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Abstract
The potential to use quantitative image analysis and artificial intelligence is one of the driving forces behind digital
pathology. However, despite novel image analysis methods for pathology being described across many publications,
few become widely adopted and many are not applied in more than a single study. The explanation is often straight-
forward: software implementing the method is simply not available, or is too complex, incomplete, or dataset-
dependent for others to use. The result is a disconnect between what seems already possible in digital pathology
based upon the literature, and what actually is possible for anyone wishing to apply it using currently available soft-
ware. This review begins by introducing the main approaches and techniques involved in analysing pathology images.
I then examine the practical challenges inherent in taking algorithms beyond proof-of-concept, from both a user and
developer perspective. I describe the need for a collaborative and multidisciplinary approach to developing and val-
idating meaningful new algorithms, and argue that openness, implementation, and usability deserve more attention
among digital pathology researchers. The review ends with a discussion about how digital pathology could benefit
from interacting with and learning from the wider bioimage analysis community, particularly with regard to sharing
data, software, and ideas.
© 2022 The Author. The Journal of Pathology published by JohnWiley & Sons Ltd on behalf of The Pathological Society of Great Brit-
ain and Ireland.
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Introduction

The growth of digital pathology and whole-slide imag-
ing have created the opportunity to extract more infor-
mation from histological samples through image
analysis. However, despite considerable progress over
the last decade, digital pathology analysis remains diffi-
cult to employ in practice and much of its promise
remains to be fulfilled.

The core ideas of image analysis are quite straightfor-
ward, although applying them is not. A digital image is
composed of pixels. In pathology, most images are
brightfield whole-slide scans in RGB format: this means
that each pixel comprises three numbers—usually 8-bit
integers in the range 0–255—that together represent
the red, green, and blue components of the colour used
to display the pixel. A typical whole-slide image can
therefore be thought of as a Width � Height � 3 array;
the width and height often exceed 100,000 pixels each,
so the raw data comprises billions of numbers. The chal-
lenge of analysis is to identify and interpret meaningful
patterns within these numbers—and to do so in a way
that is robust to variation from multifarious sources,

including biology, tissue processing, staining, and scan-
ning. Even a small study containing tens of images
requires us to grapple with trillions of pixels, fromwhich
we often want to extract at most a few actionable insights
per image.
The richness of histopathology imaging data means

that a single whole-slide scan affords a plethora of possi-
bilities for analysis. Ideally, our choice would be driven
by the precise question we want to answer from the
image. In practice, we are limited by the tools at our dis-
posal and how we use them. Most pathologists do not
write software, while few algorithm and software devel-
opers know very much about pathology; if digital
pathology software is to be useful, therefore, both sides
need to be able to communicate effectively with one
another. This involves having an accurate perception of
the strengths and limitations of each discipline, focus-
sing on areas where computational methods can have a
meaningful impact.
Numerous recent digital pathology and artificial intel-

ligence (AI) reviews provide an excellent overview of
progress towards clinical applications [1–6]. Here, I
aim to offer a practical assessment of the use and
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development of digital pathology tools in research
today. After distinguishing between approaches and
techniques, I describe some of the main challenges faced
by people who currently use digital pathology tools to
analyse their data. This review ends with a discussion
concerning how digital pathology could benefit from
insights and practices from the broader field of bioimage
analysis, particularly with regard to open data and
software.

Approaches to digital pathology analysis

Digital pathology analysis can be broadly categorised
into two main approaches: quantitative analysis and
AI-driven assessment. Although any specific application
might require a combination of both, one approach usu-
ally dominates. Making this distinction can help to eluci-
date issues concerning how algorithms are developed
and validated, and where a pathologist’s knowledge fits
into the digital system.

Quantitative analysis
Historically, pathology image analysis has focussed on
some combination of detecting, classifying, counting,
and/or quantifying specific ‘objects’ visible within the
image. These objects may be of different kinds and iden-
tified at different scales. For example, determining
whether a slide contains evidence of invasive primary
tumour [7], or metastatic tumour [8], or Helicobacter
pylori infection [9] are all primarily detection tasks.
Often, what is detected needs to also be classified; for
example, nuclei might be classified according to differ-
ent cell types, and this used to determine metrics predic-
tive of therapeutic response, such as the relative
proportions of lymphocytes and tumour cells [10]. Alter-
natively, we might eschew cell detection in favour of
classifying pixels directly as belonging to tumour epithe-
lium, stroma, or other tissue types, and from this quan-
tify the areas occupied by each tissue class (for
example, to assess fat proportion [11], or the tumour-
stroma ratio [12,13]). Each of the suggested analyses
could be applied to the same whole-slide scan of a tissue
section, depending upon the questions we wish to
address.
The common feature of such quantitative analysis is

that it is concerned with assessing something that is
well-defined and visible. In principle, it replicates what
a pathologist could ascertain by looking at a slide. A
knowledgeable observer can determine whether the
analysis has been performed appropriately by visualis-
ing what has been detected, classified, and quantified.

