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Abstract

Many animals migrate to take advantage of temporal and spatial variability in resources.

These benefits are offset with costs like increased energetic expenditure and travel through

unfamiliar areas. Differences in the cost-benefit ratio for individuals may lead to partial

migration with one portion of a population migrating while another does not. We investigated

migration dynamics and winter site fidelity for a long-distance partial migrant, barren ground

caribou (Rangifer tarandus granti) of the Teshekpuk Caribou Herd in northern Alaska. We

used GPS telemetry for 76 female caribou over 164 annual movement trajectories to identify

timing and location of migration and winter use, proportion of migrants, and fidelity to differ-

ent herd wintering areas. We found within-individual variation in movement behavior and

wintering area use by the Teshekpuk Caribou Herd, adding caribou to the growing list of

ungulates that can exhibit migratory plasticity. Using a first passage time–net squared dis-

placement approach, we classified 78.7% of annual movement paths as migration, 11.6%

as residency, and 9.8% as another strategy. Timing and distance of migration varied by sea-

son and wintering area. Duration of migration was longer for fall migration than for spring,

which may relate to the latter featuring more directed movement. Caribou utilized four win-

tering areas, with multiple areas used each year. This variation occurred not just among dif-

ferent individuals, but state sequence analyses indicated low fidelity of individuals to

wintering areas among years. Variability in movement behavior can have fitness conse-

quences. As caribou face the pressures of a rapidly warming Arctic and ongoing human

development and activities, further research is needed to investigate what factors influence

this diversity of behaviors in Alaska and across the circumpolar Arctic.

Introduction

Migration is a widely exhibited behavior among diverse taxa, including invertebrates, birds,

mammals, reptiles, and fish [1–4]. Potential benefits of migration include escape from
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seasonally harsh environmental conditions, access to resources that vary over space and time,

and reduced pressure from predators, disease, or parasites [5–8]. To obtain these benefits,

migrants must endure the energetic costs of long-distance movement [9], bear the risk of navi-

gating through unfamiliar landscapes [10], and have morphological capabilities sufficient to

support migratory movements [7]. For some species, exposure to predation risk, hunting pres-

sure, pathogens, and anthropogenic or natural barriers may be greater for migrants than resi-

dent individuals [8,11,12]. This balance of costs and benefits can influence fitness rates of

animals [13,14], leading to tradeoffs in migratory versus residency behavior.

It is increasingly apparent that fitness tradeoffs resulting from different migratory behaviors

lead to behavioral variability not just among species and populations, but within them. Partial

migration–in which some individuals in a population migrate while others do not–is common

among many migratory taxa [15,16], though not ubiquitous [17]. Even within partially migra-

tory populations, simple classification into migrant and resident behavior is complicated by a

wide array of migration behaviors, such as variability in the distance of migration [11] and

decisions about when, where, and whether to migrate [18]. These can lead to fitness differences

among individuals that adopt different strategies [11,13]. Fluctuating environmental condi-

tions may further influence behavioral choices and their relative fitness impacts [13]. For

example, conditional migration has been reported in some ungulate species, in which environ-

mental conditions such as winter severity in a given year influence the likelihood that individu-

als migrate [19]. Such factors can result in changes in the prevalence of different behaviors

within partially migratory populations [13].

Though iconic and important for many ecological processes [2,20,21], long-distance migra-

tions are becoming imperiled across the globe [7,22–24]. Disruption of migration often has

been linked to significant declines in populations [7]. Large mammalian herbivores feature

many of the best-known and longest-distance terrestrial migrations in the world [25]. Potential

threats to migration are especially concerning for this group of species, as recent work has

highlighted the heightened extinction risk of large herbivores [26]. Better understanding the

set of traits that allow for migration, such as navigational ability, timing of movements, site

fidelity, sociality, and structural adaptations–the so-called “migration syndrome” [7,27,28]–as

well as the degree of flexibility in those traits at individual and population levels, provides

opportunities to comprehend natural variation in migratory species. Variability in migratory

movements increases challenges for conserving species, as it tends to expand the scope of con-

servation efforts and the need to coordinate across management entities, as well as creating sit-

uations where the effectiveness of actions taken in one area may depend on those taken in

other areas [29].

We investigate migratory flexibility in one of the world’s longest terrestrial migrants, barren

ground caribou (Rangifer tarandus granti) [25], focusing on the partially migratory Teshekpuk

Caribou Herd (TCH) in northern Alaska [30]. We focus primarily on migration and wintering

areas, complementing prior research describing calving distribution and summer resource use

for this herd [30–32]. Choice of wintering area by individuals of the TCH influences selection

of migration routes and has implications for interactions of caribou with human activity

including oil and gas exploration, development, hunting, and other activities by residents of

local communities. Anthropogenic activity within portions of the herd range increases during

winter, including snow machine travel and vehicle traffic along compacted snow roads used

for community transportation and along ice roads used for energy exploration and

construction.

