Table 6
Testing the Local aligner based Improved IMO for finding LCCS of COVID-19 orf1ab polyprotein against other diseases.
Virus Protein Name Method Score The obtained LCCS

1 Alveolar Proteinosis

Smith–Waterman 22 IDAMMFTSDLATNNLVVMAYIT
SCA 4 LMAA
ASCA-PSO 5 MAYIT
IMO 4 GAVC
Improved IMO 8 IDAMMFTS
IMOG 5 VGGSC
DIMO 3 MLR

2 Human Immunodeficiency

Smith–Waterman 24 TYPSLETIQITSSFKWDLTAFGLV
SCA 3 PAG
ASCA-PSO 5 TYPSL
IMO 3 GAC
Improved IMO 11 TYPSLETIQIT
IMOG 4 FGLV
DIMO 3 LLS

3 Hepatitis C

Smith–Waterman 10 TSSGDATTAY
SCA 4 CARA
ASCA-PSO 4 VDIL
IMO 3 SLL
Improved IMO 5 TSSGD
IMOG 4 NGSI
DIMO 3 SLL

4 Influenza A

Smith–Waterman 16 TGSSKCVCSVIDLLLD
SCA 4 EELQ
ASCA-PSO 4 LLEM
IMO 4 SLVP
Improved IMO 6 TGSSKC
IMOG 3 LEM
DIMO 3 VLV

5 Influenza B

Smith–Waterman 24 FSTVFPPTSFGPLVRKIFVDGVPF
SCA 5 GRDGL
ASCA-PSO 7 FVDGVPF
IMO 4 KGRL
Improved IMO 9 FSTVFPPTS
IMOG 5 LSTFI
DIMO 3 LSL

6 Trachea Infections

Smith–Waterman 19 QQLRVESSSKLWAQCVQLH
SCA 5 VQLSL
ASCA-PSO 5 VQLSL
IMO 3 VPG
Improved IMO 8 QQLRVESS
IMOG 4 SFPL
DIMO 4 CYLA
other algorithms for aligning sequences with huge length since
the serial execution of IMO and PSO algorithms. However, its
execution time still reasonable in comparison with the time of
the SW algorithm.

5. Conclusion and future work

This paper proposed enhancement for FLAT based on novel
ybrid optimization of IMO and PSO algorithms. The key to hy-
ridization is using the exploration of the IMO and then mapping
olutions to PSO to exploit it and then mapping solutions to IMO,
nd this process is repeated for some iterations. To guarantee the
fficiency of FLAT based on the IMO-PSO algorithm, it was tested
o measure the LCCS between biological sequences gathered at
arious levels of lengths. The performance criteria are the average
f LCCS found for 15 independent runs and the success rate for
inding 75% of the real LCCS founded by the SW alignment algo-
ithm. IMO-PSO algorithm has the superiority to find the average
f LCCS with percent 93.5% on average of various lengths, and the
ollowing is the ASCA-PSO algorithm produces average LCCS with
ercent 83%. IMOG algorithm proposes little enhanced IMO but
oor than the IMO-PSO algorithm. SCA, IMO, and DIMO produces
poor percentage of LCCS found. However, IMOG and DIMO

ucceeded in optimizing another engineering problem efficiently
but cannot succeed in optimizing FLAT, which guarantees No
Free Launch theorem. Besides, the IMO-PSO algorithm has the
superiority with the highest success of rate for finding 75% of the
length of LCCS founded by the SW algorithm overall lengths of
sequences. For measuring the performance of IMO-PSO algorithm
efficiency versus other algorithms for FLAT, it was used to analyze
orflab polyprotein and surface glycoprotein of COVID-19 versus
other diseases to finds the common features. IMO-PSO proves its
superiority to locate the LCCS found by the SW algorithm in all
cases of the test; however, ASCA-PSO algorithm success in most
cases but not all, especially in sequences that have many common
features with the same lengths. Therefore, this paper presents
an enhanced version of FLAT based on a novel hybrid technique
of IMO and PSO that produces alignment results with percent
93.5% of that one produced by SW alignment. But in a reasonable
time that motivates biological researchers to use FLAT for primary
scanning of the biological database to finds common features of
COVID-19.

As future work, the percentage of LCCS founded by FLAT using
IMO-PSO algorithm LCCS can be enhanced. Besides, the limitation
of the execution time of it must be overcome, especially for
sequences with more lengths, and a parallelized model of the

IMO-PSO algorithm on GPU can be proposed.
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Table 7
Testing the Local aligner based Improved IMO for finding LCCS of the surface glycoprotein of COVID-19.
Protein ID Method Score The obtained LCCS

1 A0A329S877

Smith–Waterman 5 VIRGD
SCA 3 IAN
ASCA-PSO 5 KLIAN
IMO 2 IA
Improved IMO 5 VIRGD
IMOG 2 LL
DIMO 2 FLV

2 A0A178ALB2

Smith–Waterman 4 EPLV
SCA 3 SSG
ASCA-PSO 4 GAGA
IMO 3 KGV
Improved IMO 4 GAGA
IMOG 3 PGQT
DIMO 3 KGV

3 A0A1B8CCB5

Smith–Waterman 4 SANN
SCA 3 CCS
ASCA-PSO 4 SANN
IMO 2 SA
Improved IMO 4 SANN
IMOG 4 CCSA
DIMO 4 LS

4 ATZ77013.1

Smith–Waterman 4 KIAD
SCA 3 AYT
ASCA-PSO 4 KIAD
IMO 2 NL
Improved IMO 4 AYTL
IMOG 3 LYR
DIMO 2 SQ

5 2H2Z_A

Smith–Waterman 5 DLEGK
SCA 3 DLL
ASCA-PSO 5 DLEGK
IMO 3 NGL
Improved IMO 5 DLEGK
IMOG 2 ED
DIMO 3 FLV
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