AI-based assessment
The problems that may be addressed through quantita-
tive analysis are often surrogates for what we really want
to know. This includes questions concerning what diag-
nostic or prognostic information we can determine from

the image, or to which treatment a specific patient is
likely to respond.

Much recent work in digital pathology has focussed
on demonstrating how such questions may be
approached more directly—without explicitly detecting
or quantifying specific features. An early example dem-
onstrated that AI techniques could predict mutations in
six commonly mutated genes in lung adenocarcinoma
[14]. Similar strategies have since been applied to pre-
dict mutations for many more genes across a wide range
of tissue types [15–19]. Other studies have shown that
AI may be used to directly predict patient outcome from
hematoxylin and eosin [H&E] slide scans [20–23].

In these cases, the output is a prediction that is not
based on directly measuring any particular feature or
structure. This makes verifying the result more difficult,
at least on a per-image basis. Confidence needs to be
earned through: (1) large-scale validation studies using
diverse datasets, and (2) the ability to visualise regions
of the slide that contributed more or less strongly to the
result. Such visualisations can reveal that the AI has
learned to base its predictions of regions of the image
that are already known to be clinically relevant [15,16].

Hybrid approaches
While not all digital pathology applications fit neatly
into the two categories above, we may still distinguish
between outputs that are amenable to visual verification
and those that are not. For example, numerous AI-based
methods have been developed for Gleason grading
[24,25]. Some include elements of object detection and
quantification before the application of AI, whereas
others operate more directly on the pixels without
explicit detection; either way, a pathologist can judge
the algorithm’s performance by comparing the final gen-
erated gradings with their own assessments. This differs
from an AI-based approach to prostate cancer risk strat-
ification [26] or cancer recurrence prediction [27],
designed without recourse to any established grading
system, which is less amenable to visual verification—
and therefore perhaps less appealing to pathologists in
terms of adoption.

Techniques for image analysis

Regardless of approach, the fundamental challenge of
digital pathology remains the same: to uncover patterns
among the pixels. This involves applying mathematical
operations to the numbers in the input image, typically
in a way that progressively transforms the image into a
form in which the key features can be separated from
everything else. While each individual operation may
be straightforward, complexity ensues whenever
hundreds—or even thousands—of such operations are
combined into an algorithm that is applied to billions
of pixels. Nevertheless, recognising the essential sim-
plicity of building blocks used to construct digital
pathology algorithms is central to understanding their
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strengths and predicting their limitations. In some cases,
the success or failure of a complex analysis can come
down to a single cutoff threshold applied at a key step.

Conventional image processing
Conventional image processing involves explicitly
defining the processing operations involved, typically
drawn from a wide range of established techniques. For
example, processing an H&E image often begins with
stain separation by colour deconvolution [28]; this effec-
tively recombines the red, green, and blue values for
each pixel using a weighted sum characterised by the
stain colour. This may be followed by a convolution:
an image filtering operation that replaces each pixel by
a weighted sum of the neighbouring pixels; the weights
are defined by a convolution kernel, and different kernels
result in output images that highlight different kinds of
feature at different scales (e.g. filamental structures,
edges, blobs of different sizes). Convolution is often
applied to duplicates of the image using different ker-
nels, then recombined by adding or subtracting corre-
sponding pixels. Eventually, an image is produced
wherein the pixel values corresponding to structures of
interest can be separated from all other pixels by apply-
ing a threshold, thereby generating a binary image repre-
senting distinct objects that can be measured. Some
additional operations may be needed (e.g. nonlinear fil-
ters, distance or watershed transforms) to adequately
split clustered objects or refine boundaries. A link to an
overview of these techniques is provided in the ‘Data
availability statement’ section.

The digital pathology literature is replete with image
processing publications at all levels: describing individual
operations (e.g. new approaches to stain separation), com-
binations of operations for generic tasks (e.g. nucleus
detection), and full algorithms devised for specific applica-
tions (e.g. Ki67 evaluation in breast cancer). In each case,
the processing is hand-crafted and deterministic. Core
operations can be endlessly adjusted and recombined to
construct different algorithms for different purposes.