Our primary objectives were to: 1) classify movement behavior of individual caribou to

determine the degree of partial migration (percentage migrants, residents, and other behavior)

over time, 2) characterize migration dynamics, identifying patterns of timing, distance,
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destination, and directedness of migration, and 3) analyze the degree of fidelity to wintering

areas accessed by individuals within the herd. We build upon research documenting TCH sea-

sonal distributions and movement timing prior to oil and gas development in the herd range

[30] to provide a baseline to compare future migration patterns under natural environmental

variation, infrastructure development, and climate change.

Methods

Study area and species

The TCH is one of four caribou herds that calve on the North Slope of Alaska, along with the

Western Arctic Herd, Central Arctic Herd, and Porcupine Caribou Herd. The TCH numbers

approximately 56,000 caribou [33]. The herd primarily calves around Teshekpuk Lake in

northwestern Alaska (Fig 1) [30–32], though some calving has been noted farther west [34].

After calving, the herd clusters along the coast and in riparian areas seeking relief from mos-

quitoes (Culex spp.) and oestrid flies (Hypoderma spp. and Cephenemyia spp.) before spread-

ing out to forage across the arctic coastal plain [30,31]. Unlike the other three large migratory

herds in northern Alaska, the majority of the TCH remains on the coastal plain year-round

[30,35]. Some TCH caribou remain resident near Teshekpuk Lake, others make a relatively

short-distance migration to wintering areas on the western coastal plain, while part of the herd

migrates from the coastal plain to overwinter in the Brooks Range mountains and areas farther

south [30].

Much of the TCH range is undeveloped. While there are small communities across the herd

range, none are connected by permanent roads and most lie near the coast (Fig 1). The oil and

gas industrial complexes of Prudhoe Bay and Kuparuk primarily lie to the east of the herd

range. Oil developments have moved into the eastern portion of the herd range in recent

years, and additional development extending west from existing infrastructure has been per-

mitted [36]. Other development in the herd range includes the Dalton Highway in the east that

connects Prudhoe Bay to Fairbanks and communities further south, and the Delong Mountain

Transportation System, servicing the Red Dog Mine in the west (Fig 1).

Data collection and preparation

All caribou were captured using a manually fired net gun from an R44 helicopter before being

restrained with blindfolds and hobbles for measurement and collaring. Caribou aged 13

months and older were captured in late June and early July, often near Teshekpuk Lake. Cap-

tured caribou were fitted with a collar containing a conventional very high frequency (VHF)

radio-transmitter and a GPS-linked transmitter (various TGW- models; Telonics, Mesa, AZ).

Collars were adjusted to allow for growth and to minimize rubbing. Recaptures occurred at 1-

5-year intervals based on expected battery life of the collar. All captures were conducted under

Alaska Department of Fish and Game Institutional Animal Care and Use Approval #2007–13

and subsequent renewals.

We received location and mortality data through polar-orbiting satellites transmitted

through command and acquisition stations to ARGOS data processing centers [37]. Location

data spanned 2004–2016, however we excluded periods in which individuals had their GPS

collars replaced with a Platform Terminal Transmitter (PTT) collar due to lower fix rates and

positional accuracy. For example, all caribou had their GPS collars replaced with PTT collars

in 2005, resulting in a lack of GPS records for the July 2005 –June 2006 period. Data filtering

removed locations that were duplicated, post-mortality, or presumed erroneous based on the

combination of distance, rate, and angle [38]. We then divided data for each caribou into anal-

ysis-years stretching from July 1 of one year to June 30 of the subsequent year. This
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Fig 1. Example caribou movement data for four individuals from the Teshekpuk Caribou Herd (TCH) in northwestern Alaska.

Caribou of the TCH display a variety of movement patterns, including use of four wintering areas. (A) One representative caribou-year

of data is depicted for each wintering area. (B-E) Individual paths for the four individuals in panel A are shown divided by season.

Teshekpuk Lake, the vicinity of most calving for the TCH, is shown in each panel for reference, with size varying relative to movement

distance. (F-I) Corresponding first passage time–net squared displacement (FPT-NSD) plots for caribou overwintering in the (B,F)

western coastal plain (W Coastal), (C,G) eastern coastal plain (E Coastal), (D,H) western Brooks Range (W Brooks), and (E,I) eastern

Brooks Range (E Brooks). Seasonal periods in panels B-E are replicated along the x-axis of each corresponding FPT-NSD plot, with

vertical dashed grey lines indicating season breaks. Panels F-I depict the FPT in the color matching the corresponding movement data in

panel A and NSD in grey.

https://doi.org/10.1371/journal.pone.0258128.g001
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encapsulates a time from after calving, when caribou typically gather while seeking relief from

insects, through a full year until shortly after the next calving season, which coincides with

annual collaring efforts. We refer to one caribou-year of data as a single analysis-year of data

for one individual caribou.