Machine learning
Crafting robust image processing algorithms requires
substantial effort and a good understanding of the data.
It also takes imagination: the developer needs to guard
against the many ways in which the algorithm might fail
on unseen images, artefacts, and anomalies. In practice,
this can never be entirely successful: it is hard to think
of everything that might go wrong, and even recognised
problems are hard to overcome.

This would be easier if the computer could exhibit
human-like intelligence, informed by example and expe-
rience. Such AI can be achieved (to an extent) by using
the techniques of machine learning to train a model capa-
ble of making useful predictions on new data. Here, we
will focus on supervised machine learning, whereby
the model is trained to make predictions using labelled
data with a defined target. This is in contrast to

unsupervised approaches, which may be used to find
clusters in data whenever labels are unavailable [29].
Developing a supervised machine-learning algorithm

for digital pathology requires inputs with associated
labels, a model capable of making predictions from the
inputs, and a loss function that computes an error
between a prediction and a label. The goal during train-
ing is to iteratively refine the model until the loss
between predictions and labels is minimised. The con-
cept is very generic, and labels take different forms
depending upon the task at hand. For example, regions
annotated by a pathologist might be used to derive a
label for every pixel of an image, and used to train a
model that generates similar labels from new images that
we convert to objects for quantitative analysis. Alterna-
tively, an image may have a single associated label—
perhaps based upon a pathologist’s assessment, or other
available data—and the model should also make a single
prediction, such as mutational status or patient outcome.
Traditionally, machine-learning models have been

based on techniques such as random forests, support vec-
tor machines, and logistic regression [29,30]. The algo-
rithm developer chooses features from the image that
could be relevant for prediction, and which will be pro-
vided as model inputs. These features are often the result
of applying common image processing operations
(e.g. convolutional filters with predefined kernels),
although they might also be determined from objects pre-
viously detected in the image (e.g. the size, shape,and
density of nuclei). Thus, image processing is still
involved, but the developer does not explicitly define all
the operations; rather, they tune the algorithm indirectly
through the choice of training data, features, and model.
Deep learning refers to a subset of machine-learning

methods that have proven particularly powerful across
multiple domains [1,2]. For imaging applications, a
deep-learning model is frequently a type of convolutional
neural network (CNN).As the name suggests, a CNN also
relies upon convolution to generate features—however,
the kernels themselves are learned during training. This
has a profound impact upon what can be achieved. By
learning hundreds of such convolution filters and apply-
ing them in combination with other nonlinear transforms
and resizing operations, deep learning effectively frees
us from the limits of human imagination in defining the
input features. In practice, this makes it possible to iden-
tify far more complex or subtle patterns than could be
found using other contemporary approaches—at a cost
of requiring much more computational power.

Comparison of techniques
This very brief overview aims to demonstrate the over-
laps between image processing, machine-learning, and
deep-learning approaches to digital pathology analysis.
Ultimately, all are applied to the pixel values of the
image. Convolution—scaling and summing neighbour-
ing pixel values—plays a starring role in each case.
An advantage of using conventional image processing

exclusively to develop an algorithm is that the methods
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are well-defined and tractable. The developer tunes per-
formance by setting key parameters, such as filter sizes
and thresholds. Simplicity is a virtue: an algorithm that
uses a small number of intuitive parameters is easy to
apply and adapt to work on new images, whereas a com-
plicated, hand-tuned algorithm is likely to be brittle and
overfit to one dataset. However, simplicity is also a lim-
iting factor: the complexity of pathology data means that
image processing alone is often insufficient.
A benefit of traditional machine learning is that the

developer can focus on higher-level questions: instead
of devising fixed rules, they can provide training data
and labels representing the images that should be han-
dled. Developing and applying traditional machine-
learning models can also be very fast: a model can
be trained in a matter of seconds while interactively
annotating an image, and progressively refined if
required [13], although a more structured approach
to model training across multiple images is usually
preferable. However, even with extensive training
the success will ultimately depend upon the useful-
ness of the input features, which may simply not be
informative enough. Since key parameters are
wrapped up inside the model, they cannot be readily
tuned to work on new images. When the algorithm
fails, we need to train a new model.
Most of the observations regarding traditional

machine learning also apply to deep learning, with
two important caveats. The first is that training a
deep-learning model from scratch is usually much
slower: typically requiring several hours or more,
depending upon the model, training data, and compu-
tational resources available—although this can be
substantially reduced if the training can instead be
applied to fine-tune an existing model. The second is
that the model performance is much less limited by
available features, although it remains constrained
by the available training data and definition of the loss
function.
In practice, all techniques have strengths and weak-

nesses. Sophisticated analysis problems usually require
elements of them all to be combined (Figure 1).