To retain only relatively complete caribou-years, we filtered the data by excluding individ-

ual caribou-years with a duration less than 290 days [39]. Furthermore, we removed caribou-

years with gaps in location information greater than 2 consecutive weeks to ensure there were

sufficient records for each month. However, individuals whose records terminated early, either

due to mortality or collar failure, were retained as long as their records met the 290-day thresh-

old. We removed five caribou-years in which a caribou calved with a different herd and then

followed that herd’s predominant movement patterns, or spent most of the year with that

herd, as these did not reflect movement patterns for the TCH [30]. In Alaska, caribou herds

are identified based on fidelity to calving grounds for ecological and management purposes

[40,41], although caribou do sometimes switch between herds both temporarily and for

extended periods [35]. We retained one caribou-year in which the individual spent the calving

period near the Western Arctic Herd calving area but then rejoined the main TCH area [35].

Telemetry collars recorded caribou locations at varying pre-programed fix intervals ranging

from locations every 2 hours to locations every 12 hours. Some collars featured variable fix

rates throughout the year with certain periods programed at a coarser fix interval (e.g., during

winter) and others at a finer fix interval (e.g., around calving). Each collar’s records were stan-

dardized to its coarsest time interval across the entire analysis-year.

Classifying movement behavior

We classified caribou movement behavior into a set of possible strategies (i.e., residency, migra-

tion, or other movement) and used characteristics of the movement trajectories to define sea-

sonal periods. There are multiple ways to characterize animal movement behavior, leading some

researchers to recommend comparing results using multiple classification methods [39]. We

evaluated four potential methods for classifying movement behavior of caribou: home range

overlap [39], latent state modeling of net squared displacement [42], mechanistic range shift

analysis [18], and first-passage time–net squared displacement [43,44]. After comparing results

of the four approaches, we found only the first passage time–net squared displacement approach

(FPT-NSD) suitable for our purposes of characterizing caribou movement and identifying sea-

sonal use (see S1 Appendix). Only FPT-NSD could accommodate the variety of movement types

displayed within the TCH, such as movement bursts interspersed with largely sedentary periods,

occasional movement bouts during the winter, and the vast size of the winter range.

The FPT-NSD approach combined movement-based and location-based data to identify

seasonal movement patterns [43,44]. First passage time (FPT) identified periods of tortuous

movement and those characterized by faster, more linear movement [45]. We subdivided the

movement paths for each caribou-year into groups with similar FPT values using a segmenta-

tion process [46] to indicate breakpoints in movement behavior. The segmentation process

often indicated more breakpoints than just those surrounding migration (e.g., the summer

period, prior to fall migration, might be subdivided into three segments: high movement to

reach insect relief habitat, clustering during insect relief, and high movement post-insect relief

but before migration). We manually reviewed candidate breakpoints for each individual to

classify seasonal movement periods using a combination of the individual’s FPT values, net

squared displacement (NSD) values that signal changes in movement areas [47], and visual

analysis of segmented locations. For additional details regarding application of the FPT-NSD

approach, please see S1 Appendix.
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We conducted all analyses using the statistical software R (version 3.4.0) [48]. We calculated

FPT and performed FPT segmentation using the adehabitatLT package [49] and manually cal-

culated two sets of NSD values, one based on the first recorded location of each analysis-year

and the other on first day of winter behavior. From the segmented data, we assigned move-

ment classifications (migrant, resident, and other). To count as migration a caribou had to

exhibit discrete summer and winter ranges and a general there-and-back-again return move-

ment, but we did not employ distance thresholds, as this varied widely among individuals. Res-

ident behavior did not exhibit discrete summer and winter ranges and the caribou remained

in the general vicinity of Teshekpuk Lake.

Migration characterization

For caribou classified as migrants by the FPT-NSD approach, we recorded the start and end

dates of fall and spring migration, as well as the duration and distance of migration. We

recorded both Euclidean distance between the start and end points of migration and path dis-

tance, summing the distances between consecutive locations during the migratory period. The

former approach is common in analyses of migration (e.g., [25,44]), while the latter approach

estimates the cumulate distance traveled [25] and may be especially relevant when migration

includes large looping movements, as was often seen for the TCH. Path distance is influenced

by fix interval between locations [38,50], so we calculated both distances on a standardized

dataset in which all caribou-years contributed at most two observations per day, correspond-

ing to the coarsest fix interval in our dataset (i.e., 12-hour fixes). Locations were taken to be as

close to the times used in the 12-hour dataset as possible.