Analysis in practice

Anyone seeking to develop or apply digital pathology
methods encounters many of the same challenges. Here
I discuss some of the main difficulties, and consider
ways they may be addressed.

Generalisation and bias
Limited generalisation affects all digital pathology anal-
ysis, and has been described as ‘probably the single most
important obstacle for wide-scale implementation of
[computational pathology] techniques in the clinic’ [1].
A seemingly successful algorithm can be thwarted in
different—and often subtle—ways when confronted by
data that differs appreciably from that used for develop-
ment. For example, the top-ranked deep-learning algo-
rithms in the CAMEYLON17 grand challenge for
detecting lymph node metastases were all reported to
struggle with benign areas that occurred rarely in the
training set [31]. Another study reported improved
robustness by using both a much larger training dataset
and weaker annotations (i.e. slide-level labels, rather
than contours outlining individual metastases), but still
acknowledged a drop in performance when slides used
for training and testing were acquired from different
sources, or using different scanners [7]. Subtle, subvi-
sual changes in input images can also result in quite dif-
ferent predictions using some deep-learning approaches,
which can even be used as a form of ‘attack,’whereby an
image is deliberately manipulated to cause a different
prediction [32].

One strategy to address this is to include more diverse
training images from different sources, acquired using
different scanners. A problem, however, is that this can
introduce learnable hidden variables, and thereby batch
effects [33]. For example, a study applying deep learning
to melanoma slides from five institutions demonstrated
that it was possible to learn information about slide ori-
gin, scanner type, patient age, and even (to a lesser
extent) slide preparation date [34]. A similar study
showed that site-specific signatures are identifiable

Figure 1.Nucleus segmentation using image processing, with and without deep learning. (A) Original H&E image. (B) Result of processing the
image using colour deconvolution and image filtering to extract the haematoxylin information. (C) Segmented nuclei using a publicly avail-
able StarDist deep-learning model trained for fluorescence data [44]. By using the processed image as input rather than the original, the
model can achieve reasonable nucleus segmentation performance despite not being trained for H&E images. (D) Result of QuPath’s built-
in cell detection using conventional image processing. The StarDist deep-learning approach results in more regular contours and better han-
dles densely-packed regions, although the total number of nuclei detected are similar (319 and 331, respectively).
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within the images in The Cancer Genome Atlas
(TCGA), and these have a relationship to ethnicity
[35]. Such effects may provide an inflated estimate of
accuracy or a systematic bias if the model learns charac-
teristics that correlate with the training labels due to the
cohort makeup, rather than the disease.

Another way to broaden the training data is to aug-
ment it using image-processing operations that deliber-
ately introduce random variations (e.g. in resolution,
rotation, colour, and sharpness), thereby pushing the
model towards learning more informative features [36].
Alternatively, one can take the reverse approach of mak-
ing the model inputs more standardised at the prediction
stage by stain normalisation [37,38]. These methods are
not exclusive, and the best results may be achieved by
both broadening the model training with diverse and
augmented data, and then narrowing the input variation
with stain normalisation [36].

Cell detection
The problem of generalisation is particularly clear in the
continued struggle to accurately detect cells. This is a
fundamental part of many pathology analysis work-
flows. Although few topics in bioimage analysis have
received as much attention as nucleus segmentation, a
review in 2012 describes how it remained unsolved after
more than half a century of effort [39]. The last decade
has seen substantial progress using deep learning, with
hints that a single solution that handlesmost tissue, stain-
ing, and scanning variation is achievable [40–44]. Nev-
ertheless, more work is needed devise accurate, robust,
and computationally-efficient cell detection methods
that are incorporated into widely-used software. This is
particularly important because failures in cell segmenta-
tion are not randomly distributed, but rather tend to
increase with specific morphologies.

Boundaries and cutoffs
A benefit of image analysis is that it enables us to quan-
titatively answer more detailed questions from images.
An inconvenience is that, freed from the imprecision of
human visual estimation but lacking the expert’s intui-
tion, we are pushed to define what should be assessed
to a higher degree of exactness. This means imposing
hard boundaries where none may exist. For example,
the area of a tumour region may be precisely
determined—but only if one accepts a precise boundary
defining the tumour. Pathologists annotating tumour
regions draw quite different contours, each of which
may be justifiable for a particular purpose, but each of
which would have a different area [45]. Accepting the
lack of a definitive ground truth, one may argue for the
value of digital pathology because it reduces human sub-
jectivity and improves reproducibility. However, the
reality is more complicated. The problem of limited gen-
eralisation means that the algorithm may produce one
boundary for an image scanned using a particular scan-
ner, but quite different boundaries if the same slide is

scanned on a different scanner. The extent to which this
occurs needs to be explored case-by-case, but one should
avoid assuming a priori that a digital method will reduce
variation.
Similarly, when analysing immunohistochemistry