We also calculated directedness of migration, also known as the straightness index [51,52],

which is defined as the Euclidean distance of migration divided by path distance. Values ran-

ged from 0–1, with lower values indicating a more tortuous migration path and higher values

indicating more directed movement. A directedness value of 1 would indicate that the animal

migrated in a straight line following the path of least distance during migration.

We compared migration metrics across the coarse and fine wintering areas described in the

following section. Because the distribution of many of our metrics (e.g., distance, directedness,

and timing of migration) strongly diverged from normality, we evaluated difference of means

between wintering areas using a Kruskal-Wallis rank sum test [53], with a multiple compari-

son test to identify which alternatives differed [54]. We compared duration and directedness

of migration overall for all migrants between fall and spring migration using paired Mann-

Whitney tests [53].

Wintering area use and fidelity

Distinct wintering areas were identified using a population-level winter utilization distribution

[55–57]. Winter locations were identified for each caribou based on FPT-NSD seasonal break-

points. For caribou-years for which distinct start and end dates for seasons could not be identi-

fied (e.g., residents and other non-migratory movement behaviors), we used the median

season start and end dates across all migrant individuals to define the season boundaries. We

combined all winter locations from the standardized two-location-per-day dataset and calcu-

lated a population-level utilization distribution using kernel density estimation in the R pack-

age adehabitatHR [49], using the ad hoc approach of Kie [58] to select the optimal bandwidth.

Caribou-years were assigned to the population-level wintering area with which their indi-

vidual-level utilization distribution had the greatest overlap. We assigned individual-level utili-

zation distributions that did not show any overlap with the various wintering areas to the

wintering area to which they were nearest based on the edge-edge distance between the
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individual’s 95% contour and each wintering area boundary. We analyzed winter use at two

scales evident in the winter utilization distribution: coarse use, comparing animals that over-

wintered on the coastal plain to those that overwintered in or below the Brooks Range, and

fine use, comparing use of four individual wintering areas, two each in the coastal plain and

Brooks Range.

We defined fidelity as the tendency of an animal to return to its previously used location in

consecutive years [59–61]. To analyze the annual fidelity of individual caribou to wintering

areas, we calculated transition probabilities using the R package TraMineR [62]. The program

created state sequences describing individual-level classifications of coarse- and fine-scale win-

tering area use and calculated transition probabilities between states. This yielded information

on the likelihood of a caribou using the same wintering area in subsequent years or transition-

ing to a different wintering area. Only individuals with subsequent caribou-years of location

data were included in this analysis.

Results

Caribou data

Our caribou telemetry dataset consisted of 76 adult female caribou from 2004–2016, with sam-

ple size varying per analysis-year (S2 Appendix: S1 Table). Individuals had between 1–8 years

of location data (mean 2.2), resulting in 164 caribou-years of data. Thirty-nine caribou (51.3%)

had multiple years of data. After collar fix rates were standardized to their coarsest time inter-

val, there were 120 caribou-years with 2-hour fix rates, 17 with 3-hour fix rates, 10 with 8-hour

fix rates, and 17 with 12-hour fix rates (73.2%, 10.4%, 6.1%, and 10.4%, respectively).

Movement classification

The FPT-NSD analysis classified 129/164 (78.7%) annual movement trajectories as migration,

19 (11.6%) as residency, and 16 (9.8%) as some other movement strategy like nomadism. We

found interannual variability in the degree of partial migration for the TCH. In any given year

between 41–100% of collared caribou migrated (S2 Appendix: S1 Fig).

Migration characterization

Seasonal boundaries identified using median dates across all migrants were similar to those

reported by Person et al. [30] for calving and post-calving seasons (Table 1). However, seasonal

boundaries differed in other periods. Summer ended almost two weeks later than reported by

Person et al. [30], while spring migration started a little over two weeks later but ended at a

similar date (Table 1). Fall migration and winter showed opposite patterns, with fall migration

starting a week and a half later and ending nearly three weeks earlier than indicated by Person

Table 1. Teshekpuk Caribou Herd seasonal boundaries as defined in our study and Person et al. [30].

Source Summer a Fall migration Winter Spring migration Calving Post-calving

This study b Jul 1 –Sep 27 Sep 28 –Nov 10 Nov 11 –May 1 May 2 –Jun 1 Jun 2 –Jun 16 Jun 17 –Jun 30

Person et al. c Jul 1 –Sep 15 Sep 16 –Nov 30 Dec 1 –Apr 15 Apr 16 –May 31 Jun 1 –Jun 15 Jun 16 –Jun 30

a. Person et al. [30] split summer into three periods: Mosquito harassment (Jul 1 –Jul 15), mosquito and oestrid fly harassment (Jul 16 –Aug 7), and late summer (Aug

8 – Sep 15). As our focus was on migration and winter, we did not attempt to differentiate summer periods between post-calving and fall migration and instead

identified a single summer season.

b. Dates reflect the median start and end dates across all caribou-years classified as migrants (n = 129).

c. Adapted from Russell et al. [63]. See Discussion for details.

https://doi.org/10.1371/journal.pone.0258128.t001
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et al. [30], while winter started about two weeks earlier and ended about two weeks later

(Table 1). These patterns reflect median season dates, however we observed wide variability in

timing across caribou-years (Fig 2).

Fig 2. Migration start and end dates by season. Data shown combined for all caribou-years (top row), divided at a coarse scale–coastal plain versus

Brooks Range (second row), and divided at a fine scale–four wintering areas (bottom two rows). Bars in each panel represent one-week intervals.

Vertical dashed lines indicate median migration start (red) and end (blue) dates, as reported in this study (Table 1). Data are depicted for caribou-

years classified as “migration” (n = 129) by the first passage time–net squared displacement method.

https://doi.org/10.1371/journal.pone.0258128.g002
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Timing of migration varied by wintering area, with different patterns apparent across sea-

sons (Figs 2 and 3). During fall migration, migrants overwintering on the coastal plain and

Brooks Range at a coarse scale did not significantly differ in their start or end dates, nor in

Fig 3. Migration duration (days) by season. Data shown combined for all caribou-years (top row), divided at a coarse scale–coastal plain versus

Brooks Range (second row), and divided at a fine scale–four wintering areas (bottom two rows). Data are depicted for caribou-years classified as

“migration” (n = 129) by the first passage time–net squared displacement method.

https://doi.org/10.1371/journal.pone.0258128.g003
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their duration of migration (S2 Appendix: S2 Table). At a fine scale, migrants to the four win-

tering areas ended their migration at a similar time but had different start dates and durations

of migration, with the earliest start date and longest duration of migration, on average, for W

Coastal migrants (S2 Appendix: S2 Table). In contrast, spring migration tended to exhibit dif-

ferences at both coarse and fine scales (S2 Appendix: S3 Table). Migrants from the Brooks

Range started migration earlier and ended later than those from the coastal plain, resulting in

a duration of migration that was about two weeks longer on average (S2 Appendix: S3 Table).

Comparing across seasons, duration of migration was significantly longer for fall migration

than spring migration (p< 0.001; S2 Appendix: S2 Fig).

Migrants to the Brooks Range travelled significantly farther than those that remained on

the coastal plain, considering both path distance and Euclidean distance (S2 Appendix: S4 and

S5 Tables, S3 and S4 Figs). Comparing overall migration distance across seasons also indicated

differences. Fall migration path distances were significantly longer than those during spring

migration (p< 0.001), but Euclidean distances did not significantly differ (p = 0.19). This was

reflected in the directedness of migration metric, which indicated significantly more directed

movement in spring compared to fall (�xfall = 0.46, �xspring = 0.72, p< 0.001; Fig 4).

Wintering area use and fidelity

Four distinct wintering areas were evident in the population-level winter utilization distribu-

tion (S2 Appendix: S5 Fig): the western coastal plain (W Coastal), eastern coastal plain (E

Fig 4. Directedness of fall and spring migration for the Teshekpuk Caribou Herd. Directedness indicates the degree

of tortuosity of a caribou’s migration path, with lower values indicating a more tortuous migration path and higher

values indicating more directed movement. Across all migrants, spring migration tended to be more directed than fall

(p< 0.001).

https://doi.org/10.1371/journal.pone.0258128.g004
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Coastal), western Brooks Range (W Brooks), and eastern Brooks Range (E Brooks; Fig 1). In

the coastal plain region in the north of the study area, where caribou occur at higher densities,

we distinguished wintering areas using the 50% contour of the population-level utilization dis-

tribution (S2 Appendix: S5 Fig). In the lower-density Brooks Range areas to the south, we dis-

tinguished wintering areas using the 85% contour (S2 Appendix: S5 Fig). Most caribou-years

showed winter overlap with at least one of the four wintering areas. Six caribou had individ-

ual-level utilization distributions that did not show overlap with any wintering area. Based on

the edge-edge distance between the individual’s 95% contour and each wintering area contour,

one was assigned to the W Brooks, three to the E Brooks and two to the E Coastal. This

resulted in a total of 71 caribou-years showing overwintering in the W Coastal area (43.3%), 43

in the E Coastal (26.2%), 10 in the W Brooks (6.1%), and 40 in the E Brooks (24.4%). Use of

wintering areas varied over time (Fig 5). Notably, however, multiple wintering areas were used

each year. Furthermore, each wintering area had at least one analysis-year in which it was not

used by collared caribou.