(IHC) images, a cell may be classified as ‘positive’ or
‘negative’ (or 1+, 2+, 3+) by applying fixed cutoff
thresholds based upon a summary measurement of the
pixel values within the cell. Given that measured stain-
ing intensity is effectively a continuous variable, the pre-
cise choice of threshold can have a considerable impact
upon output metrics—such as positive percentage,
H-score [46,47], or Allred score [48]—if a significant
proportion of cells are measured close to the threshold
value. At first glance, digital scoring still seems prefera-
ble to relying upon a pathologist’s visual impression,
since the digital cutoff can be strictly defined and
fully reproducible. However, if the threshold is held
constant but the image would have different colour
characteristics—perhaps due to staining variations, tis-
sue thickness, or the choice of scanner—the analysis
would still yield different results. Locking the algorithm
parameters is therefore not in itself sufficient for repro-
ducible analysis, unless one can also lock all other prea-
nalytical variables that will impact the pixel values
(Figure 2).
One might wish to mitigate this by avoiding hard

thresholds, and using instead continuous measurements
of staining intensity. While image analysis software
can certainly derive numbers from such staining, these
remain subject to imaging variations—and can easily
be overinterpreted, e.g. if one ignores the biophysical
properties of the diaminobenzidine (DAB) substrate
[49]. Another tempting way to avoid the issue is to use
machine learning to determine IHC positivity. This too
requires caution, since it reduces tractability without
necessarily improving results. For nuclear markers such
as Ki67, we need to be careful that confounding features
(e.g. nucleus size) cannot unduly influence any model
prediction. Nevertheless, a machine-learning approach
may be justifiable for markers exhibiting complex stain-
ing patterns (e.g. PD-L1), for which too much informa-
tion is lost by simple summary metrics of staining
intensity.
There are, of course, other data-driven and adaptive

approaches to determining IHC positivity cutoffs
[50,51]. The key point is that image analysis using digi-
tal pathology can give a range of plausible results based
upon the interaction of the algorithm, its parameters, and
the data under consideration—including all preanalyti-
cal sources of variation. We should continually resist
the ‘illusion of objectivity’ by recognising potential
errors and limitations, and incorporating this knowledge
into how we design algorithms and interpret their out-
puts [52].

Working across disciplines
These observations should not be interpreted as under-
mining the importance of digital pathology, nor
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suggesting that it cannot or does not reduce subjectivity;
rather, they emphasise that it will not do so necessarily.
Generalising is hard, there are many pitfalls, and valida-
tion details matter. Developing truly robust methods
requires expertise from a range of disciplines—
including pathology, histology, imaging, image proces-
sing, machine-learning, statistics, and epidemiology—
to come together. These problems are being tackled,
including through increased attention being given to
‘explainable AI’ for digital pathology [53] and the crea-
tion of guidelines for the use of AI in clinical trials
[54,55]. Software and algorithm developers can help
by documenting their design decisions, drawing atten-
tion to known weak points and key parameters, and pro-
viding visualisations that make it easier for others to
understand what the analysis is really doing.
Detection and classification remain the most difficult

(and error-prone) steps for most quantitative analyses.
False-positives and -negatives occur even when using a
deep-learning approach—particularly in the presence
of mimics or artefacts. On the other hand, counting and
quantification are often trivial from a computational per-
spective. This largely represents an inversion of a human
pathologist’s skillset: an experienced pathologist may
reliably distinguish the structures of interest while ignor-
ingmimics and artefacts, but cannot feasibly count a mil-
lion classified cells or precisely determine a 1-mm2

hotspot by eye alone. This suggests that an optimal
arrangement may combine the strengths of human and

computer, and factor the limitations of algorithms into
how they are used. One pragmatic solution for quantita-
tive analysis is to require manual input when defining a
region of interest, to steer the analysis away from chal-
lenging areas or artefacts. A proposed approach for AI-
based assessment is to use AI as a form of triage, priori-
tising sensitivity over specificity [7].

Implementation, accessibility, and openness

The difficulty of developing robust, fully-automated
analysis methods may partly explain why few digital
pathology algorithms have moved beyond publications
into becoming available to pathologists. However, algo-
rithmic challenges are only one consideration in the cre-
ation of useful digital pathology tools.