State sequence analyses of the 39 caribou (51.3%) with multiple caribou-years of location

data (78 total subsequent-year transitions), revealed differences in the degree of wintering area

fidelity at coarse and fine scales of wintering area use. At a coarse scale, comparing use of the

coastal plain versus Brooks Range, the probability of wintering on the coastal plain was largely

independent of where a caribou wintered the previous year (Table 2). Individuals that over-

wintered on the coastal plain in one year were highly likely to winter on the coastal plain the

following year, while those that overwintered in the Brooks Range were likely to switch to the

Fig 5. Wintering area use over time for the Teshekpuk Caribou Herd (TCH; n = 164). The x-axis depicts the start of

the analysis-year (i.e., 2004 indicates the analysis-year stretching from 1 July 2004–30 June 2005). See Fig 1 for

locations of the four wintering areas used by caribou of the TCH.

https://doi.org/10.1371/journal.pone.0258128.g005
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coastal plain the following year (Table 2). This is consistent with observed patterns of heavier

use of the coastal plain in general, despite annual variability (Fig 5) [30]. At a fine scale, fidelity

to the four individual wintering areas was low for most areas (Table 3). Probabilities of individ-

ual caribou overwintering in the same fine-scale wintering area in subsequent years were less

than 0.35 for all wintering areas except for the W Coastal, which showed a slightly higher likeli-

hood of reuse (prob. = 0.57).

Discussion

Migratory species depend on access to seasonal ranges to meet the myriad ecological pressures

faced by individual animals [4]. We investigated migration flexibility in a long-distance arctic

migrant by classifying movement behavior, characterizing migration dynamics, and analyzing

wintering area fidelity for the partially migratory TCH. Migration was a dominant strategy in

most years for the TCH (S2 Appendix: S1 Fig), as has been noted for other large caribou herds

in Alaska [64]. This is emblematic of a wider trend among many ungulates worldwide in

which migrants tend to be much more abundant than residents in populations due to benefits

of improved nutrition and reduced predation/disease [65,66] (but see [12,67]). Among Alas-

kan caribou, herds with long distance migrations tend to be much larger than herds with more

localized, year-round distributions [40]. Aside from the TCH, the proportion of migrants

within caribou herds has typically not been reported (but see [64]) and is an area that warrants

future research, including tracking over time as it may vary annually (S2 Appendix: S1 Fig).

Challenges in classifying migratory movement

While most caribou of the TCH were identified as migrants, we documented a wide array of

movement variability within what we classified as migration. Within the migrants, there was a

spectrum of migratory distances and durations observed (Fig 3, S2 Appendix: S3 and S4 Figs).

Table 3. Transition probabilities for caribou moving between fine-scale wintering areas in subsequent years.

W Coastal (n = 40) E Coastal (n = 18) W Brooks (n = 2) E Brooks (n = 18)

W Coastal (n = 37) 0.57 0.22 0.00 0.22

E Coastal (n = 14) 0.43 0.29 0.00 0.29

W Brooks (n = 8) 0.88 0.12 0.00 0.00

E Brooks (n = 19) 0.32 0.26 0.11 0.32

See Fig 1 for wintering area locations. Probabilities are rounded to the second decimal place and indicate the likelihood of an individual caribou moving from the row

location in one year to the column location in the next year. Sample sizes indicate the number of caribou starting in (rows) or ending in (columns) each wintering area

for the 78 observed subsequent-year transitions.

https://doi.org/10.1371/journal.pone.0258128.t003

Table 2. Transition probabilities for caribou use of the coastal plain in the north of the study area (Coastal) and

the Brooks Range mountains in the south of the study area (Brooks) in subsequent winters.

Coastal (n = 58) Brooks (n = 20)

Coastal (n = 51) 0.76 0.24

Brooks (n = 27) 0.70 0.30

Probabilities are rounded to the second decimal place and indicate the likelihood of an individual caribou moving

from the row location in one year to the column location in the next year. Sample sizes indicate the number of

caribou starting in (rows) or ending in (columns) each wintering area for the 78 observed subsequent-year

transitions.

https://doi.org/10.1371/journal.pone.0258128.t002
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This variability likely contributed to the challenges that several previously published tech-

niques had classifying movement behavior for the TCH (S1 Appendix). There were also multi-

ple individuals that, even though classified as residents or other movement types, nonetheless

showed “migration-like” movements where periods of increased movement rate and more

directed movement started around the same time as migration for other individuals, even

though the end results were not clear enough to classify as migration. Similarly, Nicholson

et al. [64] noted that there were some caribou in their study of the Central Arctic Herd that did

not fit their strict definition of migration but nonetheless showed movements between distinct

ranges across seasons. Within migratory species, some environmental or endogenous cues

may result in migratory restlessness, even when a migration does not actually take place [68].