Proof-of-concept versus usable methods
Research groups developing computational methods
have traditionally published articles describing their
own bespoke algorithms, validated on their own in-
house datasets. If code and data are shared at all, it is
often ‘by reasonable request’. This presents a consider-
able barrier to anyone who might wish to test whether
the method works on their own data: they need permis-
sion and support from the original authors, who may
be unable or unwilling to provide it [56]. The alternative

Figure 2. The impact of algorithm parameters and cutoff thresholds on images. QuPath’s ‘positive cell detection’ command is used to deter-
mine Ki67 labelling indices for the same field of view, acquired using two different scanners. This conventional image-processing algorithm
uses multiple adjustable parameters, although here only the thresholds for nucleus detection and DAB positivity are varied. Horizontally adja-
cent images are from the same scanner, while vertically adjacent images are generated using the same thresholds. Detected nuclei are shown
as red or blue, depending upon whether they are classified as positive or negative, respectively. Changing either threshold or the scanner can
substantially change the results, although typically in predictable ways (e.g. a high detection threshold leads to negative nuclei being missed,
and the labelling index is inflated; a high DAB threshold leads to positive nuclei being misclassified as negative, and the labelling index is
reduced). Combining this knowledge with a careful evaluation of the markup images, it is possible for a user to identify and address many
errors by adjusting algorithm parameters accordingly.
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is to try to reimplement the method from the published
description—but this inevitably involves considerable
effort, and guesswork where the description is incom-
plete [56].

This closed, ‘share-on-demand-(perhaps)’ approach
assumes that the key research contribution of a new com-
putational method is the idea described in the article—
relegating implementation to a technical detail [57].
However, implementation within software is crucial for
the method to be used by anyone, and real-world use
determines the true value of the idea [39,58].

The situation is improving as open research becomes
required by some funders and journals [59,60]. ‘Open’
does, however, afford considerable room for interpreta-
tion [61]. Although more papers include code as supple-
mentary material, what is publicly shared is seldom
sufficient to replicate the analysis or apply the method
to new data [56]. The data used to train an AI model
and the AI model itself are rarely made available—
meaning that any researcher wishing to test a published
method must still replicate a large amount of the work
in the original study to train their ownmodel. This means
it can take weeks or months of effort to fill in the gaps to
find out whether an ostensibly ‘open’ method works or
not. There is often little incentive for someone with the
requisite knowledge to put in the effort, because it is time
not spent developing the ‘new’ methods they may need
to advance their own careers. This contributes to a scien-
tific literature replete with novel algorithms and proofs
of concept, but few usable implementations available
to the wider community. Different groups reinvent sim-
ilar techniques, and there is a substantial disconnect
between what seems possible (based on the literature)
and what is possible (based upon available software).

Complications of sharing
The reasons for this are understandable: sharing data and
code is hard. On one side, whole-slide images are large:
making them available requires data storage and band-
width, which come at a cost. The images are also typi-
cally saved in bespoke, scanner-specific file formats
that include additional labels and metadata; this makes
them difficult to anonymise both fully and with confi-
dence that nothing has been missed [62]. Sharing also
raises important questions around how the images may
be used, including whether it is permitted to develop
commercial AI models based on them; these must be
resolved, with clear license statements provided, for
others to safely use the shared data [63,64]. While each
may be surmountable, this combination of technical,
financial, legal, and ethical hurdles can make sharing
raw images extremely difficult.

Sharing code is also not without risk and complication
[65–67]. An obvious risk is that the code may simply not
do what it should. Bugs are inevitable in any sophisti-
cated software, and researchers who share their code
expose themselves to criticism—even retraction—if
their software is shown not to do what is described in
the paper [68]. But even if it works as described, making

software open involves taking on a lot of additional work
and responsibility [69,70]. Code intended for public con-
sumption typically needs to be of a higher standard than
in-house code; one cannot make simplifying assump-
tions (e.g. only supporting image files from a single
scanner), and must pay considerably more attention to
code-quality, portability and ease-of-installation. Appro-
priate software licenses should be chosen [71], which
can involve securing agreement from a range of stake-
holders with different priorities (including principal
investigators, funders, innovation departments). Then,
if the software has sufficient appeal and the authors
desire to maximise its usefulness, the work is really only
beginning: users require documentation and ongoing
support, perhaps lasting far beyond the grant that origi-
nally funded the work [69].

Common datasets
The problem of sharing the data used to develop an algo-
rithm can be partially circumvented by using common
public datasets. Notably, the pathology slides from
TCGA and The Cancer Imaging Archive (TCIA) have
been widely used by the digital pathology community
[15,16,23,33,72–75]. This has limits: TCGA/TCIA
images are not intended to be definitive and cannot be
fully representative [75]—for example, the majority are
of frozen sections in Aperio’s SVS file format—and
exclusive use of TCGA to train and validate algorithms
can lead to overly-optimistic performance assessments
[35]. Nevertheless, TCGA/TCIA have proven valuable
and will continue to play an important role in advancing
the field, alongside new image repositories such as that
being created through the IMI-BIGPICTURE pro-
ject [76].

Grand challenges
Irrespective of whether the data are public or not, when-
ever a research group develops, validates, and publishes
their own algorithm, it is impossible to guard against the
limitations of publication bias and multiple hypothesis
testing—however inadvertent this may be—because
the algorithm that is published will inevitably be the
one that ‘worked’. Grand challenges provide a way to
address this [4]. A grand challenge involves organisers
releasing a labelled dataset, along with detailed informa-
tion about assessment metrics. Groups then compete to
develop algorithms using these data and metrics. Cru-
cially, the organisers withhold additional labelled data
used to rank algorithm performance. Grand challenges
are often held in conjunction with conferences, where
the best-performing algorithm is unveiled and the
methods described in a later publication. Prominent
examples for pathology include the CAMELYON16
and CAMELYON17 challenges to detect lymph node
metastasis [8,31], the GlaS challenge for colon gland
segmentation [77], the BACH challenge to classify diag-
nostically relevant regions in breast cancer biopsies [78],
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and the PANDA challenge for Gleason grading of pros-
tate cancer [25].
Grand challenges have proven extremely effective in

galvanising the community—across both academia and
industry—to work on solving a specific problem, with
a consistent method of comparing performance. There
are inevitably limitations, and impressive results in a
challenge do not indicate that a problem has been
‘solved’ [31]. For example, the rankings do not necessar-
ily reflect the algorithm that is ‘best’ in terms of general-
isation and performance on most real-world data, but
rather only how algorithms fared using the specific test
dataset and defined metrics [79]. Particularly when the
same group may submit multiple algorithms, one can
attempt to game the system or achieve a high score with-
out necessarily developing a practical method that others
may use. Nevertheless, grand challenges are open by
design, and multiple groups competing in the challenge
will be able to review and critique the data and metrics;
this represents a major improvement over groups pub-
lishing incomparable work using their own in-house data
and assessment criteria. Recently, guidelines have been
published that aim to improve the transparent reporting
of challenges [80].

Open data and software
Much modern science depends upon Free and Open-
Source Software (FOSS), often referred to simply as
‘open software’. Users of FOSS tend to focus on the
‘free’ aspect in terms of ‘no financial cost’. However,
proponents of open software use ‘free’ in a broader
sense, referring also to the freedom to use the software
for any purpose, to examine and modify the source code,
and to redistribute both original and modified copies
[71]. These elements are central to open software’s
unique contribution to research, enabling methods to
not only be accessible to others, but to be interrogated,
extended, enhanced, and shared by the wider commu-
nity. Indeed, scanner vendors often provide image
viewers that can be freely downloaded, but for which
source code is not available, and numerous research pub-
lications provide software code only with restrictions
(e.g. noncommercial use only); despite the lack of finan-
cial cost for the user, neither is FOSS.
Sharing digital pathology tools under a recognised

FOSS license goes some way towards enabling them to
be used freely by others. However, ‘software’ itself is a
broad term: much software exists in the form of code
libraries or scripts that lack the user-friendly interface
and visualisation capabilities required by nonprogram-
mers. Components such as these must be incorporated
into larger software applications to be directly useful
for pathologists. This larger application may or may
not then be open itself; many companies integrate
open-source components into their proprietary software.
Developing, documenting, and supporting compre-

hensive software applications is complex, challenging,
and time-consuming [69,81]. It is infeasible—and
undesirable—for individual research groups to develop

their own complete software applications simply to
make their algorithms more usable. Fortunately, it is also
not necessary. Several open software platforms exist that
can solve the majority of the challenges around data
management, visualisation, and interactivity while per-
mitting others to add new algorithms and functionality
for specific tasks.

The most important demonstration of this in the bioi-
maging community is ImageJ (NIH, Bethesda, MD,
USA). Over more than a quarter of a century, ImageJ
has dominated bioimage analysis and a recent review
listed its direct precursor, NIH Image, as one of the
‘ten computer codes that transformed science’ [82].
Extensibility is key to ImageJ’s continued success: when
developers release new algorithms as ImageJ macros
or plugins, users can install and run them, without
needing to learn a whole new interface [83]. Several
other bioimage analysis applications with a similar
philosophy were later developed, including 3D Slicer
[84], CellProfiler [85], and Icy [86].