These observations suggest that greater attention is needed to clarify what constitutes migra-

tory movements, depending upon the ecological questions at hand.

We recorded a hierarchy of movement, including coarse- and fine-scale wintering area use.

By some definitions, all individuals that overwintered on the coastal plain would be considered

residents and only those that moved to the Brooks Range would be counted as migrants. How-

ever, this would mask a great deal of diversity in movement behaviors and patterns. Movement

differences can have fitness consequences for ungulates and should not simply be ignored. For

example, mule deer (Odocoileus hemionus) that migrate longer distances spend significantly

more time migrating and have greater exposure to potential barriers like highways and fences,

but exhibit reduced risk of human harvest compared to shorter distance migrants [11]. As

studies of migratory species continue to increase worldwide, we recommend increased atten-

tion to the variability of behaviors within what is considered migration.

Caribou migration dynamics

Many ungulate migratory behaviors are flexible, responding to fluctuating environmental con-

ditions with variable routes and timing [7]. Nonetheless, patterns have emerged such as migra-

tion distance influencing timing with longer distance migrants spending more time migrating

[11]. We found this pattern to be supported at a coarse scale for TCH spring migration, as

migrants from the Brooks Range–which travelled farther on average than coastal plain

migrants (S2 Appendix: S4 and S5 Tables)–left earlier and arrived later, resulting in a signifi-

cantly longer duration of migration (S2 Appendix: S3 Table). During fall migration, however,

distances differed significantly (S2 Appendix: S4 and S5 Tables) but there were not significant

differences in departure, arrival, or duration of migration (S2 Appendix: S2 Table).

Our finding of more directed movement in spring than in fall (Fig 4) contrasts with pat-

terns reported for the Central Arctic Herd [64,69], though it is not clear how directedness was

determined in those studies. Nicholson et al. [64] suggested less directed movement in spring

may be due to poor body condition and the high energy demands of gestation limiting the abil-

ity to travel rapidly in spring. However, a study of the nearby Western Arctic Herd found that

fall migration more closely aligned with a random walk movement model than a more linear

least cost path model [70], suggesting less directed movement in the fall. This may reflect a

greater degree of exploratory movement to enhance foraging opportunities prior to winter

that is enabled by milder, prolonged fall seasons and necessitated by the lack of individual

fidelity to wintering areas. In contrast, straighter paths might be expected during spring migra-

tion when movements are toward calving grounds that are well known to the caribou [71,72]

and long established as an area with high fidelity [41,73,74]. Further studies are needed to con-

firm if these hypotheses explaining migratory directedness in fall and spring are supported.

Such inquiry will benefit from a replicable and comparable means of quantifying directedness

of migration. Our use of the ratio of Euclidean to path distance presents one such metric and
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we encourage its continued use in comparative studies of caribou and other species to further

understanding of migration behavior across seasons.

Migration and winter dates used by Person et al. [30] differed from those we identified by

2–3 weeks (Table 1). The dates in Person et al. [30] were modified from seasonal dates reported

by Russell et al. [63] for the Porcupine Caribou Herd. Russell et al. [63] chose dates that

reflected changes in environmental conditions that may have ramifications for caribou energy

use and behavior, whereas our dates are movement-driven, based on observed differences in

movement behavior. Our dates are more similar to those reported for the Central Arctic Herd

[64], which were also based on movement data. These patterns reinforce the importance of

careful consideration of choice of seasonal boundary dates as indicators of movement

behavior.

Wintering area fidelity and migration plasticity

Despite the predominance of migratory behavior in the TCH, we identified substantial vari-

ability in use of wintering areas over time. We observed use of four distinct wintering areas,

with low individual-level fidelity reflected in the generally low probability of an individual

TCH caribou reusing a given wintering area in subsequent years. This aligns with a recent

comparative study that found caribou had the lowest overall site fidelity of the 8 ungulate spe-

cies investigated [60]. Patterns of spatial fidelity appear to vary throughout the year for caribou,

however, with the nearby Western Arctic Herd exhibiting strong fidelity for their general calv-

ing area, though with variation in annual calving areas, and weakest fidelity in winter [71,74].

Although individual-level winter fidelity appears to be low, there seems to be overall consis-

tency in herd-level patterns of winter use over two and a half decades (1990–2015). Person

et al. [30] indicated comparable use of the coastal plain (65% of individuals using the combined

areas of the coastal plain in Person et al. compared to 70% in this study), E Brooks (21% versus

24%), and W Brooks (11% versus 6%) by TCH caribou during winter. This observation of

strong herd-level winter fidelity, even during large changes in herd size [75], is notable in com-

parison with adjacent herds that have demonstrated a more decadal pattern of using a given

wintering area, followed by near or total abandonment [76,77]. The difference may lay in the

density of caribou during winter, with higher cumulative winter densities of caribou across

years for other herds increasing the likelihood of abandonment. This warrants further investi-

gation, along with additional research to reveal what factors drive winter range selection and

long-term patterns in use, as well as any population-level demographic implications for

caribou.

Weak year-to-year individual fidelity and behavioral flexibility may provide benefits to spe-

cies [60,78], especially in situations of increasing environmental variability such as with cli-

mate change [79–81], or when seasonal ranges become overutilized and exploitation of new

habitats can be beneficial [82]. However, these benefits may apply differently across wintering

areas, based on differences in wintering area conditions. Predator density [83–86], forage

quantity or quality [87–89], snow depth and density [90,91], or exposure to human develop-

ment and activity [92] may influence TCH use of specific wintering areas. Individual factors

such as body size, presence of a calf, or age may compound these differences, leading to vary-

ing nutritional needs, sensitivity to disturbance, and susceptibility to predation, parasites, or

disease. These sources of variability make it likely that potential fitness tradeoffs will differ

among individuals and years. For example, migrants and residents may vary in their body con-

dition, demographic performance, and exposure to threats [11,93,94]. Such fitness tradeoffs

may also extend beyond the winter period, leading to seasonal carryover effects in which envi-

ronmental conditions in one place or season lead to differences among individuals or
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populations that affect demographic rates in subsequent locations and seasons [7,95,96]. This

reinforces the importance of understanding the ecological processes that drive within- and

between-individual variation in migration and winter fidelity observed in this study.

Conservation and management implications

Our study adds caribou to the growing list of ungulates that exhibit individual-level migratory

plasticity [18,19,97–101]. New efforts to map ungulate migrations seek to increase awareness

of the threats to ungulate migration and to provide data to support their conservation and

management [102]. Understanding dynamics of migratory behavior, destination, and timing

plays an important role in supporting such goals. As these efforts proceed, it is important that

they reflect migratory variability not only between, but also within, populations. While the

importance of conserving biodiversity is well recognized, much attention is focused at the spe-

cies level or higher. Within-species diversity may play key roles in providing ecosystem ser-

vices that benefit both people and nature [103] and can have ecological effects as great as, or

even greater than, species-level effects [104]. This underscores the value of attention to within-

species diversity in future conservation efforts.

Given the recognized consequences of disrupted migration for large herbivore populations

[7], it is important for land use decisions to account for potential impacts to migratory connec-

tivity. Recent decisions have expanded the amount of TCH habitat available for oil and gas

leasing and development [105] and approved new projects across the range of the herd (e.g.,

[36,106]). Understanding patterns of winter use and migration in areas proposed for develop-

ment may allow analysis of potential impacts of proposed projects [107] as well as influence

site selection and mitigation decisions. It is unknown how overwintering caribou in northern

Alaska will respond to infrastructure and human activities, as most North Slope development

to date has occurred outside of primary caribou winter range. Studies in Canada, however,

have found avoidance of infrastructure by overwintering caribou [92,108]. With the TCH

making heavy use of the coastal plain during winter, there is a need to similarly investigate pat-

terns of winter response to infrastructure and to inform management and permitting decisions

accordingly. There is also a need for better understanding the effects on caribou of temporary

infrastructure such as ice and snow roads, exploratory drilling, and winter seismic exploration.

Improved understanding of movement dynamics is not just relevant for caribou and the

species that they influence, but also for humans who rely on caribou. Annual movements of

the TCH bring them in proximity to several northern Alaskan communities (Fig 1) populated

primarily by Alaska Native peoples. Subsistence hunting for caribou and other species is cru-

cial for food security in these remote communities that are not connected to permanent infra-

structure and so have high costs to import food [109]. Harvest also is an important part of the

culture, identity, and customary and traditional ways of life for people in the region [109,110].

There is increasing recognition that loss of caribou and their migrations can convey consider-

able emotional and cultural toll on Indigenous people [111,112]. Thus, understanding natural

variation in timing and destination of caribou migration, as well as how migration is affected

by climate change and human activity, has direct impacts for Indigenous culture and for sub-

sistence management.

Conclusions

We found within-individual variation in movement behavior and wintering area use by the

TCH, adding caribou to the growing list of ungulates that exhibit migratory plasticity. Recent

work has emphasized that expression of migration can be state, condition, or density depen-

dent [13,113–115]. Understanding drivers of migration at both proximate and ultimate levels
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is key to understanding how they will be affected by changing environmental conditions [116].

As caribou face the pressures of a rapidly warming Arctic [117] and ongoing human develop-

ment and activities [107,118,119], further research is needed to investigate what factors influ-

ence this diversity of caribou behaviors in Alaska and across the circumpolar Arctic.
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