All of these predate the growth of digital pathology,
and none were designed to handle the specific challenges
of whole-slide image analysis. A few ImageJ plugins for
pathology applications enable relatively straightforward
processing techniques to low-resolution images or
cropped fields of view [87,88]. Without full whole-slide
or AI support, these have limited use nowadays, but were
nevertheless important in demonstrating the value of open
methods being available for pathologists. More recently,
several new open-software applications have been devel-
oped with whole-slide image analysis as a primary goal
[89], including TMarker [90], Orbit [91], and QuPath
[13] (desktop applications), and Cytomine [92] and the
Digital Slide Archive [93] (web-based platforms).

The importance of making research software that is
open and flexible extends beyond enabling the analysis
from a single paper to be reproduced. To take one exam-
ple, QuPath’s original publications had a narrow focus
on colon and breast cancer biomarkers [13,94], but the
software has since been further developed and used in
over 1,000 published journal articles across a wide range
of diseases and applications. Openness means that the
strengths and limitations of the tool can be freely
explored, independently of the author’s claims, and
numerous studies have compared QuPath-based analysis
with both other software and with manual evaluation
[95–99]. Groups using QuPath have made their scripts,
extensions, and protocols available to aid reproducibil-
ity, in a way that could not be achieved without open
software [10,100,101].

The value of openness applies not only to code and
data. The Scientific Community Image Forum (https://
image.sc) was established to help improve the practice
of scientific image analysis [102]. It is now the primary
discussion channel for more than 40 open-software pro-
jects, including ImageJ, QuPath, Orbit, and Cytomine
[69]. The forum aims to be inclusive and collaborative,
with users from many disciplines contributing to discus-
sions. Currently, image.sc contains over 200,000 posts
across more than 28,000 different topics—each tagged
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and searchable—with more added each day. The forum
acts both as a substitute for paid software support and
as a venue for cross-disciplinary discussions, while
simultaneously providing community feedback directly
to developers.

Outlook

The potential of deep learning for AI-based assessment
of clinical samples has been firmly established. Never-
theless, significant challenges remain concerning gener-
alisation and validation if we are to see robust algorithms
come into widespread clinical use [1]. These challenges
cannot be adequately addressed by individual groups
working solely with in-house or public data. Rather, they
will require long-term projects incorporating insights
from multiple disciplines, large and diverse datasets,
and innovative approaches to training AI models at scale
[62].

In the meantime, digital pathology analysis is
already widely used. This is driven by the proliferation
of whole-slide scanners in research institutes, which
has dramatically increased the number of scientists using
histological samples for basic biology, preclinical, and
veterinary studies. These data include H&E alongside
other stains and IHC markers, across tissues, species,
and image types—including multiplexed immunofluo-
rescence and imaging mass cytometry data, the value
of which can only be realised through computational
analysis [103,104]. The ubiquity brings concerns: digital
pathology in no way changes the fact that biologists
should engage with pathologists to properly evaluate
such data [105,106], but rather adds a need to understand
the computational methods used as well. This is made
difficult by a lack of pathologists, image analysis spe-
cialists, and capable software tools to meet the growing
and varied demand [106,107].

The growth of open science enables anyone with an
interest in the field to contribute directly. This
includes sharing data and code under open licenses
where possible. Developers know that custom algo-
rithms and AI-models will often fail on new data,
but this is no reason to withhold them: the limitations
of the field need to be understood if they are to be
addressed. In some cases, providing open software
will enable more researchers to analyse their own data
efficiently and effectively; in others, it may lead to
finding that the software does not work as expected.
Either outcome provides more value to the scientific
community than a published method that lacks any
usable implementation.

In the past, a pathologist engaging in digital pathology
algorithm development might expect to spend hours
laboriously outlining thousands of image regions, with
no clear path leading to software they could later use.
This should no longer be the case. Devising efficient
annotation strategies is a computational problem that
can be solved, while developers can make their

algorithms accessible through open-software platforms
if they wish. Through initiatives like the Scientific
Community Image Forum, pathologists can directly
engage with algorithm and software developers, sharing
their expertise and expressing their needs [102]. By
understanding the strengths, challenges, and incentives
of researchers and companies who develop digital
pathology software, we can all contribute to a scientific
culture that enables the field to advance more rapidly.
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